Subjects

At the end of this unit , the student is expected to be able to : 1- Understand the concept of the buffer , its importance in chemistry and in real life and its types .

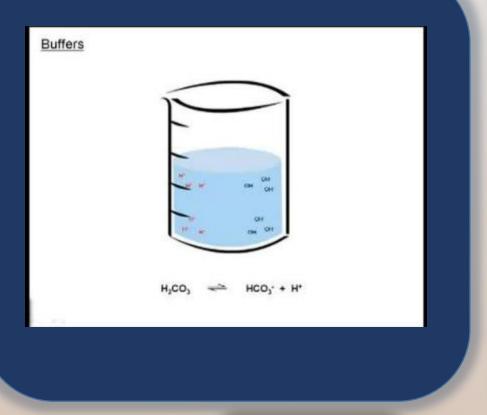
- 2- Realize the way by which the buffer stabilizes the pH .
- 3- Calculate the pH of all sorts of buffer solutions .
- 4- Know how to prepare all types of buffer solutions .
- 5- Recognize the role of polyprotic acids in the preparation of buffer solutions .

Introduction

A buffer is an aqueous solution consisting of a mixture of a weak acid and its salt (acidic buffer) or a weak base and its salt (basic buffer). Its pH changes very little when a small amount of strong acid or base is added to it and thus it is used to prevent changes in the pH of a solution.

Buffer solutions are used in a wide variety of chemical applications. One example of a buffer solution found in nature is blood. The normal pH of human blood is 7.4. Some people suffer from alkalosis when experiencing severe anxiety. Alkalosis is a condition in which the pH of the blood is too high. The opposite condition - a blood pH lower than 7.4 is called acidosis .

Some chemical reactions proceed only at a certain pH. Many household and cosmetic products need to control their pH values such as , shampoo to counteract the alkalinity of the soap and prevent irritation , baby lotion to maintain a pH of about 6 to prevent bacteria multiplying , washing powder , eye drops , fizzy lemonadeetc .


BUFFER SOLUTIONS

Types of Buffer Solutions

Acidic buffer solutions :

An acidic buffer solution is simply one which has a pH less than 7. Acidic buffer solutions are commonly made from a weak acid and one of its salts - often a sodium salt.

A common example would be a mixture of acetic acid and sodium acetate in solution. You can change the pH of the buffer solution by changing the ratio of acid to salt, or by choosing a different acid and one of its salts.

Types of Buffer Solutions

Alkaline (basic) buffer solutions

An alkaline buffer solution has a pH greater than 7. Alkaline buffer solutions are commonly made from a weak base and one of its salts. A frequently used example is a mixture of ammonia solution and ammonium chloride solution. A buffer solution has to contain things which will remove any hydrogen ions or hydroxide ions that you might add to it - otherwise the pH will change. Acidic and alkaline buffer solutions achieve this in different ways.

Acidic buffer solutions

We'll take a mixture of acetic acid and sodium acetate as typical. Acetic acid is a weak acid, and the position of this equilibrium will be well to the left :

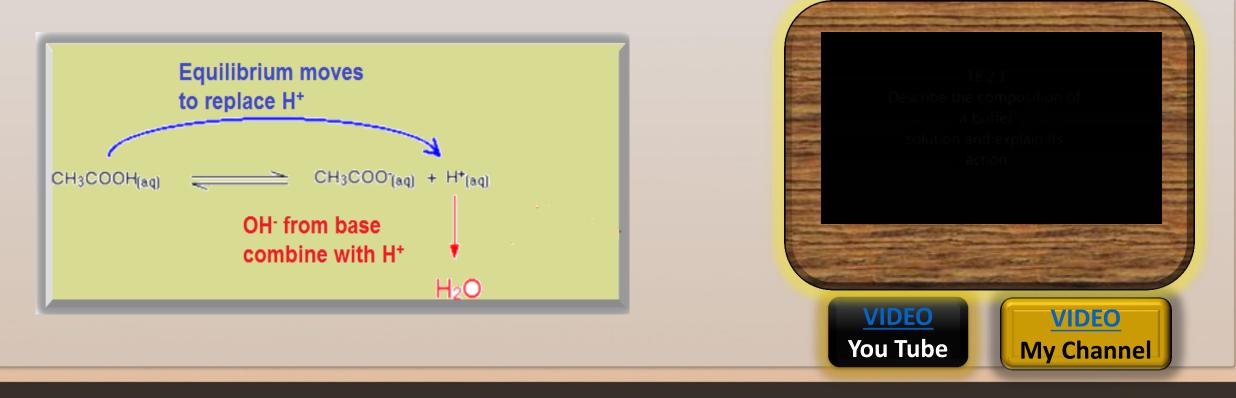
Adding sodium acetate to this adds lots of extra acetate ions. According to Le Chatelier's Principle,, that will tip the position of the equilibrium even further to the left (common ion effect). The solution will therefore contain these important things:

- lots of un-ionised acetic acid;
- lots of acetate ions from the sodium acetate;
- enough hydrogen ions to make the solution acidic.

