الجمهورية العربية السورية


الأرقين وزارة التربية

المدور ثلاث ساعات

تموذج أمادة الرياضيات لشهادة الدراسة الثانوية العامة دورة 2020

أولاً: أجب عن سؤالين من الأسئلة الثلاثة الآتية. ('45 درجة لكل سؤال)

المعوَّال الأول: في الشكل المرسوم جانباً، ليكن رC الفط البياني للنابع ﴿ المعرَّف على [2] ، والمطلوب:

$$f(x) = 0$$
 for all $f(x) = 0$

 $f(x) = \cos x$ وفق: \mathbb{R} وفق $f(x) = \cos x$

.
$$\lim_{x\to \frac{1}{2}} \frac{\cos x - \frac{1}{2}}{x-4}$$
 = -2

السؤال الثالث: حلُّ المتراجعة "-62 ≥ 1 – "م.

تُنْمِأُ: أَهِب عن سؤالين من الأسطة الثلاثة الأنبة. (45 درجة لكل سؤال)

السؤال الأول: ادرس وشم السكتيبين ال و المعرّفين كما يأتي:

$$d':\begin{cases} x=s+5\\ y=2\\ z=2s+5 \end{cases}; s\in\mathbb{R} \qquad s \qquad d:\begin{cases} x=2t-5\\ y=t-2\\ z=-\frac{1}{2}t+3 \end{cases}$$

السؤال الثاني: جدُ الجدرين التربيعين للعدد العدي 6-8=0.

 $P_{n,j}^{1} = 45P_{n,j}^{1}$ المدوّال الثالث: عزّن قيمة n في المعادلة الأثبة:

ثالثاً: هِلْ التمارين الثلاثة الآتية (80° درجة للأول - 70° درجة للثاني - 70° درجة للثالث).

التعرين الأول: في الشكل المجاوز α و β و γ هي التواسات الأساسية الزوايا العوجّية (OC,OE) و (A C, A E) و (B C, BD) بالترتيب، والمطلوب

- 1- اكتب كلا من الأعداد العقدية الأتية بالشكل الجبري ثم بالشكل الأسي: عوج و عدج و معج.
 - اكتب العدد العقدي على على على على الشكل الجيري ثم بالشكل الأسى.
 - $\alpha + \beta + \gamma$ 3.

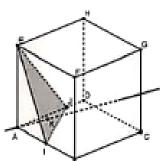
الإسع

الدرجة متمنة نقط

: والمطلوب $f(x) = \ln\left(\frac{x+2}{-x+2}\right)$ وفق $\left[-2,2\right]$ وفق المنافع والمطلوب والمطلوب

- أثبت أنّ النابع ﴿ هُو تَابِعُ فَرديُّ، ثَمْ ادرِس نغيرات النابع على المجال [0.2].
 - x=0 اكتب معادلة المماس T الخط البياني C في نقطة منه فاصلتها -2
 - ادرس الوضع التسيى بين , C و T.

التعرين الثالث: لوكن C_r الخط البياني للتابع f المعرف على $\mathbb R$ وفق $\mathbb R$ وفق C_r الخطاوب:


- ادرس تغیرات از ونظم جدوالاً بها.
- 2- أثبت أنَّ للمعاملة f(x) = 0 تقبل حلاً وحيداً α يقع في المجال [1,2] ، ثمَّ جد هذا الحل جبرياً.
 - استنج مشتق النابع به المعراف على R وفق R وفق 2sinx -√sin²x +5 ع.

رابعاً: حلّ المسالقين الأثبقين (100° درجة لكل مسالة).

 $(x) = \frac{1}{2} \left(x + \frac{4}{x}\right)$ والمطلوب: المعرف المعرف

- [- ادرس تغيرات / ونظم جدولاً بها.
- ي الذي معادلته $y = \frac{1}{2}x$ مقارب مثل الخط C_f به الذي معادلته $y = \frac{1}{2}$
 - f(x) = x álthadh f(x) = 3
- به والمطلوب: $u_{\alpha + 1} = f(u_{\alpha})$ منتائية معزفة تدريجياً بالشكل $u_{\alpha} = 4$ و $u_{\alpha + 1} = f(u_{\alpha})$ عند كل $u_{\alpha} = 4$
 - و. احسب به ر به.
- $n \in \mathbb{N}$ من تزايد الثابع f على المجال $[2,+\infty]$ صحة الخاصة $u_n = E(n)$ وذلك من أجل e
 - استنتج أن المنتائية عن (إس) متقاربة، واحسب نهايتها.
- C_{r} ارسم مقاربات ر C_{r} وارسم المستقيم C_{r} C_{r} ، ثم ارسم C_{r} ومثل الحدود الأولى للمتتالية C_{r} على الرسم نصه

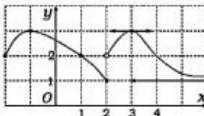
 $4\overline{AJ} = 3\overline{AD}$ العسائة الثانية: لبكن ABCDEFGH فكتبأ طول حرفه يساوي 4، وتتكن الفقطة I منتصف I والثقطة I تحقق العلاقة I العسائة الثانية: البكن I والتعالق العلاقة I مناطق المنجانس I والمطاوب:

- إ. جذ لحد ثبات رؤوس المكعب والنقطئين إ ر إ.
- أثبت أن معادلة المستوى (EIJ) هي 12=0 -22 -4y +3z
- 3- لكتب التعثيل الوسوطي للمستقيم إلى العار من A وعمودياً على العستري (EIJ)، ثم جذ المدائيات النقطة X نقطة تقاطع إلى مع (EIJ).
 - 4. لحسب مساحة المثلث AEJ ثمّ استنتج حجم رباعي الوجوه AEJ -4
 - إلى المثلث EIJ واستنتج مساحة المثلث EIJ.

انتيت الأستلة

2

الإسج الرقح العدة: ثلاث ساعات. العرجة: 600


تموذج امتحان شهادة الدراسة الثانوية العامة لعاء 2020 (اللرع الطس)

وزارة التوبية مادة الرياضيات

(4-2-)

أولاً أجب عن سؤالين من بين الأسئلة الثلاثة الآتية. (45 لكل سؤال)

العالم المرسوم عن موادين من بين الاستنه الدينة الادية. (145 م العوال الأول. ليكن C الخط البياتي للتابع f المرسوم جانباً

- $\lim_{x\to T} f(x)$, $\lim_{x\to x} f(x)$, $\lim_{x\to x} f(x)$, $\lim_{x\to x} f(f(x)) \Rightarrow -1$
 - 2. هل f اشتقاقی عند 2؟
 - جد (3), f'(3), وجد معادلة للمماس عند 3.
 - 4. ما عدد القيم الحدية للذابع ٢٢

 $v_n = \frac{1}{\sqrt{n^2 + 1}}$ و $u_n = -\frac{1}{n}$: المعرفتين وفق العلاقتين $(u_n)_{n}$ و $(u_n)_{n}$ و $(u_n)_{n}$ المعرفتين وفق العلاقتين. لذكن المتتاليقين المتتاليقين والمتحرفين وفق العلاقتين المتتاليقين المتتاليقين المتتاليقين والمتحرفين والم

- ادرس اطراد کل من ر(یه) و ر(ها).
- أثبت أن المنتاليتين برايه) و برايه) متجاورتان .

$$(e^x-1)\left(e^x-\frac{1}{2}\right) \le 0$$
 أم حل المتراجحة $(e^x-1)\left(e^x-\frac{1}{2}\right) = 0$ أم حل المتراجحة $(e^x-1)\left(e^x-\frac{1}{2}\right) = 0$

ثانياً أجب عن سؤالين من بين الأسئلة الثلاثة الآتية. (45 لكل سؤال)

السؤال الأول. ايكن ABCD رياعي وجوه منتظم طول حرفه 4. فيه المنتصف [CD].

