
SECOND SEMESTER FIRST MIDTERM EXAM. 1437-1438H (2016-2017 G)

Choose the correct answer:

1.	The mass (in g) of "Si" present in 5.0 g of " $C_9H_{23}NO_3Si$ " is:			
	<u>A)</u> 0.63	B) 0.86	C) 0.32	D) 0.44
2.	The number of molecules of ascorbic acid ($C_6H_8\ O_6$) present in 500.0 mg is:			
	A) 2.42×10^{21}	B) 1.71×10^{24}	C) 2.42×10^{24}	<u>D)</u> 1.71×10^{21}
3.	Nylon contains 63.68% C, 12.38% N, 9.80% H, and 14.14% O by mass. The empirical formula formula for nylon is:			
	A) $C_6 H_{11} N_2 O$	B) $C_6 H_{11} N O_2$	\underline{C}) $C_6H_{11}NO$	D) C_6H_6NO
4.	For the following reaction:			
	$5X + 2C \rightarrow X_5C_2$			
	If 7.89 g of carbon "C" react with 92.10 g of an element "X", then the molar mass (in g/mol)			
	of "X" is:			
	A) 56	B) 45	C) 65	D) 95
5.	Given the following reaction:			
	$Fe_2O_3(s) + 2Al(s) \rightarrow 2Fe(l) + Al_2O_3(s)$			
	The mass (in g) of iron (III) oxide (Fe_2O_3) must be used to produce 15.0 g iron is:			
	A) 42.8	<u>B)</u> 21.5	C) 12.9	D) 31.5
6.	Given the following reaction:			
	$2H_2(g) + O_2(g) \to 2H_2O(g)$			
	If the reaction has a 72.7% yield, then the mass (in g) of O_2 needed to produce 120 g of H_2O			
	is:			
	A) 293.31	B) 49.78	<u>C)</u> 146.72	D) 112.65

- 7. An aqueous solution of C_2H_5OH (56%) by mass, the mole fraction of C_2H_5OH is:
 - A) 0.67
- <u>B</u>) 0.33
- C) 0.56
- D) 0.44
- 8. The molarity of a solution prepared by dissolving 158.0 g of potassium permanganate $(KMnO_4)$ in enough water to make 750 mL solution is:
 - <u>A)</u> 1.33
- B) 0.98
- C) 0.73
- D) 1.62
- 9. The diagram shown below represents the change in pressure (P) with volume (V) of 5.0 g gas at constant temperature (T):

The final pressure (in atm) is:

- A) 5.0
- B) 7.0
- C) 15.0
- <u>D)</u> 10.0
- 10. A flask is filled with a gas at 21.0 C and 0.98 atm, and heated. If the pressure inside the flask becomes 3.25 atm, the gas temperature (in **C**) will be:
 - <u>A)</u> 702
- B) 70
- C) 254
- D) 975

11. Sulfur hexafluoride (SF_6) boils at -64 C. The density (in g/L) of sulfur hexafluoride vapor at the same temperature and 745 torr is:

- A) 62.59
- B) 2.04
- <u>C)</u> 8.34
- D) 27.25

12. A sample of gas mixture at 750 torr contains 75.0% nitrogen (N_2) and 25.0% oxygen (O_2) by msas. The partial pressure (in **torr**) of oxygen is:

- A) 563
- <u>B)</u> 170
- C) 204
- D) 480

13. The root-mean-square speed (in $\mathbf{m/s}$) of O_3 molecules at -23 C is:

- A) 3.6×10^2
- B) 5.4×10^2
- C) 4.2×10^2
- D) 1.8×10^2

15. Given the following reaction:

$$3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$$

0.71 mol of hydrogen gas " H_2 " is allowed to react completely with enough amount of nitrogen gas " N_2 ". If " NH_3 " gas is collected in a 11.0 L gas vessel at 30 C, the NH_3 gas pressure (in atm) inside the vessel is:

- <u>A)</u> 1.07
- B) 0.83
- C) 1.21
- D) 1.32