Other things (like water and sodium ions) which are present aren't important to the argument.

Adding an acid to this buffer solution :

The buffer solution must remove most of the new hydrogen ions otherwise the pH would drop markedly. Hydrogen ions combine with the acetate ions to make acetic acid.


$$CH_3COO^{-}_{(aq)} + H^{+}_{(aq)} \longrightarrow CH_3COOH_{(aq)}$$

That means a strong acid has been turned to a weak acid. Since most of the new hydrogen ions are removed, the pH won't change very much - but because of the equilibrium involved, it will fall a little bit.

Adding a base to this buffer solution

Alkaline solutions contain hydroxide ions and the buffer solution removes most of these *by reacting with* H^+ to form water. As soon as this happens, the equilibrium of the acid dissociation tips to replace H^+ ions .This keeps on happening until most of the hydroxide ions are removed. That means a strong base has been turned to water .

Because most of the added hydroxide ions are removed by this way, the pH doesn't increase very much

Alkaline (basic) buffer solutions

We'll take a mixture of ammonia and ammonium chloride solutions as typical. Ammonia is a weak base, and the position of this equilibrium will be well to the left:

$$NH_{3(aq)} + H_2O_{(l)} \longrightarrow NH_4^+(aq) + OH_{(aq)}$$

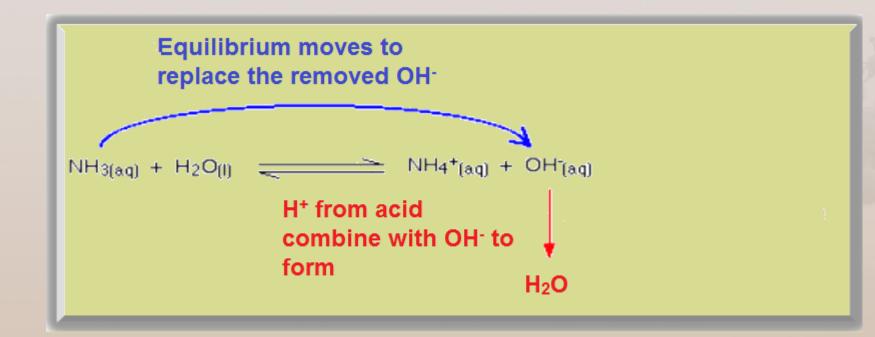
Adding ammonium chloride to this adds lots of extra ammonium ions. According to Le Chatelier's Principle, that will tip the position of the equilibrium even further to the left (common ion effect)

The solution will therefore contain these important things:

- . lots of unreacted ammonia;
- lots of ammonium ions from the ammonium chloride;
- enough hydroxide ions to make the solution alkaline.

Other things (like water and chloride ions) which are present aren't important to the argument.

VIDEO


Basic buffer

http://www.chembio.uoguelph.ca/ed ucmat/chm19104/chemtoons/chemt oons8.htm

http://bioalive.com/animations/chemistry.htm

Adding an acid to this buffer solution

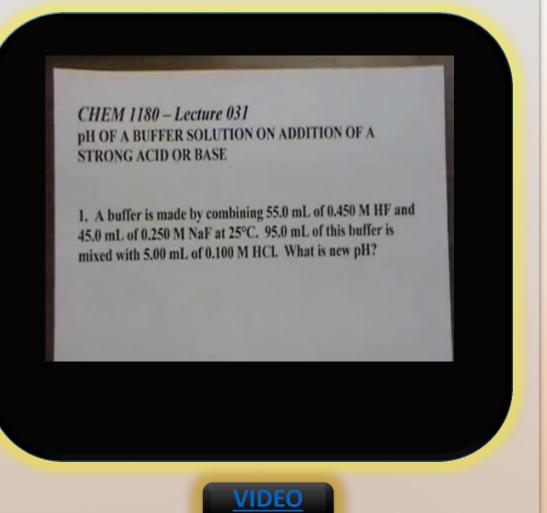
the hydrogen ions that you are adding are removed by reacting with OH (see previous equation) to form water. That means a strong acid has been turned to water.

This keeps on happening until most of thehydrogen ions are removed.

Adding a base to this buffer solution The hydroxide ions from the alkali are removed by a simple reaction with ammonium ions.

 $NH4^{+}(aq) + OH^{-}(aq) \longrightarrow NH_{3}(aq) + H_{2}O(1)$

That means a strong base has been turned to a weak base . The figure on the left summarizes the mechanism by which the buffer stabilize the pH and the following table shows some common acids and bases used for the preparation of buffer solutions .


adding NaOH will turn H⁺ to H₂O HA <=>H⁺ + A' NaA <=>Na⁺ + A' weak acid ar	
adding NaOH will turn NH4 ⁺ to NH3 $NH_3 + H_2O \iff NH_4^+ + OH$ $NH_3 + H_2O \iff NH_4^+ + OH$ $NH_4CI \iff NH_4^+ + CI$ weak base ar	to H ₂ O

Some common weak acids and bases and their salts usually used for the preparation of buffer solutions .

