Objectives:

Upon completion of this unit I am pretty sure that the student will be able to :
1-Realize the relationship between pH and pOH in the aqueous solution .
2- Distinguish between strong acids and weak acids and between strong base and weak base .
3- Calculate the pH of the solution of all sorts of acids, bases and salts .
4- Understand the concept of the hydrolysis of salts .

5- Have some ideas on the acidity of some common foods, drinks , and various other stuffs that you use in your daily life .

Introdution:

What exactly is pH , why is it so important, How it can be calculated? This unit has all the answers. Acidic and basic are two extremes that describe chemicals, just like hot and cold are two extremes that describe temperature. Mixing acids and bases can cancel out their extreme effects; much like mixing hot and cold water . A substance that is neither acidic nor basic is neutral.
The pH scale measures how acidic or basic a substance is. It ranges from 0 to 14 . A pH of 7 is neutral. A pH less than 7 is acidic, and a pH greater than 7 is basic. Pure water is neutral, with a pH of 7.0 . When chemicals are mixed with water, the mixture can become either acidic or basic. Vinegar and lemon juice are acidic substances, while laundry detergents and ammonia are basic.
pH is a vital component of a plant's surroundings. As the pH changes, the ability of a plant to absorb nutrients changes also . Many biological reactions that occurs in the human body are pH dependent .

Ion- product Constant for Water($\mathrm{K}_{\text {w }}$)

Water partially dissociate according to the equation :

$$
\mathrm{H}_{2} \mathrm{O} \quad \leftrightarrow \quad \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

At room temperature, Water Dissociation constant (K_{eq}) is equal to :

$$
K_{e q}=1.82 \times 10^{-16}=\frac{\left[H^{+}\right]\left[0 H^{-}\right]}{\left[H_{2} 0\right]}
$$

$$
\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.82 \mathrm{X}^{-16} \quad \mathrm{X}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{K}_{\mathrm{w}}
$$

Where K_{w} is the ion product constant for water . Since
 the density of water is $1 \mathrm{~g} / \mathrm{mL}$ at room temperature, the molar concentration of water can be easily calculated :

$$
\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.82 \times 10^{-16} \quad \mathrm{X}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{K}_{\mathrm{w}}
$$

Where K_{w} is the ion product constant for water . Since the density of water is $1 \mathrm{~g} / \mathrm{mL}$ at room temperature , the molar concentration of water can be easily calculated :

$$
\left[H_{2} \mathrm{O}\right]=\frac{\left(\mathrm{g} H_{2} \mathrm{O} / \mathrm{L}\right)}{m w_{H_{2} \mathrm{O}}}=\frac{1000(\mathrm{~g} / \mathrm{L})}{18}=55.6 \mathrm{M}
$$

Ion- product Constant for Water(K_{w})

Substituting for $\left[\mathrm{H}_{2} \mathrm{O}\right]$:

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] } & =1.82 \mathrm{X} 10^{-16} \mathrm{X} 55.6 \\
& =1 \mathrm{X}^{-14}=\mathrm{K}_{\mathrm{w}}
\end{aligned}
$$

$$
\left[H^{\top}\right][0 H]=1 \times 10^{-14}=K_{w}
$$

Multiplying both sides of this equation by - log :

$$
p H+p O H=14=p K_{w}
$$

Ion- product Constant for Water(K_{w})

If we add acid to the water then $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$ but the product of $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$will stay constant 1×10^{-14}. So from the last two equations we can calculate $\left[\mathrm{H}^{+}\right], \mathrm{pH},\left[\mathrm{OH}^{-}\right]$ and pOH by knowing any one of these as shown in the table on your right .

The Table on your right shows The relationship between $\left[\mathrm{H}^{+}\right], \mathrm{pH},\left[\mathrm{OH}^{-}\right]$and pOH in the aqueous solution .

		pH	$\left[\mathrm{H}^{+}\right]$	[OH^{-}]	pOH
		- 14	1×10^{-14}	1×10^{-0}	0
	NaOH	-13	1×10^{-13}	1×10^{-1}	1
	Household ammonia-	- 12	1×10^{-12}	1×10^{-2}	2
		- 11	1×10^{-11}	1×10^{-3}	3
	Milk of magnesia	10	1×10^{-10}	1×10^{-4}	4
	Borax	9	1×10^{-9}	1×10^{-5}	5
	Egg white, seà wàter	-8	1×10^{-8}	1×10^{-6}	6
	Mik	- 7	1×10^{-7}	1×10^{-7}	7
	Rain	6	1×10^{-6}	1×10^{-8}	8
	Black coffee	5	1×10^{-5}	1×10^{-9}	9
	Wine	4	1×10^{-4}	1×10^{-10}	10
	Cola, vinegar	3	1×10^{-3}	1×10^{-11}	11
	Lemon juice	-2	1×10^{-2}	1×10^{-12}	12
	Gastric juice	- 1	1×10^{-1}	1×10^{-13}	13
		- 0	1×10^{0}	1×10^{-14}	14

