Simplify: (2-5i) - (3+4i) - (2+i) O 3+10i 0 3-101 O -3+10i O -3-10i

The domain of $\frac{x+1}{(x+3)(2x-3)}$ is

$$\bigcap_{n \in \mathbb{Z}} R \setminus \{-3, \frac{3}{2}\}$$

$$R \setminus \{3, \frac{-3}{2}\}$$

$$R \setminus \{-3, 3\}$$

$$\bigcirc R \setminus \{-3\}$$

Factor completely the polynomial $6ax^2 - 24axy + 5axy - 20ay^2$

- \bigcirc a(6x 5y)(x 4y) $\bigcirc a(x + 5y)(x - 4y)$
- \bigcirc a(6x + 5y)(x 4y)
- \circ a(x + 5y)(x + 4y)

Using set notation, write the elements belonging to the set $\{x \mid x = n^2 + 1, n \text{ is a natural number less than or equal to 5}\}$

○ {1, 2, 10, 5, 17} ○ {2, 5, 10, 17, 26} ○ {1, 2, 3, 4, 5}

0 {2, 5, 10, 17}

Suppose that $n \in \mathbb{N}$ and n < 4.

The degree of the polynomial $(3x^ny^4 - x^2y + x^2y^2) \cdot (y^nx^3 - x^ny + 5x^8)$

0 n + 12 (n+4)(n+3) Select the correct property that describes the given equation.

$$(8 \times 12) \times 3 = 8 \times (12 \times 3)$$

- Associative property of multiplication
- O Identity property of addition
- O Inverse property of addition
- O Commutative property of addition

Factor the polynomial $x^4 + 5x^2 - 36$ completely

$$(x-2)(x+2)(x^2+9)$$

$$(x+2)(x^2+9)$$

$$(x^2 - 4)(x^2 + 9)$$

$$(x - 2)(x + 2)(x + 3)(x - 3)$$

The set of irrational numbers from $\{-7, -\sqrt{5}, -2, -\frac{1}{6}, 0, 1, 2\frac{1}{3}, \sqrt{25}, \frac{17}{2}\}$ is

0 {-7, -2}

 $\{-\sqrt{5}, \sqrt{25}\}$

Let a, b real numbers. Give the condition that makes the equation (3a + 1)x + 3 = 3x - b + 2 an identity equation.

$$a \neq -\frac{2}{3} \text{ and } b \neq -1$$

$$a = -\frac{2}{3} \text{ and } b = 1$$

$$a = \frac{2}{3} \text{ and } b = -1$$

$$a \neq \frac{2}{3} \text{ and } b \neq -1$$

Let U = {1, 2, 3, 4, 5, 6} be the universal set, A = {1, 5} and B = {2, 4, 5}. Then (A' U B) \cap (φ ')' is 0 {2, 3, 4, 6} 0 {1,2, 4, 5}

Find the product

 $\frac{2x^2 - 4x - 6}{x^2 - 4x + 3} \cdot \frac{x - 1}{x + 1}$

If a, b and c are real numbers with a = b, then

$$Oa-c=-(b-c)$$

Let $x, y \in R$ and z a complex number. Give the values of x and y that makes z a pure imaginary complex number.

$$z = (x - \sqrt{5}) + (y - \sqrt{7})i - 1$$

$$\bigcirc x = 1 + \sqrt{5}, y \in R$$

$$0 \ x = 1 + \sqrt{5}, \ y \neq \sqrt{7}$$

$$0 \quad x = 1 + \sqrt{5}, \ y = \sqrt{7}$$

$$\bigcirc x = \sqrt{5}, y \neq \sqrt{7}$$

Simplify the complex fraction
$$\frac{x^{-2} - y^{-1}}{xy}$$

$$\frac{y-x^2}{x^3y^2}$$

$$\bigcirc \frac{y-x}{x^3y^2}$$

$$\frac{y-x^2}{x^2y^2}$$

$$0 \frac{y-x}{x^3y}$$

Solve the equation $27x^3 - 64 = 0$

$$\left\{\frac{-2+2i\sqrt{3}}{3}, -\frac{2+2i\sqrt{3}}{3}\right\}$$

$$\left\{ \frac{-2+2i\sqrt{3}}{3}, -\frac{2+2i\sqrt{3}}{3}, \frac{4}{3} \right\}$$

