

Population (N): largest collection of elements
Sample (n): part of the population

KEY WORDS FOR THE EXCERSICES:

```
Level }->\mathrm{ Qualitative ordinal
    Yes or No questions }->\mathrm{ Qualitative nominal
Age, Weight }->\mathrm{ Quantitative continuous
```


Biostat(109) chapter2: strategies for understanding the meaning of the data

Frequency Distribution
1- Order array (smallest \rightarrow largest)
2- Class intervals (lower limit (L) - upper limit (U))
3- Mid-point $=\frac{U+L}{2}$
4- True class interval
$\mathrm{d}=L-U$ (preceding class interval)
true upper limit $=U+\frac{d}{2}$
true lower limit $=L-\frac{d}{2}$
5- Frequency \longrightarrow relative frequency $=\frac{f}{n}$
Precantage frequency $=\frac{f}{n} \times 100 \%$
6- Cumulative frequency \longleftrightarrow cumulative relative frequency= $\frac{c f}{n}$ cumulative recantage frequency $=\frac{C f}{n} \times 100 \%$
7- Width $=2^{\text {nd }}$ lower limit $-1^{\text {st }}$ lower limit
8- To present the frequency distirbutions
Histogram (class interval or mid point) polygon (mid point)
descriptive measures
Measure of central tendency
1- Mean
population (μ) sample $\overline{(X)}$
2- Median نتّمد التُرتيب ثم الثشط
3- Mode

Measure of dispersion(variation)

1- Range $=$ Max - Min
2- Variance (connected to the mean) population (σ^{2}) Sample (S^{2}) (unit ${ }^{2}$)

3- Standard Deviation (square root of the variance)

$$
\text { population }(\sigma) \text { Sample }(S)
$$

4- coefficient of variation (unit-less) (free of unit)

$$
\text { C. } V=\frac{S}{\bar{X}} \times 100 \%
$$

Population	Sample	
$-\quad$ Parameter	-	Statistic
-	Unknown	Known
		Used to approximate
parameters		

Probability $\rightarrow \mathrm{P}(\mathrm{E})=\frac{n(E)}{n(\Omega)}, \mathrm{P}(\Omega)=1, \mathrm{P}(\phi)=0$
Union \rightarrow key word: $($ or $)(+), \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+P(B)-P(A \cap B)$
Intersection \rightarrow key word: $($ and $)(\times), \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
Complement \rightarrow key word: $(\mathrm{not}),\left(A^{C}\right)(\bar{A}), \mathrm{P}\left(A^{C}\right)=1-P(A)$
Conditional probability \rightarrow key word: (given), $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P(A \cap B)}{P(B)}$
Exhaustive events $\rightarrow \mathrm{P}(\mathrm{A} \cup \mathrm{B})=1$
Disjoint (Mutually exclusive) $\rightarrow P(A \cap B)=0$
Independent $\rightarrow \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$

