the speed was 0.3 of the initial spe	eed. The initial speed	speed v _o . When the ball is: (C) 4.82 m/s	(D) 11.7 m/s
Q.17 Which of the following quar	(B) Acceleration		Force (D) Velocity
Q.18 The component of vector A	(6) 0 111	MATERIA	e magnitude of vector Ä is: (D) - 5 m
Q.19 In figure, if $2\vec{A} + \vec{B} - \vec{C} = 3\hat{i}$ th (A) $3\hat{i} + 2\hat{j}$ (B) $4\hat{i} + 3\hat{j}$	nen the vector Ā in u	(D) $2\hat{i} + 3\hat{j}$	$ \ddot{C} = 4 m$ $ \ddot{B} = 3 m$
Q.20 The result of $\hat{i} \cdot \hat{k}$ is: (A) \hat{i} (B) \hat{k}		(C) ĵ	(D) zero
Q.21 Given $\vec{a} = 6\hat{i} - 10\hat{j} + 4\hat{k}$, the	n the magnitude of v	ector ā is:	
	10.33ĵ	(C) 16.3 k	(D) 12.4
Q.22 Given two vectors $\vec{a} = 6\hat{i} + 10$	$(0)\hat{j} - 4\hat{k}, \bar{b} = 4\hat{i} - 7\hat{j} + 5\hat{k}$	\hat{c} , then $\frac{1}{2}\vec{a} + \vec{b}$ is:	
(A) -66 (B) $7\hat{i} - 2\hat{j} +$	- 3k	(C) 10î-3	ĵ (D) 10î+3ĵ
Q.23 Given $\tilde{a} = 3\hat{i} + 2\hat{j} + 3\hat{k}$, \vec{b}	$=2\hat{i}-3\hat{j}+4\hat{k}$ then	$(\vec{\mathbf{a}} \bullet \vec{b})$ is:	
(A) 40 (B)	12	(C) $\hat{i} + \hat{j} - 5\hat{k}$	(D) $3\hat{i} + 4\hat{j} - 5\hat{k}$
2.24 Given $\vec{A} = \hat{i} + 3\hat{j} + 3\hat{k}$, $\vec{B} = \hat{i} + 3\hat{k}$	$2\hat{i} - 3\hat{j} + 4\hat{k}, \ \hat{C} = 3$	$(\hat{i} - \hat{j} + 2\hat{k})$, then the ve	ctor $\vec{D} = 2\vec{A} + \vec{B} - \vec{C}$ is:
(A) $3\hat{i} + 2\hat{j}5\hat{k}$	(B) $2\hat{i} + \hat{j} + 3\hat{k}$	(C) $\hat{i} + 4\hat{j} + 8\hat{k}$	$(D) - \hat{i} - 2\hat{j} + 3\hat{k}$
2.25 Given $\vec{c} = 2\hat{i} + \hat{j} + 2\hat{k}$ and	$\vec{d} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$, then	the angle between vec	tor \vec{c} and \vec{d} is:
(A) 83°	(B) 75°	(C) 58°	(D) 90%
Q.26 If \vec{A} and \vec{B} are vectors with	n magnitudes 6 and	5 respectively, and the	magnitude of their cross
roduct is 20, then the angle between	een \vec{A} and \vec{B} is:	(C) 49°	(D) 60°
Q.27 Vector Ā is 5 cm long and	points along the x a	xis. Vector B is 4 cm	long and points at +60° abov
egative x axis. Determine the sun (A) $2\hat{i} + \hat{j}$ (B)	n of these vectors	(C) $3.8\hat{j} + \hat{k}$	
		Asset Control of the	7.50
		Dia / Wint A an	d D are non-zero vectors)
2.28 If $\vec{A} \cdot \vec{B} = 0$, the angle betw (A) 90° (B)	een the vectors A 45°	(C) Zero	(D) 180°
(A) 90 (B)	een the vectors Ā 45°	(C) Zero	
2.28 If $\vec{A} \cdot \vec{B} = 0$, the angle betw (A) 90° (B) 2.29 The result of $(\hat{i} \times \hat{j}) \times \hat{k}$ is: (A) \hat{j} (B)	45	(C) Zero	(D) 180°
.29 The result of $(\hat{i} \times \hat{j}) \times \hat{k}$ is:	45		

Student Name:	St	udent no.:	Section:
Q.1 Kg is the unit of (A) Force	(B) Weight	(C) Time	(D) Mass
Q.2 A car is traveling at (A) 61.2 km/h	17 m/s. The speed of (B) 72.3 km/h	this car is equivalent to: (C) 97.1 km/h	(D) 23.2 km/h
Q.3 A cube of edge 37.5 (A) 0.473 m ³	mm, its volume is: (B) 47.3 m ³	(C) 5.27 ×10 ⁻⁵ m ³	(D) 43 m ³
Q.4 A train moves with a	speed of 55 mile per (B) 24.6	hour. The speed in SI units is: (C) 37.3	(Hint: 1 mile = 1610 m) (D) 42.6
