1) 890 kJ is released when 1 mole of $\mathrm{CH}_{4}(\mathrm{~g})$ is burned. Calculate $\Delta \mathrm{H}$ in (kJ) when 5.8 g of $\mathrm{CH}_{4}(\mathrm{~g})$ is burned?
A) $\quad-890$
B) -320
C) -2455.2
D) -5162
2) What is the amount of heat required to raise The temperature of 7.40 g of $\mathrm{H}_{2} \mathrm{O}$ from $29.0^{\circ} \mathrm{C}$ to $46.0^{\circ} \mathrm{C}$?
A) 1424
B) 526
C) 897.9
D) 29.2
3) Given the following thermal equation for the complete combustion of acetone ${ } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ":
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H_{c o m b}^{\circ}=-1367.0 \mathrm{~kJ}$

And knowing that:
$\Delta H_{f}^{o}\left[\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})\right]=-277.7 \mathrm{~kJ} / \mathrm{mol}\right.$
and $\Delta H_{f}^{\circ}\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{l}}\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$
The heat of formation (in $\mathrm{kJ} / \mathrm{mol}$) of $\mathrm{CO}_{2}(\mathrm{~g}), \Delta H_{f}^{\circ}\left[\left(\mathrm{CO}_{2}(\mathrm{~g})\right]\right.$ is:
A) $\quad \mathbf{- 7 8 7 . 3}$
B) -393.7
C) $\quad-1358.9$
D) $\quad-679.5$
4) From the enthalpies of the following reactions:
$\mathrm{S}(\mathrm{g})+1.5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{3} \mathrm{C}(\mathrm{g}) \quad \Delta \mathrm{H}=-395.2 \mathrm{~kJ}$
$\left.2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3} \mathrm{C}(\mathrm{g})\right) \quad \Delta \mathrm{H}=-198.2 \mathrm{~kJ}$
The heat of formation (in $\mathrm{kJ} / \mathrm{mol}$) of $\mathrm{SO}_{2}(\mathrm{~g}), \Delta H_{f}^{\circ}\left[\left(\mathrm{SO}_{2}(\mathrm{~g})\right]\right.$ is:
A) $\quad-593.4$
B) $\quad-296.1$
C) $\quad-197.0$
D) -395.2
5) For the following reaction:
$\mathrm{C}_{\mathrm{a}} \mathrm{O}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta H^{\circ}=-2171 \mathrm{~kJ}$
Calculate ΔE° in (kJ) ?
A) -219.6
B) -214.6
C) -212.1
D) -222.1
6) Knowing that liquid chloroform boils at $76.8^{\circ} \mathrm{C}$ and its molal boiling-point-elevation constant (K_{b}) is $5.02^{\circ} \mathrm{C} \mathrm{m}^{-1}$, the boiling point, in ${ }^{\circ} \mathrm{C}$, of a solution of 41.0 g of solid naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ in 500 g of liquid chloroform is:
A)
B) 80.00
C) 82.24
D) 76.8
7) At $30.0^{\circ} \mathrm{C}$, the vapor pressure of pure benzene " $\mathrm{C}_{6} \mathrm{H}_{6}$ " is 120.0 torr and that of pure toluene " $\mathrm{C}_{7} \mathrm{H}_{8}$ " is 40.0 torr. What is the vapor pressure (in torr) of an ideal solution that is formed from 3.0 mol of benzene and 1.0 mol of toluene at $30.0^{\circ} \mathrm{C}$?
A) 80.0
B) 60.0
C) $\quad 90.0$
D) 100.0
8) The osmotic pressure of an 0.01 M aqueous solution of CaCl_{2} (an electrolyte nonvolatile solute) is found to be 0.602 atm at $25^{\circ} \mathrm{C}$. What is the Van't Hoff factor "I" of this solution?
A)
B) 2.63
C) $\quad 2.75$
D) 2.86
9) 58.5 g of NaCl and 180 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ were separately dissolved in 1000 ml of water. Identify the correct statement regarding the depression of freezing point (f.p.) of the resulting solutions.
A) $\quad \mathrm{NaCl}$ solution will show lower f.p.
B) Glucose solution will show lower f.p.
C) Both the solutions will show equal depression of f.p
D) The f.p. will be $0^{\circ} \mathrm{C}$ for both of the solutions.
10) 15 g of a nonvolatile, nonelectrolyte solute are dissolved in 100 grams of water. The freezing point of the solution is $-4.65^{\circ} \mathrm{C}$ and the mole fraction of solute is 0.0430 . Kf of water is $1.86^{\circ} \mathrm{C} / \mathrm{molal}$. Calculate the molecular weight of the solute in the above solution.
A) 18.6
B) 6.0
C) 60.0
D) 2.5