Strong Acid Solution

The strength of the acid is determined by how far the equilibrium lies to the right. Qualitatively, this may be judged by the K_{a} of the acid. A large K_{a} indicates a strong acid; a small K_{a} indicates a weak acid. Strong acids, such as HCl , have K_{a} values in the vicinity of infinity.

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{0}=\text { undefined }
$$

pH Scale: < $7.0=$ Acidic

Strong Acid Solution

Strong Acid Solution

This implies that the dissociation of HCl is virtually complete,

HCl	H^{+}	+	Cl^{-}
C_{a}	0		0
0		C_{a}	
C_{a}	After complete dissociation		

and the equilibrium lies completely to the right, therefore, the concentration of the acid equals the concentration of H^{+}ions produced. For instance, a 0.01 M HCl solution will completely dissociate into $0.01 \mathrm{M} \mathrm{H}^{+}$and $0.01 \mathrm{M} \mathrm{Cl}^{\text {. }}$. The concentration of HCl after "equilibrium" will be zero! Analogously, strong bases, such as NaOH , will dissociate completely. The concentration of OH^{-}in solution will be equal to the concentration of the strong base.

Strong Acid Solution

Strong Acid Solution

A typical strong acid problem might be: What is the pH of a $\mathrm{C}_{\mathrm{a}} \mathrm{M} \mathrm{HCl}$ solution? Since HCl is a strong acid, the H^{+}ion concentration will be equal to the HCl concentration:

$$
\left[\mathrm{H}^{+}\right]=\mathrm{C}_{\mathrm{a}}(\mathrm{M})
$$

The pH can be found by taking the negative \log of the H^{+}ion concentration :

$$
p H=-\log \left[H^{+}\right]=-\log C_{a}
$$

Strong Base Solution

A typical strong base problem might be: What is the pH of a $\mathrm{C}_{\mathrm{b}} \mathrm{M} \mathrm{NaOH}$ solution? Since NaOH is a strong base, the hydroxide ion concentration will be equal to the NaOH concentration:

$$
\left[\mathrm{OH}^{-}\right]=\mathrm{C}_{\mathrm{b}} \mathrm{M}
$$

The pH can be found by first finding the pOH by taking the negative \log of the hydroxide ion concentration, and then converting the pH to pOH . To find the pOH :

Strong Base Solution

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log (0.010)=2.00
$$

The pH can then be calculated from the equation :

$$
\mathrm{pH}+\mathrm{pOH}=14:
$$

The above rules apply to most strong acids and strong bases exceptions are for example $\mathrm{Ca}(\mathrm{OH})_{2}$ where one mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ will produce two moles of OH^{-}, therefore, instead of C_{b} we use $2 \mathrm{C}_{\mathrm{b}}$. Also $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a special case (see right video)

How to Calculate the of if a $\mathrm{NaOH} \quad \mathrm{Ba}(\mathrm{OH})_{2} \quad \mathrm{Se}(\mathrm{OH})_{3}$

Examples for the calculatins of pH of strong acids and bases

Example : Calculate $\left[\mathrm{OH}^{-}\right]$in a 0.01 M solution of HCl ?
Solution :

$$
\begin{aligned}
& \quad \mathrm{pH}=-\log \mathrm{C}_{\mathrm{a}}=-\log 0.01=2 \\
& \mathrm{pOH}=14-2=12 \\
& {\left[\mathrm{OH}^{-}\right]=1 \mathrm{X} 10^{-12}} \\
& \mathrm{Or} \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=0.01\left[\mathrm{OH}^{-}\right]=1 \mathrm{X}^{-14} 0^{-14}} \\
& \quad\left[\mathrm{OH}^{-}\right]=1 \mathrm{X}^{-10} 0^{-12}
\end{aligned}
$$

Example : Calculate $\left[\mathrm{H}^{+}\right]$in a 0.005 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$?