- $.\overline{AM} = \frac{1}{2}\overline{AD} + \frac{1}{2}\overline{AC} \overline{BI}$ المحققة للعلاقة M المحققة العلاقة 1.
 - . AB · AC see land .2

السؤال النانع

- α بدالة S=1+α+α²+...+α⁶ بدالة 1.
- البكن α = e^{2u/7}. ليكن α = e^{2u/7}.

السؤال النائث. بريد طالب أن يدرس مواده السبعة بشكل متتابع.

- 1. بكم طريقة يمكن أن يربتب المواد لدراستها.
- 2. بكم طريقة يمكن أن يرتب المواد إذا كانت المادة الأولى هي الرياضيات والأخيرة هي الفيزياء.

قَالِمًا حَلَ التَمَارِينَ الشَّلَاثُةُ الآتِيةَ. ("70 للرُّول، "70 للثاني، "80 للثالث)

 $f(x) = \sqrt{x} \ln(1+x)$ المعرف على $f(x) = \sqrt{x} \ln(1+x)$ المعرف المعرف المعرف المعرف المعرف المعرف المعرف على المعرف على المعرف ال

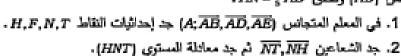
- أثبت أن راشتقائي عند 0 ثم استتنج مجموعة تعريف 'f.
 - 2. جد f'(x) على |0,+∞
- $g(x) = \sqrt{\cos x} \ln(1 + \cos x)$ وفق $[0, \frac{\pi}{2}]$ وفق g المعرف على المجال g

تابع في الصفحة الثانية.

- عين إحداثيات G مركز الأبعاد المتناسبة للنقاط المثقلة (A,1) و (B,2) و (C,2) و (D,1).
 - $\overline{MA} + 2\overline{MB} + 2\overline{MC} + \overline{MD} = 6$. حدد S مجموعة النقاط M التي تحقق: S
 - 3. جد معادلة المجموعة ع.

_التعوين_النائد. لبكن ABC متثناً متساوي الساقين، رأسه A. ننشئ خارجه متثنين قائمين ومتساويا الساقين ABJ و ACF. لتكن الأعداد العقدية

a,b,c,j,f الممثلة للنقاط A,B,C,J,F بالترتيب،


- جد بدلالة b ر c العددين j و f.
- .2 كتب الحدد $\frac{f-b}{c-j}$ بالشكل الجبري.
- أثبت أن JC = BF ، وأن المستقيمين (CJ) و (BF) متعامدان.
- نفترض أن ٨ مركز الأبعاد المتناسبة للنقاط المثقلة (3,1),(7,3),(7,1) احسب . 4

رابعاً حلى المسالتون الآنونون. (100 اكل مسألة)

المسالة الأولع...

ليكن لدينا المكتب ABCDEFGH طول حرفه 1. و T نقطةً من AB وتحقق $\overline{AB} = \overline{AT}$ ، و N نقطةً

 $\overline{AN} = \frac{2}{5}\overline{AD}$ من \overline{AD} وتحقق

- 3. جد تعثيلاً وسيطياً المستقيم (EF).
- 4. استنج نقطة تفاطع المستقم (EF) مع المستوي (HNT).
 - 5. اذكر مقطع المكعب بالمستوى (HNT). ما طبيعته؟

_المسألة_النانية.

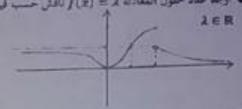
ليكن $f(x) = \ln\left(\frac{x}{1+x}\right)$ وفق $f(x) = \ln\left(\frac{x}{1+x}\right)$ منتالية المعرف على المجال إ $0,+\infty$ النابع المعرف على المجال المجال المجال المعرف على المجال المجال المعرف الم

. $[1,+\infty[$ على \mathbb{N}^* على المعرفة على \mathbb{N}^* على المعرفة على

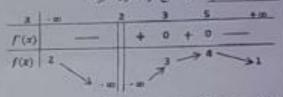
- 1. ادرس تغيرات ∫ على إ∞+,0[ونظم جدولاً بها راكتب معادلة كل مقارب.
 - 2. ارسم الخط C على]0,+∞[.
- $A(-\frac{1}{2},0)$ هي مركز تناظر للخط C، ثم استنتج رسم الخط البياني التابع $A(-\frac{1}{2},0)$
 - $S_n = -\ln(n+1)$ أثبت أنَّ $S_n = u_1 + u_2 + \cdots + u_n$.4
 - S_{a} , جد نهایة هذه المتتالیة S_{a} , وما نهایة S_{a}

إنلهنه الاسئلة

أ. نصر أبو حوية



ورفة عمل لطلاب الصف القالت القانوي الطعن التصل الأعل اللغام الدراسي 1000 - 2010


التحليل الرياضى

السوال الأول ليكن ؟ الحط الباني للنابع } المرسوم هي اقشكل أدناه.

- O أوجد ع (D) واستح الليم الحديد للتابع O
- @ أوجد معادلة كل مقارب أفقى للخط C وادرس وضع @ بالنسة لكل منها.
- € مل / مستمر عند (2) ولعاذا؟ حدد مجالات استمرار /
- أوجد عدد حلول المعادلة ٤ = (ع) بافتر حسب فيم

المسوال الشاني: لدينا دايع / جدول تعراد

- أوجد معادلة كل مقارب شاقولي أو أفقي.
- 😝 هل 3 = (3) إ فيمة حدية للنابع ولمادا؟
 - عن الليم الحلية للنابع.
- $\mathbb{R} \setminus \{2\}$ طين محتلفين في f(x) = 0 البت أن للمعادلة f(x) = 0
 - G اكتب معادلة كل مماس أفقى لـ C .

السوال القالث: برمن أياكات المدد الطيعي 1 ح 12 فإن:

- $\frac{1}{n} + \frac{2}{n} + \frac{3}{4} + \dots + \frac{n}{(n+2)!} = 1 \frac{1}{(n+2)!}$
 - 42× 3× € مضاعف للعدد ١٣ 3×

السؤال الرابع لكن المعالية وجد (١٤١١) المعرفة بالشكل:

- $u_{n+1} = 3u_n 2$, $u_0 = 4$
- احسب الحدود الأربعة الأولى لهذه المسالية.
- € حمل M بدلالة 11 لم نوهن صحة هذا التخمين
 - € احسب بدلالة 12 المحموع $S = u_0 + u_1 + \ldots + u_n$

Hopel a

$2|f(x)-2| < x.sin^2-1 + a = +\infty$ الصوال الصادين لكن النابع / النعرف وفق: confir-cor2x $f(x) = \sqrt{x^2+1} - \sqrt{x+1} + A + -\frac{\pi}{2} < x < 0$ اوسد B . A ليكون / مستمرا عد (0) المسؤال العمامج ليكن الدابع / المعرف على ١٦ وقل $f(x) = x^3 - 3x^2 + 1$

المنوال القاهمون احسب نهاية الدايم / في كل مما يلي صد

① $|f(x) + 3| < \frac{\sin x}{1 - \sqrt{x+1}} + 2 \Rightarrow \alpha = 0$

- @ اهرس تغيرات م ونظم حدولاً بها. الست أن المعادلة 0 = 3 + (x) جلرين مخطفين أوحد كلاً منهما لم استنح محموعة حلول المتراجعة 3 - € المتراجعة
 - المسؤال الشاعد اللها الله م المعرف وفق المعالم المام المعالم المعالم المام المعالم الم
 - O اوجد بهایت عند + (0 من عندنا حقیقاً / بحقق إذا
 - f(x) € 2.9,3.1 05x > A 05
 - و برف الله (cos²x) والله على الله على

أوجد محموعة لعربات في لم أثبت أنه محلود.