1. The mass (in g) of CF_{4} that contains 3.2×10^{24} atom of fluorine " F " is:
A) 109.8
B) $\quad 112.5$
C) $\quad 116.9$
D) $\quad 105.7$
2. The mass in grams of $\mathrm{Na}_{3} \mathrm{~N}$ that contains 1.3×10^{23} sodium " Na " atoms is:
A) 6.0
B) $\quad 7.0$
C) 8.0
D) 9.0
3. The percent by mass of copper metal "Cu" in the mineral chalcopyrite ${ } \mathrm{CuFeS}_{2}$ " is:
A) 39.25
B) $\quad 37.85$
C) $\quad 36.18$
D) 34.62
4. 1.52 g sample of nitrogen oxide contains 0.96 g of oxygen. The emperical formula for this nitrogen oxide is:
A) $\mathrm{N}_{2} \mathrm{O}_{5}$
B) $\quad \mathrm{N}_{2} \mathrm{O}_{3}$
C) $\quad \mathrm{NO}_{2}$
D) NO
5. The volume in ml of 0.251 M KI solution that contains 13.5 g of KI is:
A) 324
B) 345
C) 363
D) 382
6. A closed gas cylinder contains exactly equal masses of the three gases $\mathrm{CO}_{2}, \mathrm{~N}_{2}$ and O_{2}. Which one of the following statements is true?
A) The three partial pressures for the three gases are exactly equal.
B) The partial pressure of the CO_{2} gas is the highest.
C) The partial pressure of the N_{2} gas is the highest.
D) The partial pressure of the O_{2} gas is the highest.
7. If equal masses of oxygen gas ${ } \mathrm{O}_{2}$ " and carbon dioxide gas " CO_{2} " are in two separate containers of equal volume and at equal temperature. Which one of the following statements is true:
1-The average kinetic energy of an O_{2} molecule is greater than that of a CO_{2} molecule.
2-The average kinetic energy of a CO_{2} molecule is greater than that of an O_{2} molecule.
3 - Both of them have the same average kinetic energy
4-The pressure inside the CO_{2} container is higher than that inside the O_{2} container.
A) 1, 3 only
B) 2, 4 only
C) 3 only
D) 4 only
8. The constant " b " that appears in the van der Waals ideal gas equation corrects for:
A) The average speed of the gas molecules.
B) The volume of the gas molecules.
C) The attractive forces between the gas molecules.
D) The average kinetic energy of the gas molecules.
9. The amount of heat (in J) required to raise the temperature of 350.0 g of copper from $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ is: (the specific heat of copper is $0.385 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)
A) 8085
B) 7676
C) 6806
D) 6485
10. Given the following thermochemical equations:
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}^{\mathrm{o}}=-1411 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{gr})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}^{\mathrm{o}}=-393.5 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}^{0}=-286 \mathrm{~kJ}$

The standard enthalpy of formation (in kJ) of ethylene $" \mathrm{C}_{2} \mathrm{H}_{4}$ " is:
A) 87
B) -87
C) -68
D) 52
$2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{L}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+1411 \mathrm{~kJ}$
$2 \mathrm{C}(\mathrm{gr})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-787 \mathrm{~kJ}$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{L}) \quad \Delta \mathrm{H}=-572 \mathrm{~kJ}$
$2 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{C}(\mathrm{gr}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$
$\Delta \mathrm{H}=+52 \mathrm{~kJ}$
11. Which of the following exothermic reactions $\Delta \mathrm{H}=\Delta \mathrm{E}$?