Examples for the calculatins of pH of strong acids and bases

Solution :
$\mathrm{pOH}=-\log 2 \mathrm{X} 0.005=2$
$\mathrm{pH}=14-2=12$
$\left[\mathrm{H}^{+}\right]=1 \mathrm{X} 10^{-12} \mathrm{M}$
Or
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right] \mathrm{X} 2 \mathrm{X} 0.005=1 \mathrm{X}^{-14}$
$\left[\mathrm{H}^{+}\right]=1 \mathrm{X} 10^{-12} \mathrm{M}$
Example : Calculate the pH for the following mixture :
$100 \mathrm{ml} 0.02 \mathrm{M} \mathrm{HCl}+100 \mathrm{ml} 0.03 \mathrm{M} \mathrm{NaOH}$

Examples for the calculatins of pH of strong acids and bases

Solution :

	$\mathrm{NaOH}+$	$\mathrm{HCl} \rightarrow$	$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$	
Before reaction (mmoles)	$0.03 \times 100=3$	$0.02 \times 100=2$	0	0
After reaction (mmoles)	1	0	2	2

The limiting reactant is HCl and the excess reactant is NaOH , Therefore, the solution is basic :

$$
\begin{aligned}
& p O H=-\log \frac{1}{200}=2.3 \\
& p H=14-2.3=11.7
\end{aligned}
$$

Example : Calculate the pH of the following mixture :
$2 \mathrm{ml} \mathrm{HCl}(\mathrm{pH}=3)+3 \mathrm{ml} \mathrm{NaOH}(\mathrm{pH}=10)$

Examples for the calculatins of pH of strong acids and bases

Solution :
For the $\mathrm{HCl}: ~ \mathrm{pH}=3$

$$
\left[\mathrm{H}^{+}\right]=1 \mathrm{X} 10^{-3} \mathrm{M}
$$

no. of mmoles of $\mathrm{H}^{+}=1 \mathrm{X}_{10} 0^{-3} \mathrm{M} \mathrm{X} 2(\mathrm{ml})$

$$
=2 \times 10^{-3}
$$

for the NaOH :

$$
\mathrm{pH}=10 \quad \therefore \mathrm{pOH}=4
$$

$$
\left[\mathrm{OH}^{-}\right]=1 \mathrm{X}^{-} 10^{-4} \mathrm{M}
$$

no. of mmoles of $\mathrm{OH}^{-}=1 \mathrm{X}^{-4} 0^{-4} \mathrm{M} \mathrm{X} 3(\mathrm{ml})$

$$
=3 \times 10^{-4}=0.3 \times 10^{-3}
$$

Examples for the calculatins of pH of strong acids and bases

$$
\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Before reaction (mmoles)
After reaction (mmoles)
$0.3 \times 10^{-3} \quad 2 \times 10^{-3} \quad 0 \quad 0$
$0 \quad 1.7 \times 10^{-3}$
0.3×10^{-3}
0.3×10^{-3}

Note that : no. mmoles $\mathrm{H}^{+}($excess $)=2 \times 10^{-3}-0.3 \times 10^{-3}=1.7 \times 10^{-3}$

$$
p H=-\log \frac{1.7 \times 10^{-3}}{5}=3.5
$$

Weak Acids and Weak Bases

Weak acids and weak bases do not dissociate completely. An equilibrium exists between the weak acid, water, H^{+}, and the anion of the weak acid. The equilibrium lies to the left hand side of the equation, indicating that not much H^{+}is being produced. The fact that very little H^{+}is being produced is the definition of a weak acid. The K_{a} for a weak acid is small, usually a number less than 1.The less value of K_{a} or K_{b} the weaker the acid or the base respectively .

Weak Acids and Weak Bases

There are three types of problems encountered with weak acids or bases: dissociation, buffers or hydrolysis. We'll look at each type in detail.

In this type of problem, you will be asked to

VIDEO
 pH of weak acid

VIDEO
My Channel find the H^{+}ion concentration and/or the pH of a weak acid whose initial concentration is known. A typical problem may be: what is the pH of $\mathrm{C}_{\mathrm{a}} \mathrm{M}$ solution of $\operatorname{HA}\left(\mathrm{K}_{\mathrm{a}}=\ldots \ldots\right.$.)?

Weak Acids and Weak Bases

	HA	\leftrightarrow	H^{+}	+
before dissociation after dissociation C_{a}	0	0		
	$\mathrm{C}_{a}-x$		x	

The equilibrium may be expressed mathematically by setting the K_{a} equal to the mass action expression:

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}=\frac{(x)^{2}}{C_{a}^{-(x)}}=\frac{\left[H^{+}\right]^{2}}{C_{a}}
$$