السؤال الشاسخ لديا المتالية ودور (١٤) معرفة بالعارقة

- $u_{n+1} = \frac{2u_n + 1}{u_n + 2}$, $u_n = 0$ 4-yield
- ادرس اطراد النابع (x) = (2+1 المعرف على

n € N نعاد 0 ≤ 11 = < 1 الم الت اد 1 = 2,+00

- الت أن ويد (المامة المامة المامة
- المرف المسالية ورو (٧٠) وفيق المرف المسالية الا المسالية المرف المرفق ال

(Vn) هندسية واحسب أساسها وغير عن Vn يدلالة 22. الم

n dya Va ble men

20021

السوال الأول في مدم صحاس (0.1./.k) اديا الفاط (0.0.-1.4) (0.-1.2) الما الفاط

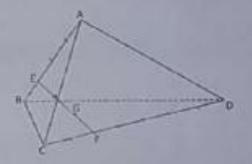
● ألت أن القاط A . C . B لا تقع على استفامة واحدة.

€ جد إخداليات لم الني تحمل ABCK متوازي الأحلاع.

● البت أن القاط D. C. B. A اللع في مستو واحد P.

 البت أنه أبا كانت (x, y, z) في المستوى P فإنها تحفق x + y + z - 3 = 0 العلاقة 0

الدام محور البرايب نلطة H مساوية البعد عن الدلس ال.


Q(0, 3, 1) الذي يحمل اللطة (1, 3, 0)
 ♦ جد العدد الحقيقي أثر الذي يحمل اللطة (1, 3, 1)
 ♦ المستوى المحوري لـ [B A]

بد إحماليات القطة G مركز الأبعاد المساسة لذاياط المتقلة (C, 2), (B, −1), (A, 1)

(A , AB, AC) في المعلم (A , AB, AC)
 أوجد إحداثيات F في السعلم المتحالس (a , ī , j , k)

السوال الشافي: في الشكل النالي أوحد:

المنظامة ا

السوال الثالث: ABCDEFGH مكب ب

مي على النوايب متصفات N,L,K,J,J

[BC].[AD].[FG].[FH].[BD]

11 = AI + 1 AF + 1 AH 18 AH 1 AF + 1 O

■ عين موضع البلطة M التي تحلق:

 $\overline{AM} = \overline{AB} - \overline{FB} + \frac{1}{2} \overline{GH}$

• البت أن الأشعة HN . HE . AK مرفعة عطياً.

- Dil

العسابال الأول ليكن 2 صددا عدسيا، وليكن 12 عددا عقديا طويلته لساوى الواحد وهو محلف عن الهاجد.

البت أن <u>2108</u> مدد بحيلي بحث

الصوال الشائي: لدينا المددان الطنيان

$$Z_2 = 1 + i$$
 , $Z_2 = \frac{\sqrt{2} + \sqrt{k}i}{2}$

O اكب ي Z بالشكل المثلثي

۞ اكتب أم بالشكل المثلثي وبالشكل الحيري.

 $sin\left(\frac{\pi}{12}\right)$, $cos(\frac{\pi}{12}) \longrightarrow 0$

السوال النالث

اكب بالشكل المتلتى وبالشكل الأمس الأعداد العقدية البالية

$$Z_1 = (\sqrt{2} - \sqrt{3})(-\sin\frac{\pi}{5} + i\cos\frac{\pi}{5})^5$$

$$Z_2 = (3 - \sqrt{3}D)(\cos\theta - i\sin\theta)^3$$

$$Z_2 = (1 - \sqrt{3}i)(\cos \theta - i\sin \theta)^3$$

$$Z_3 = \frac{(1 + i)^{2818}}{(-1 - \sqrt{3}i)^{1088}}$$

$$Z_4 = \sin\theta + (1 + \cos\theta)(1 + \theta \in]\pi, 3\pi[$$

$$Z_5 = 1 + e^{i(28)}$$
 : $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$

المنوال الرابع

عين محموعة الغاط (2) M في الحالات التالية:

$$\mathbb{O}\left|\frac{T}{-1-t}\right| = \sqrt{2}$$

$$\mathbb{Q} \operatorname{arg} \left(Z. \left(-\sqrt{3} - i \right) \right) = \frac{\pi}{6}$$

$$\mathfrak{G} \, \, Z = sin^2\theta + t \, sin^2\theta \,$$

النسؤال الفادس . ألبت باستخدام الأعداد العقدية أن:

$$cos(2\theta) = cos^2\theta - sin^2\theta$$

$$sin(3\theta) = 3sin\theta - 4sin^3\theta$$

الجمهورية العربية السورية امتحان الفصل التراسي الأول الأسم : مثيرية التربية بحماء لعام 2020/2019 المدة : 1 سا

كتوية سريمين الصف (الثاث الثانوي الطبي (الرياضيات) الترجة (240

أولاً : لجب عن الأستلة الآلية : (لكل سؤال 32ترجة)

المنوال الأول : في الشكل المجاور مكعب. / و / منتصفات [EF] و [BC] .

. $2(\overline{C}) + \overline{IE}) = \overline{CE} - \overline{CG}$ الجت أن (1

البت أن الاشعة IJ, CG, CE مرتبطة خطعاً.

المعودال الثاني : ليكن (c) الخط البياني لتابع ال المعرف

طين]0,+∞[وقق:

$$f(x) = \frac{3\cos x - 3 + x^2}{x^2}$$

. $\lim_{x\to 0^+} f(x) \rightarrow \dot{f}(1$

البت أن المستقم x = x مقارب للخط (c).

تَقْبِأً : حَلَ الْتَمَارِينَ الأَثْبِأَةَ : (لَكُلُ تَمْرِينَ 48 تَرْجَةً)

التمرين الأول : لنكن المتنابة مورال) المعرفة تتريجياً وفق :

$$(\Theta)$$
..... $U_{n+1} = \frac{1}{2}U_n + 2n$, $U_0 = s$

عن كثير حدود من الدرجة الأولى ع بحيث تُحتّق المتدانية مهم (٤٠٠) التي حدما

رم العائلة التربجية (\otimes) نفسها أي $t_n = P(n)$ أياً كانت مر $t_{n+1} = \frac{1}{2}c_n + 2n$

. كأثبت أنّ المتنافية $v_n = v_n - t_n$ التي الحدما العلم $v_n = v_n - t_n$ هي متنافية هندسية .

انکلب عبارة اباد ثم بدولالة مو ع .