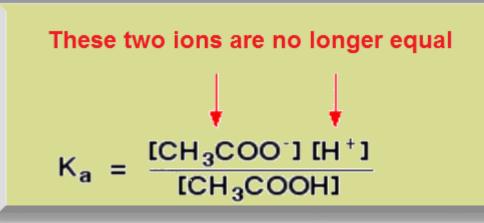
Acid or base	salt	
Acetic acid	Sodium acetate	
Phosphoric acid	Potassium phosphate	
Oxalic acid	Lithium oxalate	
Carbonic acid	Sodium carbonate	
Ammonia	Ammonium chloride	

Acidic buffer solutions

This is easier to see with a specific example. Let's suppose that you had a buffer solution containing 0.10 M of acetic acid and 0.20 M of sodium acetate . How do you calculate its pH? In any solution containing a weak acid, there is an equilibrium between the un-ionized acid and its ions. So for acetic acid, you have the equilibrium :

You Tube

The presence of the acetate ions from the sodium acetate will have moved the equilibrium to the left, but the equilibrium still exists.


That means that you can write the equilibrium constant, K_a , for it:

$$K_a = \frac{[CH_3COO^{-1}][H^+]}{[CH_3COOH]}$$

Where you have done calculations using this equation previously with a weak acid, you will have assumed that the concentrations of the hydrogen ions and acetate ions were the same.

Every molecule of acetic acid that splits up gives one of each sort of ion.That's no longer true for a buffer solution :

If the equilibrium has been pushed even further to the left, the number of acetate ions coming from the acetic acid will be completely negligible compared to those from the sodium acetate.

We therefore assume that the acetate ion concentration is the same as the concentration of the sodium acetate - in this case, 0.20 mol /L.

In a weak acid calculation, we normally assume that so little of the acid has ionised that the concentration of the acid at equilibrium is the same as the concentration of the acid we used. That is even more true now that the equilibrium has been moved even further to the left. So the assumptions we make for a buffer solution are :

Assume this is the same as the concentration of the sodium acetate $\kappa_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]}$ Assume this is the same as the concentration of the original acid

Now, if we know the value for K_a , we can calculate the hydrogen ion concentration and therefore the pH. K_a for acetic acid is 1.74 x 10⁻⁵.

Remember that we want to calculate the pH of a buffer solution containing 0.10 M of acetic acid and 0.20 M of sodium acetate .

$$K_{a} = \frac{[CH_{3}COOH^{-}][H^{+}]}{[CH_{3}COOH]}$$

$$1.74 X 10^{-5} = \frac{0.2 X [H^{+}]}{0.10}$$

$$[H^{+}] = 1.74 X 10^{-5} X \frac{0.10}{0.20}$$

$$= 8.7 X 10^{-6} mole/L$$

Then all you have to do is to find the pH using the expression :

 $pH = -log_{10} [H^+] = -log 8.7X10^{-6} = 5.1$

You could, of course, be asked to reverse this and calculate in what proportions you would have to mix acetic acid and sodium acetate to get a buffer solution of some desired pH. It is no more difficult than the calculation we have just looked at. Suppose you wanted a buffer with a pH of 4.46 (i.e [H⁺] = shift log $- 4.46 = 3.47 \times 10^{-5}$ M). Feed that into the K_a expression :

 $K_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]}$ $1.74 X 10^{-5} = \frac{[CH_{3}COO^{-}]X 3.47 X 10^{-5}}{[CH_{3}COOH]}$ $\frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{1.74 X 10^{-5}}{3.47 X 10^{-5}} = 0.50$

Subjects

Buffer Solution's Calculations

All this means is that to get a solution of pH 4.46, the concentration of sodium acetate has to be have that of acetic acid. In general we can use the following equations for calculating a pH of any buffer :

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{[H^{+}](C_{s} + x)}{C_{a} - x} \cong \frac{[H^{+}]C_{s}}{C_{a}}$$

Multiplying both sides by – log we obtain what is called Henderson-Hasselbalch equation :

acid and its salt.

VIDEO

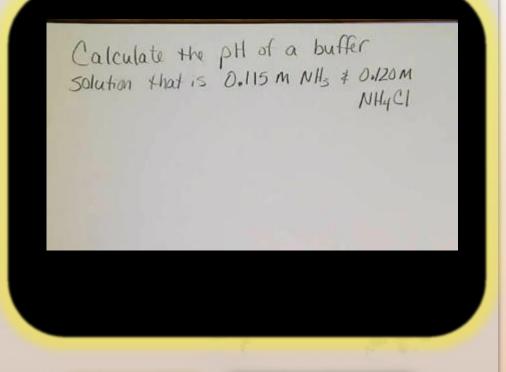
My Channel

Buffer Solution's Calculations

$$pH = pK_a + \log \frac{C_s}{C_a}$$

Where HA is the weak acid , C_a is its initial concentration , NaA is the sodium salt of the weak acid , C_s is the concentration of the salt . Note that : $[A^-] = C_s + x \cong C_s$ The above equation is the general equation used for calculation of a pH of a buffer composed of a weak Calculate the pH of a buffer system

Calculate the pH of a buffer solution that is $0.15 \text{ M HNO}_2(aq)$ and 0.2 M NaNO_2 .