$$\left\{\frac{-2+2i\sqrt{3}}{3}, \frac{2-2i\sqrt{3}}{3}, \frac{4}{3}\right\}$$

$$\left\{\frac{2+2i\sqrt{3}}{3}, \frac{2-2i\sqrt{3}}{3}, -\frac{4}{3}\right\}$$

Let x a real positive number. Simplify the following expression by rationalizing the denominator.

$$\frac{\sqrt[3]{x}}{\sqrt[3]{x}-1}$$

$$\bigcirc \frac{x + \sqrt[3]{x^2} + \sqrt[3]{x}}{x - 1}$$

$$\bigcirc \frac{x + \sqrt[3]{x^2} - \sqrt[3]{x}}{x - 1}$$

$$\frac{x - \sqrt[3]{x^2} + \sqrt[3]{x}}{x - 1}$$

$$\bigcirc \frac{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}{x - 1}$$

Total questions in exam: 20 | Answered: 20

Question No. 1

Factor completely the polynomial $x^3y^2 - 64y^2$

- $y^2(x-4)(x^2+4x+16)$
- $y^2(x+4)(x^2+4x+16)$
 - (xy 8y)(xy + 8y)

$$(x-3)(x^2+3x+9)$$

Simplify the complex fraction $\frac{x^{-2}-y^{-1}}{xy}$

$$\frac{y - x^2}{x^2 y^2}$$

$$\frac{y - x^2}{x^3 y^2}$$

$$\frac{y - x}{x^3 y^2}$$

$$\frac{y - x}{x^3 y^2}$$

Total questions in exam: 20 | Answered: 20

Question No. 3

Solve the equation $27x^3 - 64 = 0$

- $\left\{\frac{-2+2i\sqrt{3}}{3}, -\frac{2+2i\sqrt{3}}{3}\right\}$
- $\left\{ \frac{-2+2i\sqrt{3}}{3}, -\frac{2+2i\sqrt{3}}{3}, \frac{4}{3} \right\}$
- $\left\{\frac{2+2i\sqrt{3}}{3}, \frac{2-2i\sqrt{3}}{3}, -\frac{4}{3}\right\}$

Total questions in exam: 20 | Answe

Question No. 4

Factor:
$$x^2 + 4x + 4$$

$$(x-4)(x+1)$$

$$(x-2)^2$$

$$(x+4)(x+1)$$

$$(x+2)^2$$

The equation 6(x-2)=2-x is

- an identity
- a conditional equation
- a contradiction
- a quadratic equation

Find the quotient
$$\frac{x+1}{x-1} \div \frac{x^2-1}{x^3-1}$$

$$\frac{x^2-x+1}{x-1}$$

$$\frac{x^2+x+1}{x-1}$$

$$\begin{array}{c}
x^2 + x + 1 \\
x + 1 \\
x + 1
\end{array}$$

$$x^2-x+1$$

Total questions in exam: 20 | Answered: 20

Question No. 7

The expression $x^6 - 2x^5 + 4$ can be classified as a

- trinomial
 - monomial
 - binomial
 - non of these

The set of natural numbers from $\{-7, -\sqrt{5}, -2, -\frac{1}{6}, 0, 1, 2\frac{1}{3}, \sqrt{25}, \frac{17}{2}\}$ is

$$\{-\sqrt{5}, -\frac{1}{6}, 0, 2\frac{1}{3}, \sqrt{25}, \frac{17}{2}\}$$

- $\{1, \sqrt{25}\}$
- $\bigcirc \{-\sqrt{5}\}$
- $\{-\sqrt{5}, \sqrt{25}\}$

Suppose that $n \in \mathbb{N}$ and n < 4.