. $R\setminus\{4\}$ المعرف طي $f(x)=\frac{2x^2+2x+1}{x-4}$ المعرف طي $f(x)=\frac{2x^2+2x+1}{x-4}$

. $\lim_{x\to+\infty} (f(x)-ax)$ مراصب $a=\lim_{x\to+\infty} \frac{f(x)}{x}$

2/ استنتج معادلة المقارب@المثل ل €في حوار ال ١٠٠٠

ثم الترس الوضيع النسيي ل€وأثارية ۞ .

ناتاً: حل السالة الآنية : (80 نرجة)

B(2,0,4) و A(1,-1,2) التقطئين A(1,-1,2) و A(1,-1,2)

والمستوي y - y + 3z - 4 = 0 والمطلوب:

1)جد معادلة المستوي Q العمودي على المستوي P ويمر بالقطاعي A و B .

2)جد عدداً وسيطياً للمستقم في المار بالقطاة ٨ ويعامد المستوى P

عن إحداثيات المسقط الآثم أر التقطة ٨ على المستوى P.

4)اعظ معادلة للمجموعة ع المكونة من التفاط (x,y,z) التي تحقق

 $0 = \overline{MM} \cdot \overline{BM}$ وما طبيعة المجموعة ع .

انتهت الأسطة مدرُس العادة : حسن عُمَاج

أ. نصر أبو حوية

الجمهورية العربية السورية امتحان الفصل الدراسي الأول الاسم:

مديرية التربية بحماه لعام 2020/2019 المدة : ثلاث ساعات

ثقوية سريحين الصف :الثالث الثانوي العمي (الرياضيات) الدرجة : 240

أولاً : أجب عن الأسئلة الآتية : (لكل سؤال 16 درجة)

السؤال الأول: نجد جانباً الخط البياني لدّابع f المعرف على R والمطلوب:

- 1) أوجد نهابة f عند ∞±.
- f(x) = 5 ما عدد حلول المعادلة (2
- ? $f(x) \ge 5$ ما مجموعة حلول المتراجحة 5
- 4) هل f(1) قيمة حدية كبرى أو صغرى للتَّابع علل ذلك
 - 5) ما عدد القيم الحدية لتابع f?
 - 6) ما قَبِمة المسنق في النقطة التي فاصلتها x = 2
 - x = 1 أبكون التابع f اشتقاقباً عند x = 1 ؟

. $\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AD}$ و $\overrightarrow{BE} = \frac{1}{4}\overrightarrow{BC}$: معرفتين وفق $\overrightarrow{BE} = \frac{1}{4}\overrightarrow{BC}$ و \overrightarrow{BE} و \overrightarrow{BE}

ولتكن G مركز الأبعاد المنتاسبة للنقاط (A,1) و (B,3) و (C,1) و (D,2)

- 1) أَنْبَتَ أَنَّ G بِقع على [EF] نُم عَيْنِ النقطة G على [EF] .
 - جد مجموعة نقاط الفراغ M التي تحقق:

 $\|\overrightarrow{MA} + \overrightarrow{3MB} + \overrightarrow{MC} + \overrightarrow{2MD}\| = \|\overrightarrow{7ME} - \overrightarrow{MA} - \overrightarrow{3MB} - \overrightarrow{MC} - \overrightarrow{2MD}\|$

السؤال الثالث : ليكن f الدّابع المعرف على R وفق :

$$f(x) = \begin{cases} \frac{\cos x}{x - \frac{\pi}{2}} & : & x \neq \frac{\pi}{2} \\ 2A + 2 & : & x = \frac{\pi}{2} \end{cases}$$

- $\frac{\pi}{2}$ عند f عند (1
- . R مستمر على A التي تجعل f مستمر على

السؤال الرابع: جد على محور التراتيب نقطة C متساوية البعد عن النقطتين (1,3-,2) و (1,5,-1) .

ثانياً : حل التمرينات الأربعة الأتية : (لكل تمرين 24 درجة)

 $U_{n+1} = rac{3U_n + 2}{2U_n + 6}$ وفق : $U_0 = 1$ وفق التمرين الأولى : لذكن المنتالية $(U_n)_{n \geq 0}$ المعرفة تدريجياً وفق

- . n منز البد يماماً واستنج أن الثابع $f(x) = \frac{3x+2}{2x+6}$ منز البد يماماً واستنج أن الثابع أن الثابع والمعدد f(x)
 - أنبت أنَّ المنتالية _{n≥0} (U_n) منتاقصة تماماً.
 - .) أَتُبِتُ أَنُّ U_n $_{n \geq 0}$ مَنْقَارِيةٌ واحسب نهائِنَها .

A(1,4,-3),B(-1,-3,4) : التمرين الثاني : في المعلم $(0,\vec{i},\vec{j},\vec{k})$ لتكن النقاط :

- اكتب معادلة P المستوي المحوري للقطعة المستقيمة [AB].
 - اكتب معادلة الكرة التي مركزها A وتمس المستوي P.
- اكتب معادلة المخروط الذي رأسه O وقاعدته تمر من منتصف [AB] ومركز ها A

يتبع في الصفحة الثانية...

 $f(x) = \frac{1}{1-x}$ الخط البياني لتابع f المعرف على $R \setminus \{1\}$ وفق الصيغة C الخط البياني لتابع

. $x \neq 1$ في حالة $f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$: نُبُت أَنُ المشتق من المرتبة n لتابع f يعطى بالصيغة $f^{(n)}(x)$

احسب مشتق f من المرتبة السائسة .

. x = -1 اكتب معادلة المماس d للخط d في النقطة التي فاصلتها (3

 $\vec{u}(2,5,-1)$ والموجه بالشعاع ($0,\vec{i},\vec{j},\vec{k}$) المستقيم d مار بالنقطة ($0,\vec{i},\vec{j},\vec{k}$) والموجه بالشعاع (1,2,1) والمستقيم $\vec{v}(1,2,1)$

المطلوب: أنبَت أنَّ d و d منقاطعان في النقطة 1، ثم أوجد إحدائيات نقطة النقاطع 1.

ثالثاً : حل المسألتين الأتيتين : (لكل مسألة 40 درجة)

A(1,0,-1), B(2,2,3), C(3,1,-2), D(-4,2,1) : لثكن النقاط ($0,\vec{t},\vec{j},\vec{k}$) المسألة الأولى : في المعلم المسألة الأولى المعالم المسألة الأولى المعالم المسألة الأولى المعالم المسألة الأولى المعالم المعال

أتبت أن المتلث ABC قائم واحسب مساحنه.

2) أُنْبِت أَنُّ السَّعاع (2, -3,1) ناظم على المستوى (ABC) واستنتج معادلة المستوى (ABC).

احسب بعد النقطة D عن المستوي (ABC) تم احسب حجم رباعي الوجوه DABC.

4) اكتب المعادلات الوسيطية للمستقيم d المار من D و عامودي على (ABC).

أستنتج إحداثيات النقطة D المسقط القائم للنقطة D على (ABC).

اكتب معادلة المستوي P العامودي على (ABC) ويمر بالنقطتين (F(1,-1,2) و (2,0,4) و (2,0,4)

7)استنتج بعد D عن الفصل المشترك للمستوبين P و (ABC).

8) اعط معادلة للمجموعة ع المكونة من النقاط M(x, y, z) الذي تحقق

AM, BM = 0 وما طبيعة المجموعة ε .