Weak Acids and Weak Bases

The solution for x becomes simplified because the x can be neglected as we discussed in the equilibrium unit. This x can be neglected because it will be negligibly small compared to the concentration, $\mathrm{C}_{\mathrm{a}} \mathrm{M}$. To determine whether x is negligible C_{a} must be more or equal to K_{a} X100 .This simplifies the equation as we saw above. Multiplying both sides by C_{a} yields:

$$
\left[H^{+}\right]^{2}=K_{a} X C_{a} \quad \therefore\left[H^{+}\right]=\sqrt{K_{a} X C_{a}}
$$

Multipling both sides by $-\log$ we get :

$$
p H=-\log \sqrt{K_{a} X C_{a}}
$$

Unit 4

Weak Acids and Weak Bases

Strong Acids	Mild Acids	Mild Alkaline	Strong Alkaline
Sugary Sodas \& Coffee Beef Fried foods Sugar	Cheese Fish All alcohol Dairy	Apples \& Oranges Broccoli \& Carrots Avocados Almonds	Dark leafy greens like kale or spinach Watermelon Genesis Today's Acai Berry Juice Kelp Alkaline Water

Weak Acids and Weak Bases

A typical weak base problem may read: What is the hydroxide ion concentration and pH of a $\mathrm{C}_{\mathrm{b}} \mathrm{M}$ solution of $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=$ 1.8×10^{-5} ?
Again, note that K_{b} is small. We will follow the same format as we used for weak acid solutions, bearing in mind that :

$$
C_{b} \geq K_{b} \times 100
$$

and we will end up with the following general equation :

$$
p O H=-\log \sqrt{K_{b} \cdot C_{b}}
$$

Weak Acids and Weak Bases

Then subtract the pOH from 14 to find the pH:

$$
\mathrm{pH}=14.00-\mathrm{pOH}
$$

A typical weak base problem may read: What is the hydroxide ion concentration and pH of a $\mathrm{C}_{\mathrm{b}} \mathrm{M}$ solution of $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=$ 1.8×10^{-5} ?

The following tables show some common weak acids and weak bases .

Weak Acids and Weak Bases

Some common weak acids .

Name	Formula
Acetic acid	
Phosphoric acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
Carbonic acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$
Hydrofluoric acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$
Fluosilicic acid	HF^{2}

Weak Acids and Weak Bases

Some common weak bases .

Name	Formula
Ammonia	NH_{3}
Magnesium hydroxide	$\mathrm{Mg}(\mathrm{OH})_{2}$
Aluminum hydroxide	$\mathrm{Al}(\mathrm{OH})_{3}$
Lime	CaO
Sodium silicate	$\mathrm{Na}_{2} \mathrm{SiO}_{2}$
Soda ash	$\mathrm{Na}_{2} \mathrm{CO}_{3}$

Hydrolysis (Salts of Weak Acids or Weak Bases)

What are salts ? Salts are the product of an acid base neutralization. There are four possible acid base reactions that produce salts. They are the reaction of :

1) A strong acid with a strong base.
$\mathrm{HCl}+\mathrm{NaOH}-\mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
2) A weak acid with a strong base.
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}-->\mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COOH}^{-}+\mathrm{H}_{2} \mathrm{O}$

Hydrolysis (Salts of Weak Acids or Weak Bases)

3) A weak base with a strong acid.
$\mathrm{NH}_{3}+\mathrm{HCl}-->\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
4) A weak acid with a weak base.

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3}-->\mathrm{NH}_{4}^{+}+\mathrm{CH}_{3} \mathrm{COOH}
$$

VIDEO
 Salt Hydrolysis

My Channel

The salts produced in the above four types have a characteristic pH range in water solution by themselves:

Hydrolysis (Salts of Weak Acids or Weak Bases)

1) A salt of a strong acid and a strong base will produce a solution with $\mathrm{pH}=7$ e.g NaCl salt because neither Na^{+}nor Cl^{-}affect the equilibrium of water :

$$
\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

That means, Na^{+}will not react with OH^{-}to form NaOH because NaOH is a strong base which is completely dissociate in aqueous solution and can not exist in the form of NaOH .

Hydrolysis (Salts of Weak Acids or Weak Bases)

Likewise Cl^{-}, will not react with H^{+}to form the strong acid HCl ,therefore, when we dissolve NaCl in water the solution will stay neutral and one can say neither Na^{+}nor Cl^{-}hydrolyze .
2) A salt of a weak acid and a strong base will produce a basic solution e.g $\mathrm{CH}_{3} \mathrm{COONa}$ because $\mathrm{CH}_{3} \mathrm{COO}^{-}$will react with H^{+}to form the weak acid $\mathrm{CH}_{3} \mathrm{COOH}$ which can exist in water in the molecular formula :

Ions of Neutral Salts			
Cations			
Na^{+}	K^{+}	Rb^{+}	Cs^{+}
Mg^{2+}	Ca^{2+}	Sr^{2+}	Ba^{2+}
Anions			
Cl^{-}	Br^{-}	I^{-},	
$\mathrm{ClO}_{4}{ }^{-}$	BrO_{4}	$\mathrm{ClO}_{3}{ }^{-}$	$\mathrm{NO}_{3}{ }^{-}$

$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
So , $\left[\mathrm{OH}^{-}\right]$will be more than $\left[\mathrm{H}^{+}\right]$in the aqueous solution of the salt .