$$
\begin{aligned}
& \text { 1-C(graphite) }+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \\
& 2-2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 3-2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 4-\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
$$

A) 1
B)
2
C) 3
D) 4
$\Delta \mathrm{E}=\Delta \mathrm{H}-\mathrm{RT} \Delta \mathrm{n}_{\mathrm{g}}$
To make $\Delta \mathrm{E}$ less negative than $\Delta \mathrm{H}$, " $\Delta \mathrm{n}_{\mathrm{g}}$ " must be negative.
1- $\Delta \mathrm{n}_{\mathrm{g}}=0$
$2-\Delta \mathrm{n}_{\mathrm{g}}=-1$
$3-\Delta \mathrm{n}_{\mathrm{g}}=-1$
$4-\Delta n_{g}=+1$
12. The solubility of a gas in a liquid depends on:

1-The nature of the liquid solvent.
2-The nature of the gas.
3-The temperature.
4-The partial pressure of the gas on the surface of the liquid solvent.
A) all of them
B) $2,3,4$ only
C) 1,3,4 only
D) 3,4 only
SOLUTION
The solubility of a gas in a liquid depends on for factors:
1-The nature of the liquid solvent.
2-The nature of the gas.
3 -The temperature.
4-The partial pressure of the gas on the surface of the liquid solvent.
13. The molality of a 20% by mass ammonium sulfate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ aqueous solution is:
A) 2.15 m
B) $\quad 1.89 \mathrm{~m}$
C) $\quad 1.25 \mathrm{~m}$
D) $\quad 0.87 \mathrm{~m}$
molality $=\frac{\mathrm{n}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{20 \div 132.154}{80+1000}=1.89 \mathrm{molal}$
14. What is the freezing point of an aqueous solution of a nonvolatile-nonelectrolyte solute that has a boiling point of 103.8 (for water $\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}$ and $\mathrm{K}_{\mathrm{b}}=0.52^{\circ} \mathrm{C} / \mathrm{m}$)?
A) $-13.6^{\circ} \mathrm{C}$
B) $\quad-11.2^{\circ} \mathrm{C}$
C) $\left.\quad-9.8^{\circ} \mathrm{CD}\right) \quad-7.7^{\circ} \mathrm{C}$

SOLUTION
molality $=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{K}_{\mathrm{b}}}=\frac{3.8}{0.52}=7.308$ molal
$\Delta \mathbf{T}_{\mathrm{f}}=\mathbf{K}_{\mathbf{f}} \mathbf{m}=13.59^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{f}}=-13.59^{\circ} \mathrm{C}$

1. According to the following equation:
$2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
calculate the mass in grams of HCl which can be prepared (theoretically) when reacting 150.0 g of NaCl with 150.0 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:

2. The number of nitrogen atoms " N " are present in 1.00 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, is:
A) 4.78×10^{21}
B) 2.39×10^{21}
C) 6.82×10^{21}
D) 3.88×10^{21}
3. A compound contains only C, H, and N . Combustion of 35.0 mg of the compound produces $33.5 \mathrm{mg} \mathrm{CO}_{2}$ and $41.1 \mathrm{mg} \mathrm{H}_{2} \mathrm{O}$. The empirical formula of the compound is:
A) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}$
B) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{3}$
C) $\mathrm{CH}_{6} \mathrm{~N}_{2}$
D) $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{2}$
4. Consider the reaction:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \longrightarrow 2 \mathrm{Fe}(\mathrm{l})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