VIDEC

You Tube

Alkaline (basic) buffer solutions

We are talking here about a mixture of a weak base and one of its salts - for example, a solution containing ammonia and ammonium chloride .The modern, and easy, way of doing these calculations is to re-think them from the point of view of the ammonium ion rather than of the ammonia solution. Once you have taken this slightly different view-point, everything becomes much the same as before. So we will use the general following equation :

$$\begin{array}{rcl} pOH & = & pK_{b} + & \log & \frac{C_{s}}{C_{b}} \\ pH & = & 14 - & pOH \end{array}$$

Where C_s is the concentration of weak base salt , C_b is the concentration of the weak base and K_b is the dissociation constant of the weak base . So how would you find the pH of a solution containing 0.10 M of ammonia and 0.05 M of

ammonium chloride? $K_b (NH_3) = 1.8 \times 10^{-5}$:

 $pOH = -\log 1.8 X 10^{-5} + \log \frac{0.05}{0.10} = 4.44$

Buffer Capacity : *pH*

$$pH = 14 - 4.44 = 9.56$$

It is the number of moles or mmoles of a strong base (y), which when added to one liter of a buffer raises his own pH by one unit, or it is the number of moles or mmoles of a strong acid (x) which, when added to one liter of this buffer reduced its pH by one unit. The higher the capacity the higher the amounts of a strong acid or a strong base which can be added to the buffer without significantly changing his own pH. The capacity of a buffer solution can be increased by increasing both Cs, Ca and Cb and it will be at maximum when Cs = Ca or Cs = Cb and in this case :

Subjects

$$pH = pK_a + 0$$
 Or $pOH = pK_b + 0$

How to select the appropriate buffer :

In order to prepare a buffer solution at certain pH with highest capacity , you will choose the weak acid which its pK_a is the nearest to the pH of the buffer or choose the weak base which its pK_b is the nearest to (14-pH) of the buffer (see tutorial exercises).

Example : Calculate the buffer capacity of a buffer solution containing 0.2 M NH_3 and 0.1 M $NH_4Cl [pK_b (NH_3) = 4.76]$?

Solution : First : we calculate the pH of the buffer :

$$pOH = 4.76 + \log \frac{0.1(moles / L)}{0.2 (moles / L)} = 4.5$$

 $\therefore pH = 14 - 4.5 = 9.5$

Second : we calculate the buffer capacity by one of two ways :

(1) according to the above buffer capacity definition , suppose that x moles of strong acid such as HCl (buffer capacity) have been added to one liter of the buffer solution . HCl will covert the base $\rm NH_3$ to salt ($\rm NH_4^+$), so , the base will decrease and the salt will increase by the same number of HCl moles (all reactions are 1:1) and the pH of the buffer will decrease by one to become 8.5 instead of 9.5 (or the pOH will increase by one to become 5.5 instead of 4.5) thus :

$$5.5 = 4.76 + \log \frac{(0.1+x) \text{ moles / }L}{(0.2-x) \text{ moles / }L}$$

$$\therefore x = 0.15 \text{ (moles HCl / L)}$$

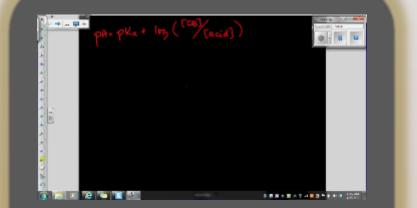
(2) Suppose that Y moles of strong base such as NaOH (buffer capacity) have been added to one liter of the buffer solution . NaOH will covert the salt(NH_4^+) into base NH_3 , so , the base will increase and the salt will decrease by the same number of NaOH moles (all reactions are 1:1) and the pH of the buffer will increase by one to become 10.5 instead of 9.5 (or the pOH will decrease by one to become 3.5 instead of 4.5) thus :

$$3.5 = 4.76 + \log \frac{(0.1 - y) \text{ moles / l}}{(0.2 + y) \text{ moles / l}}$$

∴ $y = 0.08 \pmod{\text{moles NaOH / l}}$

We can treat a buffer consisting from a weak acid and its salt in the same above manner (see tutorial) .

BUFFER SOLUTIONS


Buffer Capacity

Example : Calculate the change in pH of 10 mL solution of a buffer containing 0.2 M of acetic acid and 0.2 M sodium acetate when 1.0 mL of 0.1 M HCl solution is added to it ? $pK_a (CH_3COOH) = 4.76$ Solution : Note that HCl will convert the acetate to acetic acid . Before adding HCl :

$$pH = 4.76 + \log \frac{0.2}{0.2} = 4.76$$

After adding HCl :

$$pH = 4.76 + \log \frac{(0.2X10 - 1X0.1)/11}{(0.2X10 + 1X0.1)/11} = 4.71$$

Notice the insignificant change in pH due to the buffer resistance.