Hydrolysis (Salts of Weak Acids or Weak Bases)

The dissociation constant of the above reaction is :

$$
K_{s^{\prime}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}^{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{C_{s}}
$$

Note that the salt dissociate completely, so
Salt concentration (C_{s}) $=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
We can treat this kind of salt as a weak base and calculate its pH from the following equation :

$$
p O H=-\log \sqrt{K_{b^{-}} \cdot C_{s}}
$$

Calculating the pH of a Baxic Sals
$0.50 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{H}_{3} \mathrm{O}_{3}$

HC,H. O. as a weat acid
Na' is the convivate ach of twioh mid dees not form NaOH is a isorn.
Hent G, H, D, with watre, remembering beves script H.

\square

Hydrolysis (Salts of Weak Acids or Weak Bases)

The value of K_{b}, is not available but we can get it from the dissociation constant of the mother weak acid thus :

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\
K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}^{2}\right]}
\end{gathered}
$$

$$
\text { Ka } \quad \text { X } \quad K_{b^{-}}=K w
$$

$$
K_{b^{-}}=\frac{K_{w}}{K_{a}}
$$

Hydrolysis (Salts of Weak Acids or Weak Bases)

Substituting for K_{b} :

$$
p O H=-\log \sqrt{K_{b^{-}} C_{S}}
$$

$$
p 0 H=-\log \sqrt{\frac{K_{\mathrm{w}} C_{s}}{K_{a}}} \quad \therefore p H=14-p 0 H
$$

From this equation we can tell that the weaker the acid (the smaller K_{a}) the more basic will be its salt solution (pOH is directly proportional to $1 / \mathrm{K}_{\mathrm{a}}$).

Hydrolysis (Salts of Weak Acids or Weak Bases)

The last equation is used to calculate the pH of the solution of a salt of weak acid and strong base .Note that Na^{+}from the salt does not hydrolyze as we mentioned above. The table on the right shows some ions that behave exactly like $\mathrm{CH}_{3} \mathrm{COO}^{-}$

Basic Ions			
F-	$\mathrm{CH}_{3} \mathrm{COO}^{-1}$	$\mathrm{NO}_{2}-\mathrm{PO}_{4}^{3-}$	
CN^{-}	CO_{3}^{2-}	S^{2-}	

3) A salt of a weak base and a strong acid e.g $\mathrm{NH}_{4} \mathrm{Cl}$ will produce an acidic solution with pH less than 7 . We can repeat the discussion above concerning the salt of a weak acid and strong base with the salt of a weak base and strong acid and we will end up with following equation which is

Acidic Ions		
NH_{4}^{+}	Al^{3+}	Pb^{2+}
Transition ${ }^{2+}$		
HStal^{2+} ions		
HSO_{4}^{-}	$\mathrm{H}_{2} \mathrm{PO}_{4}^{+}$	

Hydrolysis (Salts of Weak Acids or Weak Bases)

$$
p H=-\log \sqrt{\frac{K_{w \cdot C_{s}}}{K_{b}}}
$$

Where C_{s} is the concentration of the salt and K_{b} is the dissociation constant of the mother weak base. Also from this equation we can tell that the weaker the base (the smaller K_{b}) the more acidic will be its salt solution (pH is directly proportional to $1 / \mathrm{K}_{\mathrm{b}}$).
Notice, the mention of a strong acid or strong base will be usually omitted and the phrases "salt of a weak base" or " salt of a weak acid" will be used.

Hydrolysis (Salts of Weak Acids or Weak Bases)

Notice, the mention of a strong acid or strong base will be usually omitted and the phrases "salt of a weak base" or " salt of a weak acid" will be used.
4) A salt of a weak acid and a weak base produces a solution whose pH depends on the strengths of the acid and base which made the salt. Since we are not going to deal with this type of salt in this course (we will know why later) we will not discuss it farther. The second and third types of salts mentioned just above are very important in chemistry .