The mass of iron(III) oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ must be used to produce 15.0 g iron (Fe) is:
A) 42.8 g
B) 21.5 g
C) 31.5 g
D) 12.9 g
4. The molality of a 20% by mass ammonium sulfate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ aqueous solution, is:
A) 2.15 m
B) 1.25 m
C) 1.89 m
D) 0.87 m
5. The amount of water (in mL) are needed to dilute 505 mL of a 0.125 M " HCl " solution to exactly 0.100 M , is:
A) 126.25
B) 631.25
C) 404.10
D) 101.10
6. The volume (in L) of 3.01×10^{23} molecules of Cl_{2} gas at STP , is:
A) 22.7
B) 10.9
C) 15.6
D) 33.5
7. A closed gas cylinder contains exactly equal masses of the three gases: helium (He), neon (Ne) and argon (Ar). It is true that:
A) The three gasses partial pressures are exactly equal.
B) The partial pressure of the He gas is the highest.
C) The partial pressure of the Ne gas is the highest.
D) The partial pressure of the Ar gas is the highest.
8. The constant " b " that appears in the van der Waals ideal gas equation corrects:
A) The average speed of the gas molecules.
B) The volume of gas molecules.
C) The attractive forces between the gas molecules.
D) The average kinetic energy of the gas molecules.
9. Given the following thermochemical reaction

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}=-1652 \mathrm{~kJ}
$$

When 10.0 g of iron (Fe) is reacted with excess amount of oxygen $\left(\mathrm{O}_{2}\right)$, the amount of heat given off (in kJ), is:
A) -74
B) -296
C) -413
D) -592
10. When 0.22 g of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is used to heat 200 g of water at $20^{\circ} \mathrm{C}$. If The combustion enthalpy of propane per mole at constant pressure is $-2220 \mathrm{~kJ} / \mathrm{mol}$, then, the final temperature of the water will be: (Cs of water $4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$)
A) 51.9
B) 33.3
C) 98.2
D) 76.4
11. Given the following thermochemical reactions:

$$
\begin{array}{lll}
2 \mathrm{~B} \mathrm{(s)+3/2O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s}) & \Delta \mathrm{H}=-1273 \mathrm{~kJ} \\
\mathrm{~B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) & \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-2035 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-286 \mathrm{~kJ} \\
& \Delta \mathrm{H}=44 \mathrm{~kJ}
\end{array}
$$

Calculate " $\Delta \mathrm{H}$ " (in kJ) for the following reaction?

$$
2 \mathrm{~B}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

A) -685
B) -258
C) +1252
D) +36
12. An ideal gas absorbs 1900 J as heat and its internal energy increases with 1100 J . The amount of work (in J) evolved in this process, is:
A) -800
B) +3000
C) +800
D) -3000
13. The vapor pressure of a solution prepared by dissolving nonvolatile solute in methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$, is 556.0 torr at $65.0^{\circ} \mathrm{C}$. The mole fraction of methanol is: (vapor pressure of pure methanol is 638 torr at $65.0^{\circ} \mathrm{C}$)
A) 0.13
B) 0.87
C) 0.67
D) 0.39
14. A 4.7 mg sample of a protein is dissolved in water to make 25.0 mL of solution. The osmotic pressure of the solution is 0.56 torr at $25^{\circ} \mathrm{C}$. The molar mass (in $\mathrm{g} / \mathrm{mol}$) of the protein is:
A) 6.2×10^{3}
B) 2.1×10^{2}
C) 3.2×10^{4}
D) 1.2×10^{3}
15. A 1.60 g of naphthalene is dissolved in 20.0 g benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$. The freezing point of the solution decreased by $2.7^{\circ} \mathrm{C}$. The molar mass (in $\mathrm{g} / \mathrm{mol}$) of naphthalene is: (K_{f} of benzene is $5.12{ }^{\circ} \mathrm{C} . \mathrm{kg} / \mathrm{mol}$)
A) 188.2
B) 122.4
C) 151.6
D) 218.8
16. When 13.5 g of acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ dissolves in 250 mL of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ at 1.0 atm , the Henry's law constant (in mol/L.atm), is:
A) 1.1
B) 2.1
C) 1.6
D) 2.6