Preparation of Buffer's Solution

The methods of preparing buffer solutions Can be summarized as follows :

1- Calculating
$$\frac{C_s}{C_a}$$
 or $\frac{C_s}{C_b}$

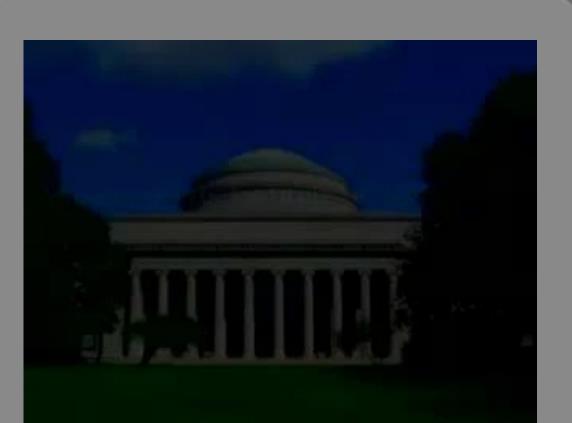
using the previous equations and then weighing the amount of the weak acid and its salt ($C_a : C_s$) or the amount of the weak base and its salt ($C_s : C_b$) and dissolve and dilute to the appropriate volume. This method is tedious and time consuming.

Preparation of Buffer's Solution

2- Adding drops of a strong base such as NaOH to an excess of a weak acid such as HA during which measure the pH of the solution using a pH – meter until you reach the desired pH. The added NaOH is completely turned to C_s which will form with the remaining weak acid C_a an acidic buffer solution :

drops of NaOH + excess HA \leftrightarrow NaA + H₂O 0 C_a C_s

BUFFER SOLUTIONS


Subjects

VIDEO

You Tube

Preparation of Buffer's Solution

Subjects

Preparation of Buffer's Solution

3- Like wise , adding drops of a strong acid such as HCl to an excess of a weak base such as NH_3 will produce a basic buffer solution :

drops of HCl + excess $NH_3 \leftrightarrow NH_4Cl$

4- Adding drops of a strong base such as NaOH to an excess of a salt of a weak base such as NH_4Cl will produce a basic buffer solution :

drops of NaOH + excess $NH_4C1 \leftrightarrow NH_3 + NaC1 + H_2O$

5- Adding drops of a strong acid such as HCl to an excess of a salt of a weak acid such as NaA will produce An acidic buffer solution

drops of HCl + excess NaA \leftrightarrow HA + NaCl

Polyprotic Acids And Its Salts

Polyprotic acids are specific acids that are capable of *losing* more than a single proton per molecule in acid-base reactions. In other words, acids that have more than one ionizable H⁺ atom per molecule. Protons are lost through several stages (one at each stage), with the first proton being the fastest and most easily lost. The following table, shows some of the common polyprotic acids. Note that $K_{a1} > K_{a2} > K_{a3}$ for all polyprotic acids so K_{a3} is very small and can be neglected.

Some Polyprotic Acids					
Formula	Name	K _{a1}	K _{a2}	K _{a3}	
H ₂ S	Hydrogen sulfide	1.0E-7	1E-19		
H ₂ SO ₄	Sulfuric acid	Very Large	1.1E-2		
H ₂ SO ₃	Sulfurous acid	1.3E-2	6.2E-8		
H ₃ PO ₄	Phosphoric acid	7.1E-3	6.3E-8	4.2E-13	
H ₂ C ₂ O ₄	Oxalic acid	5.4E-2	5.3E-5		
H ₂ CO ₃	Carbonic acid	4.4E-7	4.7E-11		
H ₂ C ₃ H ₂ O ₄	Malonic acid	1.5E-3	2.0E-6		

Subjects

Polyprotic Acids And Its Salts

Calculation of pH of a polyprotic acid solution :

1- If $K_{a1} > K_{a2}$, then the polyprotic acid solution can be treated as a monoprotic acid thus :

$$pH = -\log \sqrt{K_{a_1}.c_a}$$

2- If $K_{a1} > K_{a2} \times 10^2$, then we consider the first ionization stage is complete and we use only the second ionization stage thus :

Subjects

Polyprotic Acids And Its Salts

$$pH = -\log \sqrt{K_{a_2}}.C_a$$

3- If $K_{a1} \approx K_{a2}$ we use the following approximate equation :

$$pH = -\log \sqrt{K_{a_1} \cdot K_{a_2}}$$

Polyprotic Acids And Its Salts

Let us discuss H_3PO_4 and what applies to this acid applies to all polyprotic acids except H_2SO_4 (see ref.1 and 5). The three dissociation stages of H_3PO_4 as follows :

$$H_{3}PO_{4} \leftrightarrow H_{2}PO_{4}^{-} + H^{+} , \quad K_{a_{1}} = \frac{[H_{2}PO_{4}][H^{+}]}{[H_{3}PO_{4}]}$$

$$H_{2}PO_{4}^{-} \leftrightarrow HPO_{4}^{2^{-}} + H^{+} , \quad K_{a_{2}} = \frac{[HPO_{4}^{2^{-}}][H^{+}]}{[H_{2}PO_{4}^{-}]}$$

$$HPO_{4}^{2^{-}} \leftrightarrow PO_{4}^{3^{-}} + H^{+} , \quad K_{a_{3}} = \frac{[PO_{4}^{3^{-}}][H^{+}]}{[HPO_{4}^{2^{-}}]}$$