Q.5 A bicycle travels 15 (A) 18 km/h	km in 60 min. Its aver (B) 51 km/h	rage speed is: (C) 30 km/h	(D) 15 km/h
Q.6 The position of a par velocity at 2 s is: (A) 2 m/s	rticle moving on an x (B) 5 m/s	axis is given by $x = 9 t + 2 t^2 - t^3$, v (C) 0.5 m/s	vith x in (m) and t in (s). The (D) 12 m/s
Q.7 Which unit of these (A) m/s ²	is used to measure the (B) m/s	ne distance ? (C) m	(D) kg
(A) 2 m/s ²	(B) - 4 m/s ²	m/s to 15 m/s in 5 s. The average (C) -6 m/s ²	1
Q.9 The velocity of a tra of: (A) - 4 m/s ²	(B) 9.8 m/s ²	6 – 4t, (where t in seconds and v is (C) 0.3 m/s ²	in m/s), has an acceleration (D) 2 m/s ²
	otion at 10 m/s. If it m (B) 5 m.	noves 20 m in 2 s, its final velocity /s (C) zero	(D) 10 m/s
Q.11 A car moving wit seconds. If its speed as it A) 15.6 m/s	th constant accelera t passes the second (B) 10 m/s	point is 18 m/s, its speed at the (C) 5 m/s	en two points 50 m apart in first point is: (D) 20 m/s
Q.12 A train changes its (A) 9.87 m	velocity from 70 km/ (B) 15.4 m	h to 20 km/h in 6 s. The distance (C) 20.6 m	e it covered is: (D) 75.0 m
0.13 A speeding car is tronstant acceleration of to	avelling with 40 m/s he police car be to 0 (B) 10 m/s ²	when it passes a stationary pole catch the speeding car after 400 (C) Zero	ice car. What must be the m distance? (D) 20 m/s²
2.14 A car starts from res	st with constant acc	eleration 2 m/s ² for 4 s. Then, the	
(A) 39 m	(B) 75 I		
.15 A stone is dropped e ground in 2 s, the heig	vertically downward	Is from a height h. If the stone i	/1.11.21.50.011
(A) 9.6 m	(B) 19.6	cm (C) 34.6	m (5) 1.5

Student Name:	Stu	dent no.:	Section:
Q.1 Kg is the unit of (A) Force	(B) Weight	(C) Time	(D) Mass
Q.2 A car is traveling at (A) 61.2 km/h	17 m/s. The speed of t (B) 72.3 km/h	his car is equivalent to: (C) 97.1 km/h	(D) 23.2 km/h
Q.3 A cube of edge 37.5 (A) 0.473 m ³	mm, its volume is: (B) 47.3 m ³	(C) 5.27 ×10 ⁻⁵ m ³	(D) 43 m ³
Q.4 A train moves with a	speed of 55 mile per l (B) 24.6	nour. The speed in SI units is: (C) 37.3	(Hint: 1 mile = 1610 m) (D) 42.6
Q.5 A bicycle travels 15 (A) 18 km/h	km in 60 min. Its avera	nge speed is: (C) 30 km/h	(D) 15 km/h
Q.6 The position of a par velocity at 2 s is: (A) 2 m/s	rticle moving on an x a	xis is given by $x = 9 t + 2 t^2 - t^3$, v (C) 0.5 m/s	vith x in (m) and t in (s). The (D) 12 m/s
Q.7 Which unit of these (A) m/s ²		e distance ? (C) m	(D) kg
(A) 2 m/s ²	(B) - 4 m/s ²	m/s to 15 m/s in 5 s. The average (C) -6 m/s ²	
Q.9 The velocity of a tra of: (A) - 4 m/s ²	(B) 9.8 m/s ²	- 4t, (where t in seconds and v is	in m/s), has an acceleration (D) 2 m/s ²
	otion at 10 m/s. If it mo (B) 5 m/s	oves 20 m in 2 s, its final velocity (C) zero	is: (D) 10 m/s
Q.11 A car moving wit seconds. If its speed as it A) 15.6 m/s	th constant accelerate t passes the second p (B) 10 m/s	ion covers the distance between coint is 18 m/s, its speed at the (C) 5 m/s	en two points 50 m apart in first point is: (D) 20 m/s
Q.12 A train changes its (A) 9.87 m	velocity from 70 km/h (B) 15.4 m	to 20 km/h in 6 s. The distance (C) 20.6 m	e it covered is: (D) 75.0 m
