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Ohm's law experiment

1 Objective: To study the relationship between electrical current, voltage, and resistance,
known as Ohm's Law.

2 Theoretical Background

When a potential difference (V) is applied across a resistor, a current (1) in the resistor is
found to be proportional to potential difference, Va I. According to the relation Va I, so
the V =1Ris known as Ohm's law. The resistance (R) of the material is defined as the ratio
of the applied voltage and the resulting current, that is

R= V/I (definition of electrical resistance) For many materials, the resistance is
constant, or at least approximately so, over a range of voltages. A resistor that has
constant resistance is said to obey Ohm’s law or to be “ohmic”. Materials that do not
obey Ohm’s law are said to be “nonohmic” and have a nonlinear voltage-current
relationship, such as semiconductors and transistors are nonohmic. Fromm the above
equation, the unit of resistance is Volt/Ampere (V/A). However, the combined unit is
called the ohm (Q), in honor of George Ohm. Note that to avoid confusion with a zero,
the ohm is abbreviated with a capital omega (Q) instead of a capital “O”. A plot of V
versus | for an ohmic resistance is a straight line (Fig. 1). In common practice, Ohm’s law is
written V =IR where it is understood that R is independent on V. Keep in mind that
Ohm’s law is not a fundamental law such as Newton’s law of gravitation. It is a special
case, there being no law that materials must have constant resistance

Fig. 1: A voltage-versus current graph for an ohmic resistance is a straight line, the slope of
which is equal to the value of the resistance

. (R =V/I) for Ohmic resistance

Consider the circuit diagram shown in fig. (2). This is a series circuit. The applied voltage
is supplied by a power supply or battery Vt. Rh is a rheostat, a variable resistor that allows
the voltage across the resistance Rs to be varied. (This combination is sometimes called a
voltage divider because the rheostat divides the applied voltage across itself and Rs). An
ammeter (A) measures the current through the resistor Rs and a voltmeter (V) registers



Fig. 1

the voltage drop across both Rs and the ammeter A. S is a switch for closing and opening
(activating and deactivating) the circuit. Any component in a circuit that does not
generate or supply a voltage acts as a resistance in the circuit. This is true for the
connecting wires, the ammeter, and the voltmeter. However, the metallic connecting
wires and the ammeter have negligibly small resistances, so they do not greatly affect the
current
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Simple Pendulum Experiment
Objective: - To study the simple harmonic motions. - To investigate the properties of

.a simple pendulum. - To calculate the acceleration due to gravity at place

Theoretical Background  The ideal simple pendulum consists of a point mass Y

suspended by a weightless string



Fig. 1 For a small angular displacement 8the restoring Fig. 1
force acting on the point mass at P along the arc (x) is '

F=—-Mgsind = Mg 6 (sinf is small)

Hence the equation of motion of P is
Mgx
_MIX s
I X

The motion is thus simple harmonic, and the periodic time T is

L
T =2m |—
g
And
2
T2=41r
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Slope = Spring Constant

Force

Extension

(Fig. 1)
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Hook's Law Experiment

Objective - To investigate Hooke’s law (the relation between force stretch for a spring)
.and determine the spring constants of elastic spring

Theoretical Background Y

Hooke’s Law is stating that "the restoring force acting on an object is proportional to the
"negative of the displacement (deformation) of the object

F = -kAx

Here, F is the restoring force provided by whatever is being stretched (or compression), x
is the displacement of the thing being stretched (or compression). and k is the spring
constant. The negative sign (-) is meaning to the restoring force is in opposite direction to
the displacement. The following simple graph (Fig.1) of force and extension (or
:compression) yields a linear slope defined as the spring constant

Fig. 1)

A spiral spring is subjected to extension or compression by an applied load (applied force)
conforms to Hook’s law, which states that the stress is proportional to the strain, i.e. the
load is proportional to the extension it

produces. If a graph is drawn, after the initial loading, where some force is required to
separate the turns of the spring which are pressed against each other, a straight line is
obtained of extension against load (applied force). From this portion, the extension ( Ax)

Slope = Spring Constant

Force

Extension

(Fig. 1)




in meter, the applied force in newton. The spring constant k can be obtained from the
slope=BC/ AC (Fig. 2)
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6. Series and Parallel connections of resistors

6.1 Object:

- To study the equivalent resistances of two fundamental connections of resistors - resistors in series

and in parallel.
- To practice more complicated construction of circuits.
6.2 Theoretical background

Every student of physics needs at least a basic understanding of electronic circuits. One of the most
important aspects of electronic circuits is the arrangement of circuit elements. In this lab, the circuit
element that we will concentrate on is a resistor. There are two types of circuit connections that are

involved with this lab, series and parallel.