Subjects

Polyprotic Acids And Its Salts

Since $K_{a1} > K_{a2} X 10^2$ (see the previous table), so we use the following equation for the calculation of the pH of its solution :

$$pH = -\log \sqrt{K_{a_2}C_a}$$

Polyprotic Acids and Its Salts

To calculate the pH of H_3PO_4 salts we use the following approximate equations :

salts	Approximate equations	Remarks
H ₂ PO ₄ ⁻	$pH = -\log\sqrt{K_{a_1}.K_{a_2}}$	exist in first and second ionization stage
HPO ₄ ²⁻	$pH = -\log \sqrt{K_{a_2} \cdot K_{a_3}}$	exist in second and third ionization stage
PO ₄ ³⁻	$pOH = -\log \sqrt{\frac{K_w.C_s}{K_{a_3}}}$	basic salt and exist in third stage (no H in it)

Polyprotic Acids And Its Salts

Continues to previous table

H ₃ PO ₄ + H ₂ PO ₄ ⁻	$pH = pK_{a_1} + \log \frac{[H_2 P O_4^{-}]}{[H_3 P O_4]}$	buffer and both exist in first ionization stage
H ₂ PO ₄ ⁻ + HPO ₄ ²⁻	$pH = pK_{a_2} + \log \frac{[HPO_4^{2^-}]}{[H_2PO_4^{-}]}$	Buffer and both exist in second ionization stage
HPO ₄ ²⁻ + PO ₄ ³⁻	$pH = pK_{a_3} + \frac{[PO_4^{3-}]}{[HPO_4^{2-}]}$	Buffer and both exist in third ionization stage

Note that other polyprotic acids and its salts can be treated in the same maner as H_3PO_4 .

Unit 5

Polyprotic Acids And Its Salts

Example	Solution
Calculate the pH for 0.001 M Na ₂ HPO ₄ solution ?	$pH = -\log \sqrt{6.3X10^{-8}} \cdot 4.2X10^{-13}$
Calculate the pH for 0.1 M NaHCO ₃ solution ?	$pH = -\log\sqrt{4.4X10^{-7}.4.7X10^{-11}}$
Calculate the pH for 0.01 M NaH ₂ PO ₄ solution ?	$pH = -\log\sqrt{7.1X10^{-3}.6.3X10^{-8}}$
Calculate the pH for 0.1 M Na_2CO_3 solution ?	$pOH = -\log \sqrt{\frac{1X10^{-14} \cdot 0.1}{4.7X10^{-11}}}$
Calculate the pH for 0.1 M Na_3PO_4 solution ?	$pOH = -\log \sqrt{\frac{1X10^{-14} X.0.1}{4.2X10^{-13}}}$

Summary

In this unit , the concept of the buffer , it's importance in chemistry and in real life and it's types have been investigated . We also discussed the way by which the buffer stabilizes the pH . The calculations of the pH of all sorts of buffer solutions are the main core of this unit . We make sure that the student Knows how to prepare all types of buffer solutions and recognize the role of polyprotic acids in the preparation of buffer solutions .

Tutorial

Exercise 1 : Calculate the pH of a solution containing 0.1 M Na₂CO₃ and 0.2 M NaHCO₃? K_{a2} (H₂CO₃) = 4.7 X10⁻¹¹.

Your answer :

Our answer next slide

Tutorial

$$pH = -\log 4.7 \ X \ 10^{-11} + \log \frac{0.1}{0.2} \approx 10$$

Tutorial

Exercise 2 : Calculate the pH of a solution resulting from adding 4 mL of 0.2 M of NaOH solution to 16 mL of a buffer solution containing 0.1 M CH_3COOH ($K_a = 1.8X10^{-5}$) and 0.2 M CH_3COONa ?

Your answer :

Our answer next slide

Tutorial

Answer 2 : Note that adding NaOH will decrease the number of mmoles of the acid and will increase the number of mmoles of its salt by the same number (the reaction is 1 : 1) : $CH_{3}COOH + NaOH \rightarrow CH_{3}COONa + H_{2}O$ $16X0.1=1.6 \quad 4X0.2=0.8 \quad 0 \quad 0 \quad (mmole) (I)$ $0.8 \quad 0 \quad 0.8 \quad 0.8 \quad (mmole) (C)$ This means that the number of mmoles of CH₃COONa will increase by 0.8 mmole to become (0.8 + 16 X 0.2 = 4 mmoles) while the number of mmoles of CH₃COOH will decrease by 0.8 mmole to become (16X0.1 - 0.8 = 0.8 mmole) . Now we can calculate the pH of the buffer thus : 4

$$pH = -\log 1.8 X \, 10^{-5} + \log \frac{16 + 4 \ (mL)}{0.8} = 5.4$$

$$\frac{16 + 4 \ (mL)}{16 + 4 \ (mL)}$$

Tutorial

Look at the this video to understand the effect of adding HCl to a buffer solution.