Q.13 A speeding car is tronstant acceleration of the (A) 8 m/s ²	avelling with 40 m/s whe police car be to ca (B) 10 m/s ²	when it passes a stationary pol- atch the speeding car after 400 (C) Zero	ice car. What must be the m distance? (D) 20 m/s²
2.14 A car starts from re	has the car traveled	eleration 2 m/s ² for 4 s. Then, the from its starting point? (C) 64 m	(D) 40 5 m
(A) 39 m	(B) 75 m	from a height h. If the stone r	

Q.16 A boy shot a football vertically up with an initial the speed was 0.3 of the initial speed. The initial speed (A) 8.4 m/s (B) 9.3 m/s	speed v _o . When the ball v d is: (C) 4.82 m/s	(D) 11.7 m/s
Q.17 Which of the following quantities is a scalar qua (A) Mass (B) Acceleration		- Glocity
Q.18 The component of vector \bar{A} are given as $A_x = (B) 5 \text{ m}$	WAT THE	magnitude of vector Ā is: (D) - 5 m
Q.19 In figure, if $2\vec{A} + \vec{B} - \vec{C} = 3\hat{i}$ then the vector \vec{A} in (A) $3\hat{i} + 2\hat{j}$ (B) $4\hat{i} + 3\hat{j}$ (C) $5\hat{i} - 4\hat{j}$		$ \bar{C} = 4 m$ $ \bar{A} $ $ \bar{B} = 3 m$
Q.20 The result of $\hat{i} \cdot \hat{k}$ is: (A) \hat{i} (B) \hat{k}	(C) j	(D) zero
Q.21 Given $\bar{a} = 6\hat{i} - 10\hat{j} + 4\hat{k}$, then the magnitude of (A) 15.33 \hat{i} (B) 10.33 \hat{j}	vector ā is: (C) 16.3 k	(D) 12.4
Q.22 Given two vectors $\vec{a} = 6\hat{i} + 10\hat{j} - 4\hat{k}$, $\vec{b} = 4\hat{i} - 7\hat{j} + 5\hat{k}$	$5\hat{k}$, then $\frac{1}{2}\bar{a}+\bar{b}$ is:	
(A) -66 (B) $7\hat{i} - 2\hat{j} + 3\hat{k}$	(C) 10î-3ĵ	(D) 10î + 3ĵ
Q.23 Given $\tilde{a} = 3\hat{i} + 2\hat{j} + 3\hat{k}$, $\tilde{b} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ then	$(\vec{a} \bullet \vec{b})$ is:	
(A) 40 (B) 12	(C) $\hat{i} + \hat{j} - 5\hat{k}$	(D) $3\hat{i} + 4\hat{j} - 5\hat{k}$
Q.24 Given $\vec{A} = \hat{i} + 3\hat{j} + 3\hat{k}$, $\vec{B} = 2\hat{i} - 3\hat{j} + 4\hat{k}$, $\hat{C} = (A) 3\hat{i} + 2\hat{j}5\hat{k}$ (B) $2\hat{i} + \hat{j} + 3\hat{k}$	$3\hat{i} - \hat{j} + 2\hat{k}$, then the vect (C) $\hat{i} + 4\hat{j} + 8\hat{k}$	or $\vec{D} = 2\vec{A} + \vec{B} - \vec{C}$ is: $(D) -\hat{i} - 2\hat{j} + 3\hat{k}$
Q.25 Given $\vec{c} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{d} = \hat{i} - 2\hat{j} + 3\hat{k}$, then	the angle between vector	or \bar{c} and \bar{d} is:
(A) 83° (B) 75°	(C) 58°	(D) 90°.
Q.26 If \vec{A} and \vec{B} are vectors with magnitudes 6 and	f 5 respectively, and the n	nagnitude of their cross
product is 20, then the angle between \vec{A} and \vec{B} is: (A) 90° (B) 42°	(C) 49°	(D) 60°
2.27 Vector Ā is 5 cm long and points along the x	axis. Vector B is 4 cm lo	ng and points at +60° abov
negative x axis. Determine the sum of these vectors (A) $2\hat{i} + \hat{j}$ (B) $-\hat{i} + 3.8\hat{k}$	(C) $3.8\hat{j} + \hat{k}$	(D) $3\hat{i} + 3.5\hat{j}$
2.28 If $\vec{A} \cdot \vec{B} = 0$, the angle between the vectors \vec{A} (A) 90° (B) 45°	and \vec{B} is: (Hint: \vec{A} and (C) Zero	B are non-zero vectors) (D) 180°
2.29 The result of $(\hat{i} \times \hat{j}) \times \hat{k}$ is:		(D) Î
(A) ĵ (B) k	(C) Zero	(D) i
Q.30 The result of $(\hat{i} \times \hat{j}) \bullet \hat{i}$ is:		(D) Zero
(A) j (B) k	(C) 1	JD) Zeio