Summary

In this unit we discussed the neutralization reaction and the relationship between $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in the aqueous solution. The behavior of strong and weak acids and bases and their salts is explained. The calculations of the pH of all sorts of solutions, acids, bases and salts are investigated. The concept of the hydrolysis of salts has been cleared. We briefly pointed out about the acidity of some common foods, drinks, and various other stuffs that we use in our daily life.

Tutorial

Exercise 1: Calculate the pH of 0.2 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$?

$$
\mathrm{H}_{2} \mathrm{CO}_{3}: \mathrm{K}_{\mathrm{a} 1}=4.3 \times 10^{-7}, \mathrm{~K}_{\mathrm{a} 2}=4.7 \mathrm{X} 10^{-11}
$$

Your answer:

Answer 1 :

$$
\begin{aligned}
& \mathrm{pOH}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=-\log \sqrt{\frac{K_{w} x C_{s}}{K_{a_{2}}}}=-\log \sqrt{\frac{1 X 10^{-14} 0.2}{4.7 \times 10^{-11}}}=2.2 \\
& p H\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=14-2.2=11.8
\end{aligned}
$$

Tutorial
Exercise 2 : Calculate the pH of 0.5 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$? $\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.75 \times 10^{-5}$

Your answer :

Answer 2 :

$$
p H\left(\mathrm{NH}_{4} \mathrm{Cl}\right)=-\log \sqrt{\frac{K_{w} X C_{s}}{K_{b}}}=-\log \sqrt{\frac{1 \times 10^{-14} \times 0.5}{1.75 \times 10^{-5}}}=4.8
$$

ACID - BASE EQUILIBRIUM

Tutorial

Exercise 3: Calculate the pH of 0.1 M solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$?

$$
\mathrm{H}_{3} \mathrm{PO}_{4}: \mathrm{K}_{\mathrm{a} 1}=7.11 \mathrm{X} 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=6.34 \times 10^{-8}, \mathrm{~K}_{\mathrm{a} 3}=4.2 \mathrm{X} 10^{-13}
$$

Your answer :

Tutorial

Answer 3 :

$$
\begin{aligned}
p H\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)= & -\log \sqrt{K_{a_{2}} \cdot K_{a_{3}}}=-\log \sqrt{6.34 \times 10^{-8} \times 4.2 \times 1} 10^{-13} \\
= & 9.8
\end{aligned}
$$

Tutorial

Exercise 4 : Calculate the pH of 0.2 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$?

Your answer :

ACID - BASE EQUILIBRIUM

Tutorial

Answer 4 :

$$
\begin{aligned}
& p O H=-\log \left[B a(O H)_{2}\right] \times 2=-\log 0.2 \times 2=0.4 \\
& \quad p H=14-0.4=13.6
\end{aligned}
$$

Tutorial

Exercise 5 : Calculate the pH of the solution resulting from adding 30 mL of 0.1 M HCl solution to 20 mL of $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution?

Your answer :

Tutorial

Answer 5 :

$2 \mathrm{HCl}+$
$30 \times 0.1=3.0$
0

$\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow$	CaCl_{2}	$+\quad 2 \mathrm{H}_{2} \mathrm{O}$
$20 \times 0.2=4.0$	0	0
2.5	1.5	3.00

(mmole)(I) (mmoles) (C)

Suppose the reaction is complete. The final solution is basic because HCl is the limiting reactant and $\mathrm{Ca}(\mathrm{OH})_{2}$ is the excess reactant.

$$
p O H=-\log \frac{2.5 X 2}{20+30}=1.0 \quad \therefore \quad p H=14-1.0=13
$$

Note that we multiplied the concentration of $\mathrm{Ca}(\mathrm{OH})_{2}$ by 2 because one mole of the later gives 2 moles OH^{-}

Tutorial

Exercise 6 : Calculate the pH of the solution resulting from adding 400 mg of NaOH ($\mathrm{mw}=40$) to 50 mL of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and the volume is completed to 500 mL with distilled water?

Your answer :

Tutorial

answer 6:

$\mathrm{NH}_{4} \mathrm{Cl}+$	$\mathrm{NaOH} \rightarrow$	$\mathrm{NH}_{3}+\mathrm{NaCl}$	$+\mathrm{H}_{2} \mathrm{O}$		
$50 X 0.1=5$	$400 / 40=10$	0	0	0	(mmole) (I)
0	5	5	5	5	$($ mmole) (C)

After the reaction is complete, the final solution contains $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}$ (neutral salt), NH_{3} and excess NaOH . To simplify the calculations we will ignore NH_{3} (weak base) and calculate the pH of only a strong NaOH solution :

$$
p O H=-\log \frac{5}{500}=2 \therefore p H=14-2=12
$$

Tutorial

Exercise 7 : Calculate the pH of a solution resulting from adding 25 mL of 0.1 M of NaOH to 25 mL of 0.15 M HCl solution?

