EXERCISES

1. We consider a fair coin tossing two times, and let X be a random variable on the probability space of this experiment defined by:

$$
X(\omega)= \begin{cases}1 & \omega \in\{H H, T H, H T\} \\ 0 & \omega \in\{T T\}\end{cases}
$$

This random variable is called Bernoulli random variable with parameter $p=0.75$ (in this case one say that $p=0.75$ is the possibility of success). Required:
a. Determine the probability mass function for this random variable and draw its representation.

Answer: The probability mass function for the random variable X is:

$$
P(X=k)=P(\{\omega \in \Omega ; X(\omega)=k\})= \begin{cases}P(\{H H, T H, H T\})=0.75 & \text { for } k=1 \\ P(\{T T\})=0.25 & \text { for } k=0\end{cases}
$$

The representation of the random variable X as follow:

b. Determine the distribution function for this random variable and draw its graph.

Answer: To determine the distribution function for this random variable we must determine the following event:

$$
\{\omega \in \Omega ; X(\omega) \leq x\}=\left\{\begin{array}{lc}
\{ \}=\varnothing & \text { for } x<0 \\
\{T T\} & \text { for } 0 \leq x<1 \\
\{H T, T H, H H\} \cup\{T T\}=\Omega & \text { for } x \geq 1
\end{array}\right.
$$

Therefore, we get:

$$
F_{X}(x)=P(\{\omega \in \Omega ; X(\omega) \leq x\})= \begin{cases}0 & \text { for } x<0 \\ 0.25 & \text { for } 0 \leq x<1 \\ 0.75+0.25=1 & \text { for } x \geq 1\end{cases}
$$

c. Then calculate the mean, variance and standard deviation of this random variable Answer: The mean for the random variable X given by:

$$
\mathbf{E}(X)=\sum_{i \in I} x_{i} P\left(X=x_{i}\right)=\sum_{k=0}^{1} k P(X=k)=0 \cdot(1-p)+1 \cdot p=p
$$

The second moment of the random variable X is:

$$
\mathbf{E}\left(X^{2}\right)=\sum_{i \in I} x_{i}^{2} P\left(X=x_{i}\right)=\sum_{k=0}^{1} k^{2} P(X=k)=0^{2} \cdot(1-p)+1^{2} \cdot p=p
$$

Therefore, the variance equal to:

$$
\begin{gathered}
\operatorname{var}(X)=\mathbf{E}\left(X^{2}\right)-[\mathbf{E}(X)]^{2}=p-p^{2}=p(1-p) \\
\Rightarrow \sigma=\sqrt{p(1-p)}
\end{gathered}
$$

2. Assume that, the probability that a baby born is a girl in a maternity hospital, is 0.51 , and let X be a random variable observe the number births up to a boy is born. Then:
a. Derive the probability mass function and the distribution function of X.

Answer: Assuming that the probability of the birth of a boy is p, then we have the probability that born a boy at the first time after k birth equal to:

$$
P(X=k)=\underbrace{(1-p) \cdot(1-p) \cdot \ldots \cdot(1-p)}_{k-1 \text { factors }} \cdot p=(1-p)^{k-1} p
$$

The distribution function of this random variable X is called geometric distribution with parameter $p=0.49$.
The distribution function of X given by

$$
F_{X}(x)=\sum_{\substack{k \in I \\ k \leq x}} P(X=k)=\sum_{1 \leq k \leq x}(1-0.49)^{k-1} 0.49 \quad ; x \in \mathbb{R}
$$

b. What is the probability that third born is the first boy in the maternity hospital?

Answer: The probability that third born is the first boy in the maternity hospital equal to:

$$
P(X=3)=(1-p) \cdot(1-p) \cdot p=(1-0.49)^{3-1} \times 0.49=0.13
$$

3. Let X be a continuous random variable with probability density function.

$$
f_{X}(x)=\left\{\begin{array}{cl}
\frac{1}{2}+\frac{1}{4}(x-3) & \text { for } 1 \leq x<3 \\
\frac{1}{2}-\frac{1}{4}(x-3) & \text { for } 3 \leq x<5 \\
0 & \text { otherwise }
\end{array}\right.
$$

Then:

a. Draw the graph of this probability density function.

Answer: The graph of this probability density function as follow:

b. Determine the distribution function of X.

