(CHEM 101+ CHEM 103) FIRST SEMESTER

1438-1439 H / 2017-2018 G **FINAL EXAM-I**

Date: Sunday 06/04/1439 H		الاسم:									
Time: 1:0	00 - 4:00 pm	الرقم الجامعي:									
Time allo	wed: 180 minutes										
		Write your	answer in the tab	le below							
<i>Q1:</i>	Q8:	Q15:	Q22:	Q29:	Q36:						
Q2:	<i>Q9</i> :	Q16:	Q23:	Q30:	Q37:						
<i>Q3</i> :	Q10:	Q17:	Q24:	Q31:	Q38:						
Q4:	Q11:	Q18:	Q25:	Q32:	Q39:						
<i>Q5:</i>	Q12:	Q19:	Q26:	Q33:	Q40:						
Q6:	Q13:	Q20:	Q27:	Q34:							
<i>Q7:</i>	Q14:	Q21:	Q28:	Q35:							
IA			l	I .	VIIIA						

IA	_																VIIIA
1																	2
Н	2											13	14	15	16	17	Не
1.008	IIA											IIIA	IVA	VA	VIA	VIIA	4.003
3	4											5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
6.94	9.01											10.811	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	ΑI	Si	Р	S	CI	Ar
23.00	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98	28.09	30.97	32.07	35.45	39.98
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.09	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.546	65.41	69.72	72.64	74.9216	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	40	50	51	52	53	54
Dh	_						44	45	70	41	40	49	50	51	52	- 55	•
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd		Cd	In	Sn	Sb	Te		Xe
85.47	Sr 87.62	Y 88.91	Zr 91.23							Ag 107.87		_				126.90	
		-		Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
85.47	87.62	88.91	91.23	Nb 92.91	Mo 95.94	Tc	Ru 101.07	Rh 102.91	Pd 106.42	Ag	Cd	In 114.82	Sn 118.71	Sb 121.760	Te	 126.90	Xe 131.29
85.47 55	87.62 56	88.91	91.23 72	Nb 92.91 73	95.94 74	Tc [98] 75	Ru 101.07 76	Rh 102.91	Pd 106.42 78	Ag 107.87 79	Cd 112.41 80	In 114.82 81	Sn 118.71 82	Sb 121.760 83	Te 127.60 84	126.90 85	Xe 131.29 86
85.47 55 Cs	87.62 56 Ba	88.91 71 Lu	91.23 72 Hf	Nb 92.91 73 Ta	Mo 95.94 74 W	Tc [98] 75 Re	Ru 101.07 76 Os	Rh 102.91 77 Ir	Pd 106.42 78 Pt	Ag 107.87 79 Au	Cd 112.41 80 Hg	In 114.82 81 TI	Sn 118.71 82 Pb	Sb 121.760 83 Bi	Te 127.60 84 Po	1 126.90 85 At	Xe 131.29 86 Rn
85.47 55 CS 132.91	56 Ba 137.33	88.91 71 Lu 174.97	91.23 72 Hf 178.49	Nb 92.91 73 Ta 180.95	95.94 74 W 183.84	Tc [98] 75 Re 186.21	Ru 101.07 76 Os 190.23	Rh 102.91 77 Ir 192.22	Pd 106.42 78 Pt 195.08	Ag 107.87 79 Au 196.97	Cd 112.41 80 Hg 200.59	In 114.82 81 TI 204.38	Sn 118.71 82 Pb	Sb 121.760 83 Bi	Te 127.60 84 Po	1 126.90 85 At	Xe 131.29 86 Rn

Constants:1 atm = 760 torr = 101.325 kPa

 $R = \ 0.0821 \ atm \ L \ mol^{\text{-}1} \ K^{\text{-}1} = 8.314 \ J \ mol^{\text{-}1} \ K^{\text{-}1}$

 $N_A (Avogadro's Number) = 6.022 \times 10^{23}$ 1 atm.L = 101.325 J

QI: How many significant figures are in 8.3 x 10^4 molecules of oxygen?

- A) 1
- B) 2
- C) 4
- D) 5

Q2: The density in (Kg/m^3) of 5.70 g of a metal with a volume of 22.4 cm³, is:

- A) 0.2544
- B) 2.544
- C) 25.44
- D) 254.4

Q3: This figure describes a measurement that is:

- B) Accurate but not precise.
- C) Precise but not accurate
- D) Not accurate and not precise

Q4: The speed of sound is 343 m/s. What is the speed of sound in **km/h**?

- A) 1235
- B) 1.23×10^6
- C) 1556
- D) 2.1×10^4

Q5: The formula for "diphosphorous pentaoxide", is:

- A) PO₅
- B) P_2O_6
- C) P_5O_2
- D) P_2O_5

Q6: An example of a polyatomic cation, is:

- A) Hydroxide ion "OH-"
- B) Calcium ion "Ca⁺²"
- C) Ammonium ion "NH₄" "
- D) Hydrogen carbonate ion "HCO₃"

·----

- Q7: The name of "FeSO₄", is:
 - A) iron sulfate.
 - B) iron(II) sulfate.
 - C) iron(I) sulfate.
 - D) iron(III) sulfate.

