balanced dice for one time only. Then:
a. Find the possible values of the random variable X for the following cases:
b. Determine is the probability mass function $P(X=\bullet)$.
c. Determine the distribution function F_{X}.
d. Calculate the mean and variance for the random variable X.

2- Consider rolling a balanced die twice and let the random variable X be the maximum of the two numbers obtained. Then:
a. Determine the probability mass function and distribution function of X.
b. Sketch the functions in part (a).

3- Let X be a discrete random variable with probability mass function: $\quad P(X=k)=c \frac{k}{7} \quad ; k=2,3,4,5$ Then:
a. Determine the value of the constant c that make f probability density function.
b. Determine the distribution function of X.
c. Calculate the mean and variance of random variables X and $3 X-5$. What do you notice?

4- We consider a discreet random variable X with the following probability mass function (p.m.f.):

x	-2	-1	0	1	2
$P_{x}=P(X=x)$	0.20	0.15	0.15	0.1	0.4

a. Determine the distribution function (D.f.) F_{X}, and draw the p.m.f. and D.f. for this variable.

5- Let X be a random variable with the following density function (this random variable is called discrete uniform distributed):

$$
P(X=x)=0.2 \quad \text { for } x=5,6,7,8,9
$$

a. Determine the distribution of the variable X.
b. Draw the graph of the density and distribution function for this variable.

6- Let the time for a student to finish the aptitude test of NCAHE (in hours) is a continuous random variable X with:

$$
f_{X}(x)=\left\{\begin{array}{cc}
6(x-1)(2-x) & \text { for } 1 \leq x<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Then:
a. Determine the distribution function F_{X}.
b. Calculate the mean and variance for X.
c. What is the probability that a student can finish the test in 90 minutes?