Buffer Calculations

2. add HCI, calculate new pH

3. compare with adding HCI to water

© james mungall

Tutorial

Exercise 3 : Calculate the pH of a solution resulting from adding 6 mL of 0.2 M HCl to 14 mL of a buffer solution containing 0.2 M NH_3 ($K_b = 1.75 \times 10^{-5}$) and 0.1 M NH_4Cl ?

Your answer :

Our answer next slide

Tutorial

Answer 3 : The added HCl will react with NH_3 : $HCl + NH_3 \rightarrow NH_4Cl$ $6X0.2 = 1.2 \quad 14X0.2 = 2.8 \quad 0 \quad (mmole) (I)$ $0 \quad 1.6 \quad 1.2 \quad (mmole) (C)$ This means that NH_3 will decrease by 1.2 mmoles while its salt NH_4Cl will increase by the same amount i.e 1.2 mmoles , therefore , the pH of the buffer can be calculated thus :

$$pOH = -\log 1.75 X 10^{-5} + \log \frac{\frac{[(14X 0.1) + 1.2]}{14 + 6 (ml)}}{\frac{1.6}{14 + 6 (ml)}} \approx 5$$

 $\therefore pH = 14 - 5 = 9$

Tutorial

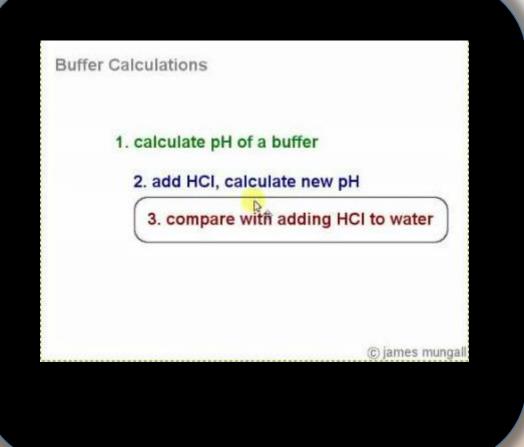
Exercise 4 : Calculate the change in pH of 250 mL of a buffer solution containing 0.2 M CH_3COOH ($K_a = 1.8X10^{-5}$) and 0.2 M CH_3COONa upon adding 1.0 g of NaOH to it ? This video will help .

Your answer :

Calculate the pH change of a buffered solution

Suppose that 0.0200 mol NaOH(s) is dissolved in 300 mL of the following buffer solution: 0.040 M NaCH₃CO₂(aq) and 0.080 M CH₃COOH(aq). What is the final pH of the solution?

Our answer next slide


VIDEO Library

Tutorial

Just look at this video and realize the difference between adding strong acid or base to a buffer and adding them to just water .

VIDEO

Library

Tutorial


Answer 4 : NaOH will react with CH_3COOH , therefore, the number of mmoles of CH_3COOH will decrease by [(1.0 g / 40) X $10^3 = 25$ mmoles] to become (250 X 0.2 - 25 = 25 mmoles) while the number of mmoles of the salt CH_3COONa will increase by 25 mmoles to become (250 X 0.2 + 25 = 75 mmoles). Now we can calculate the pH :

$$pH = -\log 1.8 X 10^{-5} + \log \frac{\frac{75(mmoles)}{250(mL)}}{\frac{250(mL)}{250(mL)}} \approx 5.2$$

Tutorial

Exercise 5 : Calculate the pH of a solution resulting from adding 20 mL 0.125 M HCl to 25 mL 0.12 M NH_3 ($K_b = 1.75 \times 10^{-5}$) ?

Your answer :

Tutorial

Answer 5 :

 $\begin{array}{cccc} \mathsf{HCl} & + & \mathsf{NH_3} \rightarrow & \mathsf{NH_4Cl} \\ 20X0.125 = 2.5 & 25X0.12 = 3 & 0 & (\text{mmoles}) (I) \\ 0 & 0.5 & 2.5 & (\text{mmoles}) (C) \\ \mathbf{HCl} \text{ is the limiting reactant}. \text{ The remaining NH}_3 \text{ and the produced NH}_4 Cl \\ \text{will form a buffer :-} \end{array}$

$$pOH = -\log 1.75 X 10^{-5} + \log \frac{\frac{2.5 (mmoles)}{20 + 25 (mL)}}{\frac{0.5 (mmoles)}{20 + 25 (mL)}} \approx 4.5 \quad \therefore \quad pH = 9.5$$

Tutorial

Exercise 6 : Calculate the pH of a solution resulting from adding 100 mL 0.04 M HCl to 100 mL 0.07 M NH₃ ($K_b = 1.75 \times 10^{-5}$) ?