Your answer :

ACID - BASE EQUILIBRIUM

Tutorial

Answer 7 :

$$
\begin{array}{ccccc}
\mathrm{NaOH} & +\mathrm{HCl} & \rightarrow & \mathrm{NaCl} & + \\
\mathrm{H}_{2} \mathrm{O} \\
25 \times 0.1=2.5 & 25 \times 0.15=3.75 & 0 & 0 \\
0 & 1.25 & 2.5 & 2.5
\end{array}
$$

$$
\begin{array}{cc}
\text { (mmoles) } & (\mathrm{I}) \\
\text { (mmoles) } & (\mathrm{C})
\end{array}
$$

The resulting solution after the reaction is acidic because NaOH is the limiting reactant and HCl is the excess reactant (1.25 mmoles of HCl is remaining) therefore the pH can be calculated as such :

$$
p H=-\log \frac{1.25}{25+25}=1.6
$$

Tutorial

Exercise 8: Calculate the pH of a solution resulting from adding 25 mL of 0.1 M of NaOH to 25 mL of 0.05 M HCl solution?

Your answer :

ACID - BASE EQUILIBRIUM

Tutorial

Answer 8 :

NaOH	$+\mathrm{HCl}$	NaCl	$\mathrm{H}_{2} \mathrm{O}$		
25X0.1=2.5	$25 \times 0.05=1.25$	0	0	(mmoles)	(I)
1.25	0	1.25	1.25	(mmoles)	(C)

The solution after complete reaction is basic because HCl is the limiting reactant and the remaining mmoles of NaOH is 1.25 mmoles as shown in the above reaction .

$$
p o H=-\log \frac{1.25}{25+25}=1.6 \quad \therefore \quad p H=12.4
$$

Tutorial

Exercise 9 : Calculate the pH of a solution resulting from adding 25 mL of 0.1 M of NaOH to 25 mL of $\mathrm{H}_{2} \mathrm{O}$?

Your answer :

ACID - BASE EQUILIBRIUM

Tutorial

Answer 9 :

There is no reaction but the solution of NaOH will be diluted :

$$
\begin{gathered}
25 \times 0.1=50 \times \mathrm{M} \\
\mathrm{pOH}=-\log 0.05=1.3 \quad \therefore \quad \mathrm{M}=0.05 \\
\mathrm{pH}=12.7
\end{gathered}
$$

Tutorial

Exercise 10 : Calculate the pH of a solutions resulting from adding 50 ml 0.08 M HCl to $40 \mathrm{ml} 0.1 \mathrm{NH}_{3}$?

Your answer :

Tutorial

Answer 10 :

$\underset{0}{\mathrm{HCl}}+\underset{0}{\mathrm{NH}_{3}} \rightarrow \quad$| $\mathrm{NH}_{4} \mathrm{Cl}$ |
| :---: |
| 0 |

(mmoles) (C)

The result is a solution of a weak base salt $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ so we will apply the equation for the calculation of pH of this kind of salt :

$$
p H=-\log \sqrt{\frac{1 \times 10^{-14} \times \frac{4}{90}}{1.75 \times 10^{-5}}} \approx 5.3
$$

Tutorial

Exercise 11 : Calculate the pH of a solution resulting from adding 200 ml 0.1 M HCl to $50 \mathrm{ml} 0.1 \mathrm{M} \mathrm{NH}_{3}$?

Your answer :

Tutorial

Answer 11 :

| HCl |
| :---: | :---: | :---: |
| 15 |$+\underset{0}{\mathrm{NH}_{3}} \rightarrow \underset{5}{\mathrm{NH}_{4} \mathrm{Cl}}$

> (mmoles) (C)

The final solution after complete reaction composes of weak base salt $\mathrm{NH}_{4} \mathrm{Cl}$ (acidic) and the remaining of HCl while NH_{3} is finished. To facilitate the calculations we will ignore the effect of $\mathrm{NH}_{4} \mathrm{Cl}$ and calculate the pH of the remaining HCl

$$
p H=-\log \frac{15(\mathrm{mmoles})}{250(\mathrm{ml})}=1.2
$$

Tutorial

Exercise 12 : Calculate the pH of a solution resulting from adding 100 ml 0.025 M NaOH to 100 ml 0.025 HA ? K_{a} for $\mathrm{HA}=1.75 \mathrm{X} 10^{-5}$

Your answer :

