1) 8 (90 kJ H₄(g`	is released wl) is burned?	nen 1 mo	ole of CH4(g) is	s burneo	d. Calculate Δ	H in (kJ) when 5	5.8 g of
	A	.)	-890	B)	-320	C)	-2455.2		D)	-5162
2) V to	Vhat i 0 46.0	s the amount o)°C?	of heat r	equired to raise	e The te	mperature of 7	7.40g of	H ₂ O fro	m 29.0 °C
	A	.)	1424	B)	526	C)	897.9	D)	29.2	
3) (liven	the following	thermal	equation for th	ie comp	lete combustio	on of ace	etone "C	2H₅OH":
	C	2H₅O	$H(l) + 3O_2(g)$	→ 2CO	$_{2}(g) + 3H_{2}O(l)$		$\Delta H_{comb}^{o} = -2$	1367.0 k	J	
	A	nd k	nowing that:							
	Δ	$H_f^o[($	$C_2H_5OH(l)] = $	–277 . 7	kJ/mol					
	a	nd 🗚	$H_f^o[(H_2O)_i] = -$	285.8 k.	l/mol					
	Т	he he	eat of formatio	n (in kJ/	mol) of CO ₂ (g), ^{∆H} ° _f [(CO ₂ (g)] is:			
	A	L)	-787.3	B)	-393.7	C)	-1358.9		D)	-679.5
4) F	rom t	he enthalpies	of the fo	llowing reaction	ons:				
	S	(g) +	- 1.5O₂(g) -→	SO ₃ C(g)	ΔH =	–395.2 kJ			
	2	SO ₂ ($(g) + O_2(g)$	→ 2SO ₃ C	(g))	ΔH =	–198.2 kJ			
	Т	he he	eat of formatio	n (in kJ/	mol) of SO ₂ (g)	$\Delta H_f^o[($	(SO ₂ (g)] is:			
	A	.)	-593.4	B)	-296.1	C)	-197.0		D)	-395.2
5) F C	or the C _a O (s	e following rea) + 2HCl(g) –	action: \rightarrow CaCl	$_{2}(s) + H_{2}O(g)$		$\Delta H^{\circ} = -217$	1 kJ		
	C	alcul	ate ΔE° in (k)	I) ?						
	A	.)	-219.6	B)	-214.6	C)	-212.1	D)	-222.1	
6) K C n A	Cnowi onsta aphth	ing that liquing that liquing that (K_b) is 5.0 alene $(C_{10}H_8)$	d chloro 02°C m⁻ in 500 g B)	oform boils a ¹ , the boiling of liquid chlor 80.00	t 76.8° point, coform i	C and its mo in °C, of a s is: 82 24	olal boi olution D)	ling-poin of 41.0 76.8	nt-elevati g of sol
	1	-)	U+21				J Z , Z ,		/ 0.0	
7) A "(f.	t 30.0 C ₇ H ₈ '	0°C, the vapor ' is 40.0 torr. V	pressure Vhat is t	e of pure benze he vapor press	ene " C_6H ure (in t	H_6 " is 120.0 to corr) of an idea	rr and th l solutio	at of pui n that is	e toluene formed
	A	.))	80.0	B)	60.0	C)	90.0 D)	100.0		
8) T	'he os olute)	motic pressure) is found to be	e of an 0 e 0.602 a	.01 M aqueous tm at 25°C. W	s solution hat is th	on of CaCl2 (ar ie Van't Hoff fa	electro	lyte non of this s	volatile solution?
	A	L) (2.46	B)	2.63	C)	2.75 D)	2.86		

- 9) 58.5 g of NaCl and 180 g of glucose (C₆H₁₂O₆) were separately dissolved in 1000 ml of water. Identify the correct statement regarding the depression of freezing point (f.p.) of the resulting solutions.
 - A) NaCl solution will show lower f.p.
 - B) Glucose solution will show lower f.p.
 - C) Both the solutions will show equal depression of f.p
 - D) The f.p. will be 0°C for both of the solutions.
- 10) 15 g of a nonvolatile, nonelectrolyte solute are dissolved in 100 grams of water. The freezing point of the solution is -4.65°C and the mole fraction of solute is 0.0430. Kf of water is 1.86°C/molal. Calculate the molecular weight of the solute in the above solution. A) 18.6 B) 6.0 C) 60.0 D) 2.5