Q8: The scientist who determined the electric charge of the electron was:

- A) Robert Millikan
- B) John Dalton
- C) J. J. Thomson
- D) R. Chang

Q9: The concentration of an aqueous solution of " $(NH_4)_2SO_4$ " is 0.666 M. What is the mass of " $(NH_4)_2SO_4$ " if the volume of the solution is 666 mL?

- A) 14.8
- B) 1.0
- C) 443.6
- D) 58.6

Q10: According to the equation:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

how many moles of methane CH₄ will react with 7.0 moles of oxygen "O₂"?

- A) 1.0
- B) 3.5
- C) 7.0
- D) 14

Q11: The mass in (g) of one atom of iron "Fe", is:

- A) 6.02×10⁻²³
- B) 1.66×10⁻²⁴
- C) 9.27×10^{-23}
- D) 55.85×10^{-23}

Q12: When 18.1 g of "NH₃" and 90.4 g of "CuO" were allowed to react according to:

 $2NH_3(g) + 3CuO(s) \rightarrow 3Cu(s) + N_2(g) + 3H_2O(g)$ The mass of "Cu" in (g), is:

- A) 48.7
- B) 83.6
- C) 58.8
- D) 72.2

Q13:
$$X + O_2 \rightarrow XO_2$$

If 6.7 g of this element combines with 3.9 g of oxygen, what is the atomic mass of this element in (*amu*)?

- A) 65
- B) 48
- C) 55
- D) 40

Q14: The pressure in (atm) of 12×10^3 moles of methane gas stored in 3000.0 L tank at 48 °C, is:

- A) 105.5
- B) 15.8
- C) 60.2
- D)117.5

Q15: A gas sample occupies 0.40 L at 301 K and 1.0 atm. At what temperature in (**K**) will the gas sample occupy 0.85 L at the same pressure?

- A) 367
- B) 415
- C) 142
- D) 640

Q16: A gas sample occupies 300 mL at STP. What is the volume of the sample in (mL) if the pressure is doubled at constant temperature?

- A) 250
- B) 150
- C) 350
- D) 600

Q17: A cylinder contains exactly equal masses of the three gases CO_2 , N_2 and O_2 . Which one of the following statements is true?

- A) The partial pressures of the three gases are equal.
- B) The partial pressure of the CO₂ gas is the highest.
- C) The partial pressure of the N_2 gas is the highest.
- D) The partial pressure of the O_2 gas is the highest.

Q18:
$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

When 5.0 L of " H_2 " react with enough amount of " O_2 ", the volume in (L) of " $H_2O(g)$ " at constant temperature and pressure, is:

- A) 20.0
- B) 10.0
- C) 2.5
- D) 5.0

Q19: According to the following reaction:

 $\text{CH}_4(g) + 2\text{O}_2(g) \rightarrow \text{CO}_2(g) + 2\text{H}_2\text{O}(l)$ $\Delta \text{H}_{\text{rxn}}^0 = -890 \text{kJ}$ the mass of "CH₄" in (g) needed to supply 62692 kJ of heat energy, is:

- A) 1127
- B) 1151
- C) 1102
- D) 1025

Q20: In an exothermic reaction:

- A) The products energy is more than reactants energy
- B) The products energy is less than reactants energy.
- C) The products energy is equal to reactants energy.
- D) Heat absorbed from the surroundings

Q21: 362 g of silver has a heat capacity of 85.7 $\text{J/}^{\circ}\text{C}$. The specific heat of silver, is:

- A) 0.24
- B) 4.22
- C) 1.59
- D) 0.73

Q22: Which of the reactions below is an exothermic process?

- A) $Hg(1) \rightarrow Hg(g)$
- B) $H_2O(g) \rightarrow H_2O(l)$
- C) $H_2O(s) \rightarrow H_2O(g)$
- D) $H_2O(s) \rightarrow H_2O(l)$

Q23: From the following thermochemical equation, $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ $\Delta H = -114.60 \text{ kJ/mol}$ ΔE in (kJ) at 298K, is:

- A) 117.08
- B) + 112.12
- C) + 117.08
- D) -112.12

Q24: A piece of "Cu" at 150 °C was mixed with 250 g of "Al" at 50 °C. If the final temperature of the mixture became 100 °C, the mass in (\mathbf{g}) of copper, is: (specific heat of "Cu" = 0.385 J/g°C and specific heat of "Al" = 0.900 J/g °C)

- A) 89.22
- B) 429.2
- C) 584.4
- D) 758.6

Q25: The volume of an ideal gas decreased from 3.48 L to 1.43 L. If the external pressure was 3.75 atm, what is the value of the work "w" in (J)?