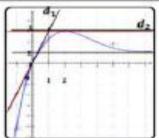
: فق R المعرف على f المعرف C ، $(O,\vec{l},\vec{j},\vec{k})$ المعرف على R وفق المسألة الثانية والمعرف على R

$$f(x) = x - \sqrt{x^2 + 8}$$

1) احسب نهاية f عند ∞ - و ∞ + . هل يقبل C مقارباً أفقياً؟

. C مقارب مائل للخط y = 2x مقارب مائل للخط (2) مقارب مائل الخط

3) نظم جدولاً بتغیرات f .


4) ارسم مقاربات ٢ كم ارسم ٢ .

. $mx + m\sqrt{x^2 + 8} + 8 = 0$) حدد هندسياً عدد حلول المعادلة : (5

...انتهت الأسئلة... معرّب المادة: ... حسن غفاج

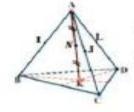
أ. نصر أبو حوية

أولاً ; اجب عن الأسئلة الأربعة الأثبية ; (40 ثكل سوال)

السوال الأول : ليكن الشكل و C الفط البياني لنابع f المعرف على R والمطلوب :

- $f([2,+\infty[) + f([-\infty,+\infty[) + .1$
 - $f = \lim_{x \to \infty} f(x) \Rightarrow 2$
- g_1 . Let $(a_{n-1}, a_{n-1}, a_{n-1$
 - ط. (0) أ و التب معاشة العماس , 4

$$R$$
 ما قیمة $lpha$ التي تيمن التابع f المعرف على R وفق : $x \neq 0$: $x \neq 0$ ما قيمة $lpha$ التي تيمن a مستمرا على a


 $Z^{1} + (1+4i)Z - 5 - i = 0$: Sastis C at $\Delta = 1 + 4i$

$$d_{2} \begin{cases} x = 2t + 1 \\ y = -t - 2 \end{cases} \quad s \quad d_{1} \begin{cases} x - 2y + x = 6 \\ x + y - 2z = 0 \end{cases} \quad \text{and} \quad d_{2} \neq d_{1} \text{ in the distance of the property of the propert$$

لَّنْهَا ۗ : حَلَّ التَمَارِينَ الأَرْبِعَةَ الأَنْهَةَ : ﴿ 60 فَرَجَةَ تُكُلِّ سُوالَ ﴾

 $u_{n+1} = \sqrt{2u_n + 3}$ المعرفية المعرفة المعرفة المعرفة المعرفية المعرفي

- 1. أثبت أن $S > u_n < 3$ أيا كانت B عدد طبيعي . 2. أثبت أن المتثلية $g_{n,n}(u_n)$ متزايدة نماسا 3. على كارب المتثلية $g_{n,n}(u_n)$ ثم جد (u_n)

السؤال السائس : A - BCD - رياعي وجود فيه : K مركز على الوجه BCD و N منتصف AR و 1 منتصف AD LA AC LINE 1 3

- م عر عن N بصفتها مرفز أبعد منتفسية تمنطة (A, α) (B, β) (C, γ) (B, β) بالغال يطلب تعييد أثبت أن تتفاط N \in N

A - BCD موضع مراز ثقل ریاض لوجود A - BCD موضع مراز ثقل ریاض $Z_1 = X_1 = X_2 = X_3 = X_4 = X_5 =$

- التب بالشكل المثلثي : ۲٫ و ۲٫ و ۲.
- $\sin \frac{5n}{12}$, $\cos \frac{5n}{12}$: واستنج : $\cos \frac{5n}{12}$

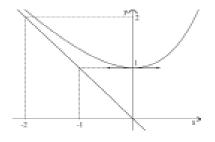
السوال التنسن : ليان النابع المعرف على $m{x}$ بالشكل $m{x}^2+m{x}^2=(m{x}^2)$ البت أنه يملك مقارب مائل بهنوار $m{x}$ بالنب معاملته والرس النوشع النسبي بينهما

تَقَدُّ : هِل المسكنين الأنينين : ﴿ 100 نرجة ثقل مسلة ﴾

 $f(x) = ax + b + \frac{c}{c-1}$: السوال الناسع: أيكن C_1 المعرف بالشكل: السوال الناسع الما أيكن أن المعرف الما المعرف بالشكل الما المعرف الما المعرف الما المعرف الما المعرف المع

- أوجد الأحاد بن في في إلى الله على الدائين إلى يعلق العائين :
 و. تتبع أرقيمة حدة عد انفظة اللي فاستها(3)
 - - $y = \chi 3$ مقارب مائل معادلته C_1 .8
 - $f(x) = \frac{x^2 3x + 7}{x 4}$; where -2
 - a. البت أن رع متنظر بالنسبة لتفظة (1. . 2)
 - C_1 . The C_2 C_3 C_4 C_5 C_5
- ي. انرس تغيرات الثابع ولظم جنولا بها، وعين نوع ماله من مطاربات وفيم حدية معلية .
 - ارسم کل مغارب وجدته و ارسم ر)
- $x^2 (5 + m)x + 7 + 2m = 0$; فقض بيانيا ويصب فيم الوسيط العقيقي $m = x^2 (5 + m)x + 7 + 2m = 0$

<u>استرار اعتشر : ABCDEFGH متحب طول عرفه 2 فيه 8 منتصف 15 و 1 منتصف 16 و1 منتصف 16 و منتصف</u>


- $(A, \frac{1}{2}AB, \frac{1}{2}AD, \frac{1}{2}AE)$, and $A = \{A, B, B\}$ $A = \{A, B, B\}$ (A) with the property of the pro
 - إوج معاشلة المستوي (KIJ) .
 - 3- الله التعليل الوسيطي للمستقيم في العار من F وعمودي على العستوي (KII) 4- أثبت أن مسقط F على المستوى (KIJ) وليكن N هو مركز نكل المثلث [KI]
 - ی. امسیام F عن السنوی (KIJ)
- اثبت أن المثلث (KI) متساوى الأضلاع الصب مساعته ثم الصب هجم رياعي الوجوء (F KI)

Scanned by CamScanner

الصت :الثلث الثقرى الطمي

العدد : 3 سامات

الإسم:

الجمهورية العربية السورية امتمان الأصل الأؤل

منبرية التربية بنرحا 2020-2019

كاتوية جلان الرسمية ماده :الرياضيات

أولاً: أجب عن الأسئلة الأربعة التالية: (40 برجة لكل سول)

السوال الأول: نجد جانباً الخط البياني لتابع f معرف على R و المطاوب:

f(x) = 2 مدد حاول المعادلة

 $p^{\prime}(0), f(0)$ ثم اكتب معادلة العماس لمنحني التابع في النقطة التي فاصلتها $p^{\prime}(0)$

 $\lim_{x \to 0} f(x)$, $\lim_{x \to 0} f(x) \Rightarrow 0$

4- اكتب معادلة المقارب الماثل للخط C في جوار -co

 $2\overrightarrow{AK} = \overrightarrow{CB} + \overrightarrow{CA} + 3\overrightarrow{AG}$ مكب يحلق ABCDEFGH مكب

-أثبت أن الظَّمَّة K تقع في المستوى (BCG)

 $f(x) = \sin(\pi \sqrt{x})$ السوال قدالث: ليكن النابع

 $\lim_{x\to 1} \frac{\sin(\pi\sqrt{x})}{(x-1)}$ في جد f'(x) و احسب f'(x) المثناء f'(x) المثناء

السوال الرابع: انطلاقاً من الشكل المجاور جد ۵, β, γ, δ

 (A, α) و (B, β) و (C, γ) و (D, δ) النقاط (B, β) و (B, β) و (C, γ)

 $\alpha + \beta + \gamma + \delta = 24$ تحقق

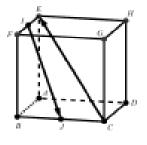
ثانياً: حل التمارين الأربعة التالية: (60 برجة لكل وال)

التمرين الأول: لتكن المنتشة U_n حيث $0 \leq n$ معرفة رفق:

 U_n $\begin{cases}
U_0 = 2 & : n = 0 \\
U_{n+1} = 2U_n - 3 : n > 0
\end{cases}$

: نفتر حن أن $V_n = \frac{1}{\mu_n - a}$ و المطلوب

n بدلالة u_n مندسية و أوجد V_0 و V_0 بدلالة u_n بدلالة u_n مندسية و أوجد v_0 بدلالة v_n


 $S = \frac{1}{4} + \frac{1}{2} + 1 + 2 + 4 + \dots + 256$ 3.