- 1. The mass (in g) of CF_4 that contains 3.2×10^{24} atom of fluorine "F" is:
 - A) 109.8 B) 112.5 C) 116.9 D) 105.7
- 2. The mass in grams of Na_3N that contains 1.3×10^{23} sodium "Na" atoms is:
 - A) 6.0 B) 7.0 C) 8.0 D) 9.0
- 3. The percent by mass of copper metal "Cu" in the mineral chalcopyrite "CuFeS₂" is:
 - A) 39.25 B) 37.85 C) 36.18 D) 34.62
- 4. 1.52 g sample of nitrogen oxide contains 0.96 g of oxygen. The emperical formula for this nitrogen oxide is:
 - A) N₂O₅ B) N₂O₃ C) NO₂ D) NO
- 5. The volume in ml of 0.251 M KI solution that contains 13.5 g of KI is:
 - A) 324 B) 345 C) 363 D) 382
- 6. A closed gas cylinder contains exactly equal masses of the three gases CO₂, N₂ and O₂. Which one of the following statements is true?
 - A) The three partial pressures for the three gases are exactly equal.
 - B) The partial pressure of the CO₂ gas is the highest.
 - C) The partial pressure of the N₂ gas is the highest.
 - D) The partial pressure of the O_2 gas is the highest.
- 7. If equal masses of oxygen gas "O₂" and carbon dioxide gas "CO₂" are in two separate containers of equal volume and at equal temperature. Which one of the following statements is true:
 - 1-The average kinetic energy of an O_2 molecule is greater than that of a CO_2 molecule.
 - 2-The average kinetic energy of a CO_2 molecule is greater than that of an O_2 molecule.
 - 3- Both of them have the same average kinetic energy
 - 4-The pressure inside the CO₂ container is higher than that inside the O₂ container.

A) 1, 3 only B) 2, 4 only C) 3 only D) 4 only

8. The constant "b" that appears in the van der Waals ideal gas equation corrects for:

- A) The average speed of the gas molecules.
- B) The volume of the gas molecules.
- C) The attractive forces between the gas molecules.
- D) The average kinetic energy of the gas molecules.
- 9. The amount of heat (in J) required to raise the temperature of 350.0 g of copper from 25°C to 85°C is: (the specific heat of copper is 0.385 J/g °C)

A) 8085 B) 7676 C) 6806 D) 6485

10. Given the following thermochemical equations:

$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$	$\Delta H^{\circ} = -1411 \text{ kJ}$
$C(gr) + O_2(g) \rightarrow CO_2(g)$	ΔH° = -393.5 kJ
$\mathrm{H}_{2}(g) + \frac{1}{2}\mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2}\mathrm{O}(l)$	$\Delta H^{\circ} = -286 \text{ kJ}$
The standard enthalpy of formation (in kJ) of eth	nylene "C ₂ H ₄ " is:

87	B)	-87	C)	-68	D)	52	
			SOLUT	ION			
$D_2(g) + 2H_2O(I)$	L) → C	$_{2}H_{4}(g) + 30$	$D_2(g)$	$\Delta H = +1$	411 kJ		
$gr) + 2O_2(g) -$	→ 2CO ₂	(g)	$\Delta H = -7$	87 kJ			
$2H_2(g) + O_2(g) \rightarrow 2H_2O(L)$ $\Delta H = -572 \text{ kJ}$							
(g) + 3C(gr) –	→ 2C ₂ H	4(g)		$\Delta H = +$	52 kJ		
	87 $D_2(g) + 2H_2O(Igr) + 2O_2(g) - (g) + O_2(g) - (g) + O_2(g) - (g) + 3C(gr) - (g) + 3C(gr) - (g) + 3C(gr) - (g) + 3C(gr) - (g) + (g)$	87 B) $D_2(g) + 2H_2O(L) \rightarrow C$ $gr) + 2O_2(g) \rightarrow 2CO_2$ $(g) + O_2(g) \rightarrow 2H_2O(1)$ $(g) + 3C(gr) \rightarrow 2C_2H$	87 B) -87 $D_2(g) + 2H_2O(L) \rightarrow C_2H_4(g) + 30$ gr) + 2O_2(g) → 2CO_2(g) (g) + O_2(g) → 2H_2O(L) (g) + 3C(gr) → 2C_2H_4(g)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	87 B) -87 C) -68 D) SOLUTION $D_2(g) + 2H_2O(L) \rightarrow C_2H_4(g) + 3O_2(g)$ $\Delta H = +1411 \text{ kJ}$ $gr) + 2O_2(g) \rightarrow 2CO_2(g)$ $\Delta H = -787 \text{ kJ}$ $(g) + O_2(g) \rightarrow 2H_2O(L)$ $\Delta H = -572 \text{ kJ}$ Get (g) $\rightarrow 2C_2H_4(g)$	

11. Which of the following exothermic reactions ΔH = ΔE ? 1-C(graphite) + O₂(g) → CO₂(g) 2-2H₂(g) + O₂(g) → 2H₂O(g) 3-2C₂H₂(g) + 5O₂(g) → 4CO₂(g) + 2H₂O(g) 4-N₂H₄(g) + O₂(g) → N₂(g) + 2H₂O(g)

- 12. The solubility of a gas in a liquid depends on:
 - 1-The nature of the liquid solvent.
 - 2-The nature of the gas.
 - 3-The temperature.
 - 4-The partial pressure of the gas on the surface of the liquid solvent.

A)	all of them	B)	2,3, 4 only	C)	1,3,4 only	D)	3,4 only		
	SOLUTION								
The	The solubility of a gas in a liquid depends on for factors:								
	1-The nature of the liquid solvent.								
	2-The nature of the gas.								
3-The temperature.									
	4-The partial pressure of the gas on the surface of the liquid solvent.								

13. The molality of a 20% by mass ammonium sulfate (NH₄)₂SO₄ aqueous solution is:

A) 2.15 m	B)	1.89 m	C)	1.25 m	D)	0.87 m		
SOLUTION								
$\frac{n_2}{20 \div 132.154}$								
molality = $m_1 + m_2 = 80 + 1000 = 1.89$ molal								

14. What is the freezing point of an aqueous solution of a nonvolatile-nonelectrolyte solute that has a boiling point of 103.8 (for water $K_f = 1.86$ °C/m and $K_b = 0.52$ °C/m)?

1. According to the following equation:

 $2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$

calculate the mass in grams of HCl which can be prepared (theoretically) when reacting 150.0 g of NaCl with 150.0 g of H_2SO_4 is:

SOLUTION Na_2SO_4 2NaCl H_2SO_4 2HCl +2 1 2 1 150 98.086 = 1.5358.44 = 2.566n 2.566 1.53 1 = 1.53 ² = 1.283 n = 2.566 $m = n \times M = 2.566 \times 36.458 = 93.6 g$

1. The number of nitrogen atoms " N " are present in 1.00 g of (NH₄)₂Cr₂O₇, is: B) 2.39 × 10²¹ C) 6.82×10^{21} A) 4.78×10^{21} D) 3.88 × 10²¹ 2. A compound contains only C, H, and N. Combustion of 35.0 mg of the compound produces 33.5 mg CO₂ and 41.1 mg H₂O. The empirical formula of the compound is: A) C_3H_6N B) $C_4H_8N_3$ C) CH_6N_2 D) $C_2H_7N_2$ 3. Consider the reaction: $Fe_2O_3(s) + 2Al(s) \longrightarrow 2Fe(l) + Al_2O_3(s)$ The mass of iron(III) oxide (Fe₂O₃) must be used to produce 15.0 g iron (Fe) is: B) <mark>21.5 g</mark> A) 42.8 g C) 31.5 g D) 12.9 g 4. The molality of a 20% by mass ammonium sulfate (NH₄)₂SO₄ aqueous solution, is: C) <mark>1.89 m</mark> A) 2.15 m B) 1.25 m D) 0.87 m 5. The amount of water (in mL) are needed to dilute 505 mL of a 0.125 M " HCl " solution to exactly 0.100 M, is: A) 126.25 B) 631.25 C) 404.10 D) 101.10 6. The volume (in L) of 3.01 x 10^{23} molecules of Cl_2 gas at STP, is:

A) 22.7 B) 10.9 C) 15.6 D)33.5

- 7. A closed gas cylinder contains exactly equal masses of the three gases: helium (He), neon (Ne) and argon (Ar). It is true that:
 - A) The three gasses partial pressures are exactly equal.

B) The partial pressure of the He gas is the highest.

- C) The partial pressure of the Ne gas is the highest.
- D) The partial pressure of the Ar gas is the highest.
- 8. The constant "b" that appears in the van der Waals ideal gas equation corrects:
 - A) The average speed of the gas molecules.

B) The volume of gas molecules.

- C) The attractive forces between the gas molecules.
- D) The average kinetic energy of the gas molecules.
- 9. Given the following thermochemical reaction

4Fe (s) + 3O₂(g) \longrightarrow 2Fe₂O₃(s) Δ H = -1652 kJ

When 10.0 g of iron (Fe) is reacted with excess amount of oxygen (O₂), the amount of heat given off (in kJ), is:

- A) -74 B) -296 C) -413 D) -592
- 10. When 0.22g of propane (C₃H₈) is used to heat 200g of water at 20°C. If The combustion enthalpy of propane per mole at constant pressure is -2220 kJ/mol, then, the final temperature of the water will be: (Cs of water 4.18 J/g.°C)

A) 51.9	B <mark>) 33.3</mark>	C) 98.2	D) 76.4
11. Given the following the	ermochemical reac	tions:	
$2B(s) + 3/2 O_2(g)$	>]	$B_{2}O_{3}(s)$	ΔH = -1273 kJ
$B_2H_6(g) + 3O_2(g)$	i)]	$B_2O_3(s) + 3H_2O(g)$	$\Delta H = -2035 \text{ kJ}$
$H_2(g) + 1/2 O_2(g)$	s) 1	H ₂ O (l)	$\Delta H = -286 \text{ kJ}$
H ₂ O (l)	→]	H ₂ O (g)	$\Delta H = 44 \text{ kJ}$
Calculate "∆H" (in kJ)	for the following r	reaction?	
2B(s) + 3	H ₂ (g)	\rightarrow B ₂ H ₆ (g)	

- D) <mark>+36</mark> A) -685 B) -258 C) +1252 12. An ideal gas absorbs 1900 J as heat and its internal energy increases with 1100 J. The amount of work (in J) evolved in this process, is: B) +3000 C) +800 A) <mark>-800</mark> D) -3000 13. The vapor pressure of a solution prepared by dissolving nonvolatile solute in methanol (CH₃OH), is 556.0 torr at 65.0 °C. The mole fraction of methanol is: (vapor pressure of pure methanol is 638 torr at 65.0°C) A) 0.13 B) 0.87 C) 0.67 D) 0.39 14. A 4.7 mg sample of a protein is dissolved in water to make 25.0 mL of solution. The osmotic pressure of the solution is 0.56 torr at 25 °C. The molar mass (in g/mol) of the protein is:
 - A) 6.2X10³ B) 2.1X10² C) 3.2X10⁴ D) 1.2X10³
- 15. A 1.60 g of naphthalene is dissolved in 20.0 g benzene (C₆H₆). The freezing point of the solution decreased by 2.7 °C. The molar mass (in g/mol) of naphthalene is: (K_f of benzene is 5.12 °C.kg/mol)
 - A) 188.2 B) 122.4 C) 151.6 D) 218.8
- 16. When 13.5 g of acetylene (C₂H₂) dissolves in 250 mL of acetone (C₃H₆O) at 1.0 atm, the Henry's law constant (in mol/L.atm), is:
 - A) 1.1 B) 2.1 C) 1.6 D) 2.6