- A) +778.96
- B) + 698.77
- C) + 578.79
- D) 878.96

Q26: According to the following equation: $2\text{ZnS}(s) + 3\text{O}_2(g) \rightarrow 2\text{ZnO}(s) + 2\text{SO}_2(g) \quad \Delta \text{H} = -879\text{kJ}$ The heat given off in **(kJ)** per gram of ZnS, is:

- A) -6.22
- B) 4.51
- C) 9.02
- D) -12.2

Q27: From data illustrated in the diagram below:

The change in enthalpy of the following reaction (in

$$kJ$$
), is: $H_2O(g) \rightarrow H_2O(l)$

- A) 88
- B) -44
- (C) + 44
- D) + 88

Q28: For which of the following reactions does $\Delta H_{rxn}^o = \Delta H_f^o$

- $B) \quad H_2(g) \ + \ CuO(s) \ \rightarrow \ H_2O(g) + Cu(s)$
- $C) \ O(g) \ + \ O_2(g) \ \rightarrow \ O_3(g)$
- D) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

Q29: Using the following equations:

- $C(s) + O_2(g) \rightarrow CO_2(g)$
- $\Delta H_{rxn}^{o} = -393.5 \text{ kJ/mol}$
- $S(s) + O_2(g) \rightarrow SO_2(g)$
- ΔH^{o}_{rxn} = -296.4 kJ/mol

 $CS_2(1) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g) \Delta H^{\circ}_{rxn} = -1073.6 \text{ kJ/mol}$

The standard enthalpy of formation of carbon disulfide " CS_2 " [$C(s) + 2S(s) \rightarrow CS_2(1)$], is:

- A) -87.3
- B) -174.6
- C) 174.6
- D) 87.3

Q30: The solubility of a gas in a liquid depends on:

- 1- The nature of the liquid solvent
- 2- The nature of the gas
- 3- The temperature
- 4- The partial pressure of the gas
- A) All of them
- B) 2, 3, 4 only
- C) 1, 3, 4 only
- D) 3.4 only

Q31: A solution is prepared by dissolving 36.5 g CaI_2 in 0.750 kg of water. What is the molality of the solution?

- A) 1.97
- B) 1.03
- C) 0.17
- D) 0.29

Q32: The unit of "mole fraction" is:

- A) mol
- B) has no unit
- C) mol⁻¹
- D) mol.g⁻¹

Q33: The freezing point in (^{o}C) of an aqueous solution of a non electrolyte solute that has a boiling point of 103.8 ^{o}C , is:

(k_f of water = 1.86 $^{\rm o}\text{C/m}$ and k_b of water = 0.52 $^{\rm o}\text{C/m})$

- A) -7.7
- B) 9.8
- C) -11.2
- D) -13.6

Q34: If the concentration of " H_2SO_4 " is 95.0% by mass, the molality (m) of the acid, is:

- A) 177.6
- B) 193.7
- C) 215.4
- D) 110.6

Q35: From data illustrated in the diagram below:

Which of the following statements is true?

- A) The sucrose solution has the highest vapor pressure.
- B) The glucose solution has the highest vapor pressure.
- C) The sucrose solution has the lowest vapor pressure.
- D) The two solutions have the same vapor pressure.

Q36: 15.58 g of a non-electrolyte substance was dissolved in 150 g of water. If the boiling point of the solution increased by 0.3 °C, the molar mass in (*g/mol*) of this compound is:

 $(k_b \text{ of water} = 0.52 \,^{\circ}\text{C/m})$

- A) 48
- B) 122
- C) 180
- D) 360

Q37: Osmotic pressure of nonelectrolyte solution depends on temperature and:

- A) the nature of solute.
- B) the nature of solvent.
- C) the vapor pressure of solvent.
- D) the concentration of solution.

Q38: If the solubility of acetylene gas in acetone is 0.5 mol/L at 1 atm. What is the solubility of acetylene gas in (mol/L) if its partial pressure becomes 12.5 atm?

- A) 5.25
- B) 7.25
- C) 6.25
- D) 8.25

Q39: The mass in (g) of "CH₂OH-CH₂OH" (nonelectrolyte) that should be dissolved in 1.0 kg of water to decrease the freezing point by 10° C, is:

 $(k_f of water = 1.86 \, {}^{\circ}C/m)$

- A) 334
- B) 275
- C) 420
- D) 395

Q40: The osmotic pressure, at 300 K, of an aqueous solution obtained by dissolving 2.0 g of a nonelectrolyte substance in water to make 200 mL solution is 0.03 atm. The molar mass in (g/mol) of this substance is:

- A) 8.1×10^4
- B) 1.3×10^4
- C) 8.2×10^3
- D) 3.1×10^3