التعرين الثاني: ABCDEFGH مثوازي سطوح لاينا [,J منتصفا [BC].[EF]

 $2(\overrightarrow{C}) + \overrightarrow{IE}) = \overrightarrow{CE} - \overrightarrow{CG}$: اللهت أن -1

 $\overline{CE}, \overline{CG}, \overline{II}$ مرتبطة خطياً.

 $\overline{BM} = \overline{BH} + \overline{CG}$: أين تقع النفطة M التي تحلق العلاقة: 3

f(x) = 2x + E(x) وَفَى: [0,2] وَفَى: التعرين الثالث: ليكن التابع f(x) = 2x + E(x)

[0,2] بعبارة مستقلة عن E(x) و ارسم الخط البياني C_{ℓ} على المجال E(x)

 $\lim_{x\to+\infty} \frac{E(x)}{(x^2+1)} \xrightarrow{\lambda_{2}} -2$

 C_g مقارب مثل ل y=2x الذي معاللته y=2x الذي معاللته y=2x مقارب مثل ل y=3x الذي معاللته y=3x الذي معاللته y=3x مقارب مثل ل وفق: y=3x مقارب مثل ل وفق: y=3x مقارب مثل ل وغير حوار د

A(6,1,1) لَكُن لُوابِع: في معلم متجانس $O(\vec{t},\vec{f},\vec{k})$ لَكُن لُوبَنَا الْفَطَة (6,1,1)

والمطارب: $p_1: y + z = 4$, $p_2: x - 2y = 5$ والمطارب:

اثبت أن المستويين متقاطعين ثم جد تعثيلاً وسيطياً القصل المشتراك إلى

2- اكتب معادلة المستوي Q العار من إبرو يعامد الفصل المشتراة لهما

3- احسب إحداثهات B نقطة تقاطع Q مع القصل المشترك d في استنج بُعد A عن القصل المشترك d

ثالثاً: حل المسألتين الأتيتين: (100 درجة لكل سلة)

: والمطاوب C(1,1,3) , B(0,-2,2) , A(2,2,0) النقاط $O(7,7,\overline{k})$ والمطاوب C(1,1,3)

1- أثبت أن التقاط A.B.C شكل مستو (ABC) وأوجد معادلته .

$$x = 5t - 1$$
 $y = -2t + 8$ $t \in R$: d منفر من أن المعادلات الوسطنية لمستقيم 2 $t \in R$

البت أن ∆ يتقاطع مع المستوي (ABC) ثم أوجد نقطة التقاطع.

ABC . (ABC) مركز الأبعاد المناسبة للنقاط (ABC) من (C,-12), (B,I), (A,I) من نقطة تقاطع المستقم A مع المستوي (3BC)

 $\|\overrightarrow{MA} + \overrightarrow{MB} - 12\overrightarrow{MC}\| = 10\|\overrightarrow{OA}\|$: مَنْ مَجِيوَ مَةَ الْقَاطَ M فَي الْفِراغَ الَّتِي تَحَلَّى : $\|\overrightarrow{OA}\|$

المسلكة الثانية: لدين C الخط البدني لاابع م معرَّف على R\{0} واتن:

رالمطارب:
$$f(x) = ax + b + \frac{1}{x^2}$$

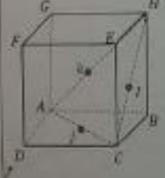
x=1 عنه (2) من المعندين عن المكون التابع f المها حديث عني المعندين عن المعندين عند المكاندين عند المكاندين عند المكاندين عند المكاندين المكا

 $f(x) = 2x - 1 + \frac{1}{x^2}$ من أجل a = 2 , b = -1 فإن التابع a = 2 , b = -1

1- اثبت أن المستقيم 1 - 2x − 1 مقارب ماثل ل _{Cy} في جوار 0x − 0.

2- ادرس تغيرات / ودل على القيمة الصنغرى مطيأ واستنتج المقاربات الشاقولية .

د استنج أن المعادلة f(x) = 0 جذر وحيد.


4. أوجد معادلة العماس للخط C في نقطة منه فاصلتها (1-). 5. ارسم كلّ مقارب وجنته ثم أرسم C.

 $2x^3 - (1+m)x^2 + 1 = 0$ أ. ناقص بياتياً وبحسب فيم الرحيط عند حاول المعادلة 6

فقرس المادة رعلام محمود

الامتحان اللصلى لعامة الرياضيات للصف الثانث الثانون authli engel agail Total Ball and 600 Laure 1 1 200 مل الأسللة الأربعة الثالية : (40 لكل سؤال) المسؤال الأول ؛ فيما يلى جنول تعزات الثان / والذي حمله البيدي ، والمعلوب f(x)\$ -- -- +00 \$ -- 00 + co \$ ٢- اكتب محدلة على مقارب شالولي أو القي القط أشيشي ٢٠ . 2- عل برجد للمنذ البياني ٢ مساسات القرة التجمع التعا لا- عن او حد مقاربات مائلة للخط البيالي] المرماحة طول لمعاللة 0 = 0 ما السؤال الثَّاني : (0,3 . −4) . B(−2,1,2) حدث (AB) حدث (AB) المعتوى المعوري التعلمة المعتقمة (A(0,3 . −4) . B(−2,1,2) 2- اكتب بعادلة المروط الذي رأسه 0 ومعوره (0, 1) وقدمت الدائرة على مركزها (1, 0, 0) وتصف فعارها 3 السؤال الثالث : $g(x) = \sin \frac{1}{2}$ ليكن $g(x) = \sin \frac{1}{2}$ المعرف على $g(x) = \sin \frac{1}{2}$ الرحد $g(x) = \sin \frac{1}{2}$ $f(x) = \begin{cases} \frac{1-\min}{x^2} + m & x \neq 0 \\ \frac{1}{2x+1} & x = 0 \end{cases}$ $(x) = \begin{cases} \frac{1-\min}{x^2} + m & x \neq 0 \\ 0 & x = 0 \end{cases}$ اوجد قيمة m ليكون ال ستمرأ على R مل التمارين الأربعة الثالية : (60 نكل تعرين) R(1-1) المعرون الأول دليك النام م المسلى بالملاكة $\frac{2\pi}{1+\pi}=(1)$ المعرب على R(1-1) ، حمله البداس R(1-1)1) الحسب نهاية الذابع / عند 100 واستنتج البقارب الألفي ، والربل الوضيع النبهي لطارب مع المعط البياني ع . $\lim f(f(x))$ gives (2) (3) احط حلناً حقیقیا فر بحقق الشروط إذا كان فر ح ت الله و (x) على المجال (3.2, 3.2) إليت أن القطة (13 -) M مركز تباش الفطان $U_0 = -21$ و $U_0 = -11$ بين الثاني الثان ١) احسب م اسلس المشاقية ، أما نوجه ١١٠ بدلالة ١١ $S_n = U_n + U_n + U_n + \dots + U_{nn} \cup S_n \cup (2)$ $S_n = \frac{1}{2}(-15n^2 - 7n)$ التعرين الثالث: و تنكل للعان بكعب. اولاء برس N مركز عن شنت ACH راكل M سورة B بالسبة لـ N عبر عن M بسطها مركل أبعد متناسبة لرياعي الوجود M.C.B.H. ثالها باردن ا و لا و k منصف اللغم (CH) و [AC] و [AH] على الراوب