Answer: The distribution function of X is:
For $x<1$ we have: $F_{X}(x)=P(X \leq x)=\int_{-\infty}^{1} f_{X}(t) d t+=0$
For $1 \leq x<3$ we have:

$$
\begin{aligned}
F_{X}(x)=P(X \leq x) & =\int_{-\infty}^{1} f_{X}(t) d t+\int_{1}^{x} f_{X}(t) d t=\left.\frac{1}{2} t\right|_{1} ^{x}+\left.\frac{1}{4}\left(\frac{t^{2}}{2}-3 t\right)\right|_{1} ^{x} \\
& =\frac{1}{2} x+\frac{1}{4}\left(\frac{x^{2}}{2}-3 x\right)+\frac{1}{8}=\frac{1}{8}\left(x^{2}-2 x+1\right)
\end{aligned}
$$

For $3 \leq x<5$ we have:

$$
\begin{aligned}
F_{X}(x)=P(X \leq x) & =\int_{-\infty}^{1} f_{X}(t) d t+\int_{1}^{3} f_{X}(t) d t+\int_{3}^{x} f_{X}(t) d t=\frac{1}{2}+\left[\left.\frac{1}{2} t\right|_{1} ^{x}-\left.\frac{1}{4}\left(\frac{t^{2}}{2}-3 t\right)\right|_{1} ^{x}\right] \\
& =\frac{1}{2}+\left[\frac{1}{2} x-\frac{1}{4}\left(\frac{x^{2}}{2}-3 x\right)-\frac{75}{8}\right]=-\frac{1}{8}\left(x^{2}+10 x+71\right)
\end{aligned}
$$

For $x \geq 5$ we have:

$$
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{1} f_{X}(t) d t+\int_{1}^{3} f_{X}(t) d t++\int_{3}^{5} f_{X}(t) d t+\int_{5}^{x} f_{X}(t) d t=\frac{1}{2}+\frac{1}{2}=1
$$

Therefore, we get:

$$
F_{X}(x)=\left\{\begin{array}{cl}
0 & \text { for } x<1 \\
\frac{1}{2} x+\frac{1}{4}\left(\frac{x^{2}}{2}-3 x\right)+\frac{1}{8} & \text { for } 1 \leq x<3 \\
\frac{1}{2} x-\frac{1}{4}\left(\frac{x^{2}}{2}-3 x\right)-\frac{71}{8} & \text { for } 3 \leq x<5 \\
1 & \text { for } x \geq 5
\end{array}\right.
$$

The graph of distribution function of X as follow:

4. Let the time for a student to finish the aptitude test of NCAHE (in hours) is a continuous random variable X with:

$$
f_{X}(x)= \begin{cases}k(x-1)(2-x) & \text { for } 1 \leq x<2 \\ 0 & \text { otherwise }\end{cases}
$$

Then:
a. Calculate the value of the constant k.

Answer: We have:

$$
\begin{aligned}
1 & =\int_{-\infty}^{+\infty} f_{X}(x) d x=\int_{-\infty}^{1} f_{X}(x) d x+\int_{1}^{2} f_{X}(x) d x+\int_{2}^{+\infty} f_{X}(x) d x \\
& =\int_{1}^{2} k(x-1)(2-x) d x=k \int_{1}^{2}\left(-x^{2}+3 x-2\right) d x=\left.k\left(-\frac{x^{3}}{3}+3 \frac{x^{2}}{2}-2 x\right)\right|_{1} ^{2} \\
& =k\left[\left(-\frac{8}{3}+3 \frac{4}{2}-2 \times 2\right)-\left(-\frac{1}{3}+3 \frac{1}{2}-2 \times 1\right)\right]=k\left(\frac{-4}{6}-\frac{-5}{6}\right)=\frac{1}{6} k
\end{aligned}
$$

So we get that $k=6$.

$$
f_{X}(x)=\left\{\begin{array}{cc}
6(x-1)(2-x) & \text { for } 1 \leq x<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

5. Determine which of the following is a distribution function:

$$
F(x)=\left\{\begin{array}{ll}
\frac{1}{2} e^{x} & \text { for } x<0 \\
1-\frac{3}{4} e^{-x} & \text { for } x \geq 0
\end{array} \quad F(x)=\left\{\begin{array}{cc}
0 & \text { for } x<0 \\
\frac{x}{1+x} & \text { for } x \geq 0
\end{array}\right.\right.
$$