Tutorial

Answer 12 :

$$
\underset{\mathrm{NA}}{\mathrm{HaOH}} \rightarrow \underset{2.5}{\mathrm{NaA}}+\underset{2.5}{\mathrm{NaCl}}+\underset{2.5}{\mathrm{H}_{2} \mathrm{O}} \quad \text { (mmoles) (C) }
$$

All of acetic acid HA and NaOH have been converted to products. The final solution consists from $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}$ (neutral) and weak acid salt (NaA). We will apply the equation that used for the calculation of such salt :

$$
p O H=-\log \sqrt{\frac{1 X 10^{-14} \times \frac{2.5}{200}}{1.75 \times 10^{-5}}}=5.6 \quad \therefore p H=8.4
$$

Tutorial

Exercise 13 : Calculate the pH of a solution resulting from adding 100 ml 0.2 M NaOH to 100 ml 0.1 HA ?

Your answer :

Tutorial

Answer 13 :

$$
\begin{gathered}
\mathrm{HA} \\
0
\end{gathered} \underset{\mathrm{NaOH}}{\mathrm{Na}} \rightarrow \underset{\mathrm{NaA}}{\mathrm{Na}}+\underset{\mathrm{NaCl}}{\mathrm{Na}}+\underset{\mathrm{H}_{2} \mathrm{O}}{ } \begin{aligned}
& \text { (mmoles) (C) }
\end{aligned}
$$

After the reaction is completed, the solution is consists of $\mathrm{H}_{2} \mathrm{O}$, neutral salt (NaCl), weak acid salt (NaA) and the remaining of NaOH . We will ignor the effect of the weak acid salt and calculate the pH from the remaining NaOH thus:

$$
p O H=-\log \frac{10(\text { mmoles })}{200(m l)}=1.3 \quad \therefore p H=12.7
$$

ACID - BASE EQUILIBRIUM

Tutorial

Exercise 14 : Calculate the pH of a solution resulting from adding 10 mL of $\mathrm{Ba}(\mathrm{OH})_{2}$ solution $(\mathrm{pH}=10)$ to 15 mL of HCl solution $(\mathrm{pH}=5)$?

Your answer :

Tutorial

Answer 14 :
$\mathrm{pH}=10 \therefore \mathrm{pOH}=4 \therefore\left[\mathrm{OH}^{-}\right]=1 \times 10^{-4} \therefore\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=1 \times 10^{-4} / 2$ mmoles $\mathrm{Ba}(\mathrm{OH})_{2}=10 \times 10^{-4} / 2=5 \times 10^{-4}$
$\mathrm{pH}=5 \quad \therefore \quad\left[\mathrm{H}^{+}\right]=1 \times 10^{-5}$
mmoles $\mathrm{HCl}=15 \times 1 \times 10^{-5}=1.5 \times 10^{-4}$

$$
(\text { mmoles })(\mathrm{C})
$$

$$
\begin{aligned}
& 2 \mathrm{HCl}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 1.5 \times 10^{-4} 5 \times 10^{-4} \quad 0 \quad 0 \quad \text { (mmoles)(I) } \\
& 0 \\
& 4.25 \times 10^{-4} \quad 0.75 \times 10^{-4} \quad 1.5 \times 10^{-4} \\
& p O H=-\log \frac{2 \times 4.25 \times 10^{-4}}{25(\mathrm{ml})} \approx 4.5 \quad \therefore \quad \mathrm{pH}=9.5
\end{aligned}
$$

Tutorial

Exercise 15 : A solution of a weak acid HA has a concentration of 0.5 M and $\mathrm{pH}=4$, calculate the dissociation constant of this acid?

Your answer :

ACID - BASE EQUILIBRIUM

Tutorial

Answer 15 :

$$
\begin{aligned}
& p H=-\log \sqrt{K_{a} X C_{a}} \\
& 4=-\log \sqrt{K_{a} X 0.5} \therefore K_{a}=2 \times 10^{8}
\end{aligned}
$$

VIDEO Library

Tutorial

Look at the following videos which will clear some of the subjects that have been previously discussed.

VIDEO

Library

$$
\frac{\text { VIDEO }}{\text { Salts }}
$$

على الراغبين الاستماع الى محاضرات الاستاذ الاكتور/ ابر اهيم زامل الز امل باللغة العربية عن هذا الموضوع الرجو ع الى الروابط التالية :

الاتزان في تفاعلات الحموض و القو اعد (حسابات الـرقم الهيبروجيني)
r الاتز ان في تفاعلات الحموض و القو اعد (حسابات الـرقم الهيبروجينى)

الاتز ان في تفاعلات الحموض و القو اعد (حسابات الـرقم الهيدروجيني)

