بحث عن الصورة القطبية والصورة الديكارتية للمعادلات
بحث عن الصورة القطبية والصورة الديكارتية للمعادلات المتواجدين في علوم الرياضيات وفي علوم الفيزياء، فهذه المعادلات الرياضية تهم كل الباحثين وكل الدارسين، والحديث بشكل مفصل عنهم يهم الكثير من الطلاب، فالرياضيات علم واسع وعميق، والأنظمة الإحداثية بإخلاف أنواعها وأشكالها أو بما يسمى Coordinate system المسئولة عن تحديد الأعداد أو العينات من فضاء عينة ما، وذلك عن طريق النظام القطبي، أو النظام الديكارتي، أو نظام الإحداثيات الإهليجي، أو نظام الإحداثيات الإسطواني، أو نظام الإحداثيات الكروي أو غيرها من النظم، ولكننا سنشير اليوم إلى الصورة القطبية والصورة الديكارتية فقط.
بحث عن الصورة القطبية والصورة الديكارتية للمعادلات
الصورة القطبية للمعادلات
الصور القطبية أو الإحداثيات القطبية أو النظم الأحادية القطبية هي علم من علوم الفزياء والرياضيات، ظهر هذا المصطلح وانتشر بين العلماء في القرن السابع عشر، وذلك على يد العالمين بونافنتورا كافاليري وسانت فنسنت، حيث تحدثوا عن هذا المصطلح لأول مرة عام 1625 ميلاديًا، وتم كتابة كل التفاصيل الخاصة بهذا الإحداث وتم الرد على كل الأسئلة في كتاب نُشر لأول مرة عام 1625 ميلاديًا على يد العالم سانت فنسنت، ثم بعد ذلك تحدث العالم بونافنتورا كافاليري عن هذه الصورة بشكل أعمق عام 1647 ميلاديًا، وأفادت هذه الكتب الوسط العلمي وكان لها دور هام في الإنجازات العلمية المختلفة.
والصورة القطبية أو ما تسمى Polar coordinate system هو نظام إحداثيات يعمل على تحديد أماكن النقط في المستوى الواحد، وهو نظام يعمل على المعادلات ثنائية الأبعاد، ويعتمد في الأساس على حساب المسافة بين النقطة وبين المركز، بالإستعانة بالزاوية التي تكون بين النقطة وبين المركز وبين المستقيم الذي يكون مرجع ما، فالصورة القطبية ساعدت العلماء على معرفة أماكن أي نقطة في المستوى ثنائي الأبعاد، فهي في الأساس مجموعة مختلفة من المتغيرات.
الصورة الديكارتية للمعادلات
أول من انشأ النظام والصورة الديكارتية كان العالم الرياضي الفرنسي ريني ديكارت، الذي كان له دور كبير في عالم الرياضة والفيزياء، فهو كان يعمل على الدمج بين علم الهندسية الإقليدية وعلم الجبر، واستفاد من إنجازاته وكتاباته علماء الخريطة وعلماء الهندسة التحليلية، وتطورت الفكرة سريعًا وكُتب فيها الكثير من الكتب والمقالات، وكان بداية ذلك عام 1637 ميلاديًا.
نظام الإحداث الديكارتي يتم إستخدامه في الرياضيات، للقيام بتحديد نقطة ما أو موقع ما، وذلك في المستوى الثاني، وعند تحديد الموقع يجب أن يكون هناك نقطتين، أو إحداثين ويتم تسمية النقطة أو الإحداثية الأولى (س)، والنقطة أو الإحداثية الثانية (ص)، ويمكن أن يسمى المحور أو المسافة بين النقطتين مستقيم مدرج، وتسمى النقط الأولى والثانية إحادثيات أو أفاصيل أو أراتيب، وإذا أردت أن تعرف موقع إحداثيات يجب أن تضع خطين بشكل عمودي لتحديد الطول وتحديد التدريج المناسب، ويكون الخطين بين الإحداثي السيني والإحداثي الصادي.
تعمل الإحداثيات والصور الديكارتية على المساعدة في رسم وتوضيح العديد من الأشكال الهندسية المختلفة، وذلك عن طريق المعادلات الرياضية الجبرية، فإذا اخذنا الدائرة كمثال عن الأشكال الهندسية، فإذا كان شعاعها يساوي 2، حينها تكون معادلتها الديكارتية (س2 + ص2 = 4)، وذلك للربط بين إحداثيات نقط الشكل الهندسي.