 $\overline{CS} = \overline{CJ} + \frac{1}{5}\overline{DF} + \frac{1}{5}\overline{EH}$

عن مرقع القطة و المعينة بالملاقة

التمرين الرابع:

ليكن $f(x) = x + \frac{x}{\sqrt{x^2 + 1}}$ والمطلوب (المعرف على π والحل (المطلوب)

lim f(x) ---- (1

(2) البت أن المستقيم ٨ الذي معادلته (+ x = y مقارب مثل اللفط ٥) عند x +

والرس الوضع النمني للمقارب ٨ والقط ٢

حل المسألتين التاليتين : (100 لكل مسألة)

المسألة الأولى ا

D(-4,2,1) و C(3,1,-2) و B(2,2,3) و A(1,0,-1) النقط (o,i,j,k) و مطم منجانس معلم منجانس (o,i,j,k) النقط (o,i,j,k)

P: x + y - 2Z = 0

Q = y + 2x - 3 = 0

1- تكتب المعدلات الوسيطية للمستقيم في العصل المشترك للمستوين P + Q .

2- اكتب معادلة المستوى R المعودي على المستورين P ، Q والمار من النقطة D .

3-أوجد / نقطة تقاطع المستقيم 1) مع العساوي R .

4-استنج بعد النقطة D عن المستقيم D .

5- استنج نقطة تقاطع السنويات P, Q, R

6. أثبت أن الدماع (7,1-2, Fi(2, -3,1) عمودي على العستوي ABC واستنتج معشلة المستوى ABC .

7- أثبت أن المثلث ABC قالم واحسب مساحله .

8-احسب بعد D عن المستوى ABC ثم احسب حجم رباعي الرجوء DABC .

الوسالة الثانية ،

نيكن $x = x + a\sqrt{x-1}$ المرف على المجال $f(x) = x + a\sqrt{x-1}$ ممله البياني ع

1. سين a ليكون للتابع فيمة حدية في نقطة فاستابة 2

ي ليكن $f(x) = x - 2\sqrt{x - 1}$. ادرس قابلية الاثنتقاق عند النقطة التي فاصلية (1) واكتب معادلة للماس في نقت النقطة

+100 m f(x) 44 --- 3

4- ادوس تغورات (x) أو ونظم حدولاً نها ، وقل على كل قيمة حدية ومن نوعها

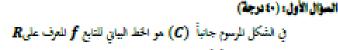
ارسم المط البيان ع

 $x-2\sqrt{x-1}-m=0$ استنج ساليا علول المائلة 6

أ. نصر أبو حوية

التعبة التاس صف فثثث تثالوى اسم الطالب : الجمهورية العربية السورية مدة الرياضيات الدرجة: 600 مديرية التربية بالتثقية علما الأول 2019 المدة ساعتان ونصف تاتوية محمد شكري حليم المحدثة السوال الأول (80 يرجه): تكن قندلد (1,1,1) , B(-1,3,2) , C(2,1,1) والمطلوب ; 1- الر عن أن الفاط A,B,C شكل مستوال و أوجد معادلات 2- أرجد بعد النقطة (D(1,0,2) عن السندان ABC 3- أرجد بعد النشلة (D(1,0,2) عن السنةم AB السوال الثلي (60 درجة) : مستري معادلته 2×2+3x+5=0 ولتكن النظائل (1.1.0) P(0.1.1) والمطلوب: 1- أوجد معادلة النشال الرسيطي المستخم NP 2- ارعن أن المستقيم NP يقطع المستوي Q في النقطة M وأوجدها لسول الذات (100 درجة): E منصف E \overline{CD} \overline{AD} \overline{AD} \overline{AB} منصف \overline{AB} منصف \overline{AB} منتصف 8C و 6 مركز أعاد، المتناسة والمطلوب: 1- بر من أن E.F.G على استثنامة والعدة 2- عن مرسع G على EF 3- أوجد مجموعة النقاط M من الغراع والذي تحلق : = MB + MA + MC - 3 MD MB + MA + MC السوال الرابع (60 درجة): Z_2 =1-i و Z_1 - $\frac{\sqrt{6-i\sqrt{2}}}{2}$ ليكن العندان العقابان $Z_1 = Z_2 = \frac{E_1}{c^2}$ بالشكل المبري ثم $\frac{E_2}{c^2}$ بالشكل المبري يُم استنج النسب المثلثية الزاوية 🔭 لسول الغاس (40 درجة) : ليكن 0 عند حقيقي معرف على المجال] 0, أ تعرف المنتالية $(U_n)_{n\geqslant 0}: n\in \mathbb{N} \Rightarrow U_{n+1} - \sqrt{2+U_n}$, $U_0 = 2\cos\theta$ $U_n = 2 \cos\left(\frac{\theta}{2^n}\right)$ البت بالتعريج أن -2-+2+ الصغمة الأولى -1-19 2 3 -1-2 11-10

السؤال السادس (40 درجة): بر من أن فستقبل : ده (Xn) معاورتان حيث : $\chi_{N} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots$ $-+\frac{1}{\sqrt{n}}-2\sqrt{n+1}$ y = 1 + 1 + 1 + --+ - 2Vii السؤال السليع (40 درجة) : $U_n = 1 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ الثبت أن المتتالية الله - ____ مثقارية ولصب نهايتها السؤال الثامن (100 درجة) : ليكن النابع $f(x) = \frac{x^2-2x+2}{x-1}$ و المطلوب 1- أوجد ما للتابع من مقاربات أفقية لم شاقولية أو ماثلة 2- برهن أن (1,0) مركز تناظر للتابع 3- ادرس تغيرات الثابع ونظم جدولا بها وارسمه السؤال التاسع (80 درجة): هل النابع $x\sqrt{x} = f(x)$ قابل للاشتقاق عند الصغر هل يقبل معاسا مو ازيا للمستقيم y=x لوجد معادلة المماس للتابع عند النقطة x = 1 انتهت الأسئلة


الامتحان الفصلي الأول (2019 - 2020) الاسعر

التاريخ: ٢٠١٩/١٢/٢٢

: ثلاث ساعات الملدة المادة: رياضيات

الفترة الثالثة الصف : الثَّالثُ الثَّانوي العلمي (۱۸۰۰-۱۸۰۰) مادر مردد المار)

أولاً : أجب عن كلّ مما ياتي :

T ماس للخط (c) في النقطة A:

- $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$ $\lim_{x\to -\infty} f(x)$
- f(x) = 0 : اهى حلول المعادلة : f(x) = 0
- T أوجد f(0) ، f(0) أم استنتج معادلة للماس f(0)
 - . f([−1,1]) بجار **a**

المؤال الثاني: (١٠درجة)

 $\overrightarrow{DE} = \frac{1}{A}\overrightarrow{DC}$, $\overrightarrow{AF} = \frac{3}{A}\overrightarrow{AB}$: راعي وجوه فيه \overrightarrow{F} و تغطنان أختقان العلائتين \overrightarrow{ABCD} , ليكن G مركز الأبعاد المتناسبة للنفاط ((A,1) ، (B,3) ، (C,1) ، (B,3) ، وليكن أثبت أن G يقع على [FE] ثم حدد موضع G على [FE] .