The degree of the polynomial $(3x^ny^4 - x^2y + x^2y^2).(y^nx^3 - x^ny + 5x^8)$

```
n + 12
13
12
(n + 4)(n + 3)
```

Total questions in exam: 20 | Answered: 20

Question No. 8

Let $x \in \mathbb{Z}$. Simplify the following expression $a = 3i^{132x^2+4x-3}$

- a = -3i
- a = -3
- a=3i
- a=3

ind the value of 'c' that will allow this polynomial to be written as a perfect square.

$$x^2 - \frac{1}{2}x + c$$

Let a, b real numbers. Give the condition that makes the equation (3a + 1)x + 3 = 3x - b + 2 an identity equation.

$$a = \frac{2}{3}$$
 and $b = -1$

$$a \neq -\frac{2}{3}$$
 and $b \neq -1$

$$a = -\frac{2}{3}$$
 and $b = 1$

$$a \neq \frac{2}{3}$$
 and $b \neq -1$

Factor the polynomial $x^4 + 5x^2 - 36$ completely

$$(x^{2} - 4)(x^{2} + 9)$$

$$(x - 2)(x + 2)(x^{2} + 9)$$

$$(x + 2)(x^{2} + 9)$$

$$(x - 2)(x + 2)(x + 3)(x - 3)$$

Let $a \in \mathbb{R}$ and 0 < a < 9 . Simplify the following expression $\sqrt{a - 6\sqrt{a} + 9}$

$$\sqrt{a}-3$$

$$\sqrt{a}+3$$

$$-\sqrt{a}-3$$

$$3-\sqrt{a}$$

questions in exam: 20 | Answered: 20

Question No. 17

Using set notation, write the elements belonging to the set $\{x \mid x = n^2 + 1, n \text{ is a natural number less than or equal to 5}\}$

- (1, 2, 3, 4, 5)
- {1, 2, 10, 5, 17}
- {2, 5, 10, 17, 26}
- {2, 5, 10, 17}

Total questions in exam: 20 | Answered: 20

Question No. 16

The domain of
$$\frac{x+1}{(x+3)(2x-3)}$$
 is

- $R \setminus \{-3, 3\}$
- $R \setminus \{-3, \frac{3}{2}\}$
- $R \setminus \{3, \frac{-3}{2}\}$
- $\bigcirc R \setminus \{-3\}$

Let $U = \{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}$, $A = \{-2, 0, 2, 4, 6\}$, $B = \{0, 1, 2, 3, 4, 5, 6\}$ and $C = \{0, -1, 4, -3, 6, -2\}$. Find $(A \cap B)' \cup (A \cap C)'$.

{-3,-2,-1, 1, 3, 5} {0, 4, 6,-2} {-3,-1, 1, 2, 3, 5} {-3,-2,-1, 1, 3, 5, 2} Answered: 20 | Answered: 20

Question No. 20

Let $x, y \in R$ and z a complex number. Give the values of x and y that makes a pure imaginary complex number.

$$z = (x - \sqrt{5}) + (y - \sqrt{7})i - 1$$

$$x = 1 + \sqrt{5}, y = \sqrt{7}$$

$$x=1+\sqrt{5}, y\in R$$

$$x = 1 + \sqrt{5}, \ y \neq \sqrt{7}$$

$$x = \sqrt{5}, y \neq \sqrt{7}$$

- 17 movered. 20

Question No. 19

Simplify: (2-5i) - (3+4i) - (2+i)

- -3+10i
- 3+10i
- 3-10i
- -3-10i

total questions in exam: 20 | Answered: 20

Question No. 9

Select the correct property that describes the given equation.

$$(8 \times 12) \times 3 = 8 \times (12 \times 3)$$

Associative property of multiplication
Identity property of addition
Commutative property of addition