تحليل قانون الفرق بين مكعبين مع الامثلة
تحليل قانون الفرق بين مكعبين مع الامثلة
تحليل قانون الفرق بين مكعبين مع الامثلة
تحليل قانون الفرق بين مكعبين مع الامثلة
تحليل قانون الفرق بين مكعبين مع الامثلة
تحليل قانون الفرق بين مكعبين مع الامثلة
تحليل قانون الفرق بين مكعبين مع الامثلة
تحليل قانون الفرق بين مكعبين مع الامثلة
قانون الفرق بين مكعبين
يعتبر المكعب من الأشكال الهندسية، التي تتشابه أوجهه الأربعة، بحث تكون مربعة الشكل، ويمثل (ل) طول ضلع المكعب، وبالتالي حجمه (ل3)، ولإيجاد الفرق بين مكعبين، سيلزم وجود مكعبين، بحيث يكون طول ضلع المكعب الأول (س)، وبالتالي حجمه (س3)، وطول ضلع المكعب الثاني (ص)، وبالتالي حجمه (ص3)، وبناءً على هذه المعطيات، فإن قانون الفرق بين مكعبين هو (س3 – ص3).
تحليل قانون الفرق بين مكعبين
يتم حساب مقدار الفرق بين مكعبين، من خلال التحليل إلى قوسين مضروبين في بعضهما، بحيث يحتوي القوس الأول على حدين وهما (س – ص)، ويحتوي القوس الثاني على ثلاثة حدود وهي (مربع الجذر التكعيبي للحد الأول + الجذر التكعيبي للحدّ الأول× الجذر التكعيبي للحد الثاني+ مربع الجذر التكعيبي للحد الثاني)، ومن خلال التعبير الرياضي العام، من الممكن تمثيل تحليل الفرق بين مكعبين كالآتي:
س3–ص3= (س–ص) (س2+س ص+ص2).
أمثلة على قانون الفرق بين مكعبين
المثال (1): حلل المقدار س3 – 27؟
الحل: من خلال تحليل المعطيات حسب قانون الفرق بين مكعبين فإنّ: س3 – ص3 = (س – ص)×( س2+س ص+ص2)، إذاً س3 – 27 = (س – 3)
(س2+3س+ 9).
المثال (2): حلل المقدار س3-125؟
الحل: س3- 125= (س-5) (س2+5س+25).
المثال (3): حلّل المقدار 8 س3–27؟
الحل: من خلال تحليل (8س3) إلى 2س×2س×2س، وتحليل (27) إلى 3×3×3، إذاً قيمة المقدار الأول هي (2س)، وقيمة المقدار الثاني هي (3)، وبالتالي حسب قانون الفرق بين مكعبين تحلل المعادلة كالآتي، 8س3-27 = (2س– 3) (4س2+2س×3+9). ا
المثال(4): ما هي قيمة س3- أ3؟
الحل: (س3 – أ3= (س – أ)×مقدار لا نعرفه، من خلال قسمة طرفي المعادلة على (س – أ)، (س3- أ3)/ (س- أ) = مقداراً لا نعرفه، وحسب مفهوم القسمة الطويلة نصل إلى الناتج التالي (س2+أ س+ أ2)/ (س- أ)، وعن طريق تحليل الفرق بين مكعبين نجد أن، س3– أ3= (س- أ) (س2+أ س+ أ2).
المثال (5): حلّل المقدار (س+3)4-(س+3)؟
الحل: من خلال إخراج (س+3) كعامل مشترك، لتصبح المعادلة كالآتي،(س+3) ((س+3)3-1)، بحيث تمثل (س+3) قيمة المقدار الأول هي ، أما قيمة المقدار الثاني هي (1)، أي أنّ (س+3) ((س+3)3-1)، وبتحليل المقدار ((س+3)3-1) حسب قانون الفرق بين مكعبين، (س+3) ((س+3)-1)((س+3)2+(س+3)+1)).
المثال (6): حلّل -5 س3 ص3+49 ع3-14 ع3+7 س3ص3+62س3ص3-99 ع3؟
الحل: من خلال النظر إلى المقدار السابق، نستنتج أنه من الممكن تبسيطه إلى 64 س3ص3- 64ع3 = 64 (س3ص3-ع3)= 64 (س ص-ع)(س2ص2+س ص ع+ع2).
المثال(7): حلّل 40 س3 ص3 ؟
الحل: 40 س3-5ص3= 5(8 س3- ص3)= 5 ((2 س-ص) (4 س2-2 س ص+ ص2)).
من خلال الأمثلة السابقة، نجد أنه في حال وجود أي مقدار يمكن تبسيطه، من خلال العمليات الحسابية، كالطرح والجمع والقسمة والضرب، أو من خلال إخراجه كعامل مشترك، يجب القيام بهذه الخطوة، من أجل تبسيط المقدار، وبالتالي تسهيل عملية تحليل الفرق بين مكعبين.