المؤال الثالث: (١٠ درجة)

 $U_n = \sqrt{2n+1} - \sqrt{2n}$ ستاب سرنة وفق $(U_n)_{n \ge 0}$

- ادرم أطراد المتالية عدم (U_n).
- $\lim_{n \to +\infty} U_n$ أَبْتَ أَن $0 < U_n \le 1$ أَبْتَ أَن أَن $0 < U_n \le 1$

السؤال الرابع: (٠) درجة)

M(Z) ي المستوي العقدى ، عبّن بحموعة النقاط M(Z) البكون M(Z) .

ثَانِياً : حل كلاً من التمارين الآتية :

التمرين الأول: (٦٠ درجة)

 $f(x)=1+rac{1}{x^2}$ ون $[0,+\infty[$ باخط البيان للتابع f للعرف على المجال $[0,+\infty[$ ون f(x)=1

- Lim f(f(x)) $\stackrel{i}{\sim}$ Lim f(x) -
- $f(x) \in [0.99, 1.01]$ غم أوجد عدماً حقيقياً A يحقق الشرط: إذا كان x > A كان $\lim_{x \to a} f(x)$
 - . $\Delta : y = -2x + 1$ المرازي للمستقيم الذي معادلة الماس للخط (C) المرازي للمستقيم الذي معادلة الماس للخط

التمرين الثاني: (١٠ درجة)

- حل ن C للعادلة $Z^2 = 2 - 2\sqrt{3}i$ و اكتب كالاً من جنريها بالشكل الأسّى.

التمرين الثالث: (٦٠ درجة)

 $f(x) = \frac{2x}{|x-2|+1}$: ونق R ولغن f المعرف على الخط البياتي للتابع المعرف على المعرف على الخط البياتي للتابع

- A(2,4) من البسار الخطه البيان في النقطة (2) من البسار ، ثم اكتب معادلته لنصف للماس من البسار لخطه البيان في النقطة (4,2,4)

الصفحة ١ من ٢

التمرين الرابع: (٦٠ درجة)

c=-1+3i ، b=2+4i ، lpha=3+i : الأعدى عثلة بالأعدى A , B , C

- وضع النقاط في المستوي .
- $\overrightarrow{AC}-\overrightarrow{2AI}$ احسب العدد العقدي المثل للشعاء وe=1+2i احسب العدد العقدي المثل الشعاء e=1+2i
 - ABC احسب $\frac{a-b}{c-b}$ وعين طبيعة المُقلث Θ

حل كلاً من المالتين الأتيتين:

المالة الأولى: (١٠٠ درجة)

 $f(x)=rac{x}{2}+rac{2}{x}$ ونن $f(x)=rac{x}{2}+rac{2}{x}$ الخط البياني للتابع fالمترف على $f(x)=rac{x}{2}+rac{2}{x}$

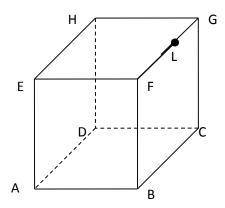
- . d عن (C) مع البت أن للسنفيم d: $y=rac{1}{2}x$ مقارب ماثل لـ (C) مع أبت أن للسنفيم d: d
 - ادرس تغیرات f و نظم جدولاً بما و دل علی قیمة الحدیة .
 - .]0, $+\infty$ [خلين في المحاطة f(x)=3 حلين في المحاطة $oldsymbol{6}$
 - (C) ارسم کل مقارب وجدته نم ارسم (C).

$$\begin{cases} U_0=4 \ U_{n+1}=rac{U_n}{2}+rac{2}{U_n}: U_n$$
ىزى المنالية $(U_n)_{n\geq 0}$ بالمنالية $oldsymbol{\Theta}$

. نقارية $(U_n)_{n\geq 0}$ أَبِت بالتعريج أن $2\leq U_{n+1}\leq U_n$ منقارية أبت بالتعريج أن

السالة الثانية: (١٠٠ درجة)

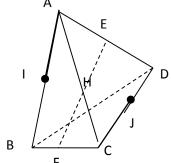
B(7,-2,0) ، A(2,1,-2) لدينا النقطنان $(0;ec{i};ec{J};ec{K})$ يُ معلم متجانس $\overrightarrow{v}(-3,1,2)$ ، $\overrightarrow{u}(2,-1,0)$ و الشعاعان (0,0,0,0)


- أبت أد 11 و أت غير مرتبطين خطيًا.
- أبت أن الأشعة : ĀB ، v ، u مربطة خطاياً .
- إذا كان d مستقيماً ماراً من A و يقبل u شعاعاً موجهاً له .
 و إذا كان d مستقيماً ماراً من B و يقبل u شعاعاً موجهاً له .
 استنج أن d , d متفاطعان في نقطة I
- ع العادلة الديكارثية للمستوى انجوري للقطعة المستقيمة [AB]
 - (AB) اعط التحقيل الوسيطى للمستقيم

الصطحة ٢ من ٢

^{*} انتلاك الأستلك *

مديرية التربية درعا مذاكرة الفصل الدراسي الأول لعام 2017/ 2018 الاسم: ثانوية القنية الرسمية المادة: رياضيات الدرجة: 300 الصف الثاني الثانوي العلمي المدة: ساعة


اجب عن الأسئلة التالية: (الأول 60 درجة الثاني 80 درجة الثالث 140 درجة) السؤال الأول: ليكن ABCDEFGH مكعب

1 – عين النقطة M التي تحقق العلاقة

السؤال الثاني ليكن ABCD رباعي وجوه النقطة N منتصف AB

والنقطة M منتصف CD والنقطة F.D

→ → → →

, BC = 3 BE , AD = 3 AF

ef منتصف H منتصف

اثبت أن H , M . N تقع على استقامة واحدة

السؤال الثالث: نتأمل في معلم متجانس (o, I.j, k) النقاط (C(2,-1,0), B(3,2,3), A(1,2,3)

1 - اثبت أن النقاط A, B, C لا تقع على استقامة واحدة

BC عين إحداثيات | منتصف 2

3 – عين مركز ثقل المثلث ABC واستنتج أن AIG تقع على استقامة واحدة

N (K, 0, 1) تقع على N (K , 0 , 1) تقع على المستوي المحوري للقطعة المستقيمة

5 عين Q مُركز أبعاد متناسبة للنقاط المثقلة

(A, 1), (B, -1), (C, 1)

6 - جد معادلة الكرة التي مركزها A وتمر من B

مع التمنيات لكم بالنجاح والتوفيق ****

واحدة

أ. نصر أبو حوية