Your answer :

Tutorial

Answer 6 :

 $\begin{array}{cccc} HCI & + & NH_3 & \rightarrow & NH_4CI \\ 0 & 3 & & 4 & (mmoles)(C) \end{array}$

HCl is the limiting reactant . The mixture solution composed of the remaining NH_3 and its formed salt NH_4Cl (buffer solution):

$$pOH = -\log 1.75X10^{-5} + \log \frac{\frac{4}{200(mL)}}{\frac{3}{200(mL)}} \approx 4.9 \quad \therefore \quad pH = 9.1$$

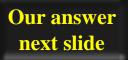
Tutorial

Exercise 7 : Calculate the pH of a solution resulting from adding 200 mL of 0.05 M NaOH solution to 100 mL of 0.2 M HA ($K_a = 1.75X10^{-5}$) solution ?

Your answer :

Our answer next slide

Tutorial


Answer 7 :

$$pH = -\log 1.75X10^{-5} + \log \frac{\frac{10(mmoles)}{300(mL)}}{\frac{10(mmoles)}{300(mL)}} \approx 4.8$$

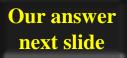
Tutorial

Exercise 8 : Calculate the pH of a solution resulting from adding 50 mL of 0.1 M NaOH solution to 50 mL of 0.2 M NH₄Cl [K_b (NH₃) = 1.75X10⁻⁵] solution ?

Your answer :

Tutorial

Answer 8 :


NaOH is the limiting reactant so , the remaining NH_4Cl and the produced NH_3 will form a buffer solution :

$$pOH = -\log 1.75X10^{-5} + \log \frac{\frac{5(mmoles)}{100(ml)}}{\frac{5(mmoles)}{100(ml)}} \approx 4.8 \therefore pH = 9.2$$

Tutorial

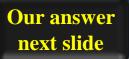
Exercise 9 : Calculate the pH of a solution resulting from adding 100 mL of 0.1 M HCl solution to 100 mL of 0.5 M NaA [K_a (HA) = 1.75X10⁻⁵] solution ?

Your answer :

Tutorial

Answer 9 :

 $NaA + HCl \rightarrow HA + NaCl$ $40 \quad 0 \quad 10 \quad 10 \quad (mmoles)(C)$


HCl is the limiting reactant so, the remaining NaA and the produced HA will form a buffer solution :

$$pH = -\log 1.75X10^{-5} + \log \frac{\frac{40(mmoles)}{200(mL)}}{\frac{10(mmoles)}{200(mL)}} \approx 5.4$$

Tutorial

Exercise 10 : Calculate the capacity of a buffer solution containing 0.1 M CH_3COONa and 0.2 M CH_3COOH ($pK_a = 4.76$) ?

Your answer :

Tutorial

Answer 10:

$$\begin{array}{rcl}
CH_{3}COOH &\leftrightarrow & CH_{3}COO^{-} &+ & H^{+} \\
CH_{3}COONa &\rightarrow & CH_{3}COO^{-} &+ & H^{+} \\
pH = 4.76 &+ & \log \frac{0.1}{0.2} = 4.5
\end{array}$$

Assume the capacity is x HCl . This means that x mmoles of HCl will react with x mmoles of CH_3COONa to form x mmoles of CH_3COOH thus :

$$3.5 = 4.76 + \log \frac{(0.1-x)}{(0.2+x)}$$
 $\therefore x = 0.08 \text{ moles HCl/L}$

But if we Assume the capacity is y NaOH . This means that x mmoles of NaOH will react with x mmoles of CH_3COOH to form x mmoles of CH_3COONa thus :

$$5.5 = 4.76 + \log \frac{(0.1+y)}{(0.2-y)}$$
 : $y = 0.15$ moles NaOH / L

Tutorial

Exercise 11 : Calculate the pH of a buffer solution that is prepared by adding 25 mL 0.05 M H_2SO_4 solution to 50 mL 0.1 M NH₃ solution ?

Your answer :

Our answer next slide

Tutorial

Answer 11 :

 H_2SO_4 is the limiting reactant so , the remaining NH_3 and the produced $(NH_4)_2SO_4$ will form a buffer solution :

$$pOH = -\log 1.75 X 10^{-5} + \log \frac{1.25}{\frac{75}{2.5}} \approx 4.5 \quad \therefore \quad pH = 9.5$$

Tutorial

Exercise 12 : Which one of the following weak bases would you choose to prepare a buffer solution of pH = 8 and why? MOH ($K_b = 1X \ 10^{-5}$), NOH ($K_b = 1X10^{-8}$), DOH ($K_b = 1X10^{-10}$)

> Our answer next slide

Your answer :

Tutorial

Answer 12 : We choose the base that it's pK_b is the nearest to (14 - 8 = 6) in order to prepare a buffer with high capaity i.e. MOH.

على الراغبين الاستماع الى محاضرات الاستاذ الدكتور/ ابراهيم زامل الزامل باللغة العربية عن هذا الموضوع الرجوع الى الروابط التالية :

المحاليل المنظمة

المحاليل المنظمة ٢

المحاليل المنظمة ٣