We say that circuit elements are in series with each other when each element is connected the next

end-to-end. In other words, a series connection allows only one pathway for the current to travel.



Current, as you know, is the flow rate of electrons. Below is a picture of a circuit that has three
resistors connected in series:
Series

R,
1 A 2

| +

—

Now let’s use what we know about electricity to developmathematical properties of a series
circuit. First, there is only one pathway for the current to travel, and we know that no charge will
accumulate on the resistors. This implies that the current through each resistor is of the same value.

Using this property, and applying Ohm’s law to each resistor, we come up with the following equations

for the above circuit diagram:

Vi =V, +V, +V,

otal
I 3

=R, +R, +R;

I1_|2

R

total

It is important to understand the quantity R, . This quantity is commonly called the

equivalent resistance. Let’s say you wanted to reduce the number of resistors in the circuit from three



resistors to only one resistor. You would need a resistor whose value is equal to the equivalent

resistance) . Ry, (

Electrical circuits may be connected in parallel as well as series. In this configuration, there are
multiple paths for current to travel, and therefore there are different mathematical properties. We will

start with a picture of a parallel configuration as shown below:

Parallel!

1 2 3 4
i - | .

N

=l e g g
— —_— | —

8 7 6 5

Can you see why this circuit is called parallel? If you said because the circuit elements (in
this case the circuit elements are resistors) are connected parallel to each other, you are correct. Unlike
a series circuit, a parallel circuit allows current to travel in more than one path. You can think of a
parallel circuit as a “current-splitter”. Again, we would like to derive some mathematical formulas to
represent the total voltage, current and resistance of the circuit. Just by looking at the parallel
configuration, can you say something about the voltage drop across each resistor? If you said that
they are the same in each element, then you are correct. Let us use this knowledge and Ohm’s law to

derive some mathematical laws for parallel circuits:



V, =V, =V, =V
o =1+ 1, + 15
Vv
Itota,:V1+V2+ =V 1 + 1 + 1
Rl RZ R3 Rl RZ R3
1 1 1 1

=—+—+
Rl RZ R3

total

R

total

How is all this useful?, What would happen if instead of one resistor, we used two
connected in series? What if they were connected in parallel? Today we’ll find out those
answers along with others as we examine resistors in parallel and series circuits
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Snell's Law

10.1 Objectives

1. To verify Snell's Law
2. To determine the refractive index of glass.

10.2 Theoretical Background
We saw in the reflection experiment that light travels in straight lines until it meets the boundary

of two media.

Refraction occurs when light meets the boundary of two media, and the light continues through
the second. For example, when light hits the boundary between air and water, its path bends, but
it continues through the water. If you stick a pen in a glass of water, it appears to bend when it
touches the water. This is because light travels at a different speed through water than it does

through air.

In fact, light travels at a different speed in every medium. It travels fastest in a vacuum, the speed
at which it travels is referred to as the speed of light, and is denoted c. The speed of light is known
very accurately, but for most purposes, ¢ = 3x108m/s. The speed of light in any other medium (v)

is defined as the speed of light

(in a vacuum, c) divided by the refractive index (n) of the medium. Mathematically,

C C
v=—andn=-
n v

The refractive index of any material is greater than or equal to one (N vacuum = 1 but otherwise n > 1).
The refractive index of air is very close to one, N = 1.008. The following figure shows the

refraction of light as it passes from one medium to a denser medium. An analogy is to consider

running from air to glass.



The direction of propagation of light in the second medium depends on the angle of incidence (i),
the refractive index of the first medium (n1), and the refractive index of the second medium (ny).

The Law of Refraction is known as Snell’s Law, and is given by:

nlsini = n2sinr
Consider a ray of light passing from air (Nair = 1) into another medium such as glass with an index of
refraction n (n >1). In this case, the ray is incoming (incident) on the air side and outgoing

(refracted) on the glass side of the interface, and we have

sin i

n2 = —
sinr
sini = n2sinr

where i and r are the angles of the incident and refracted rays, respectively.

Emergent Ray

Air Glass

Normal

Incident Ray
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Concave mirror Experiment
Objective

Determination of the focal length a concave mirror by:
(i) by u-v method.

(ii) from 1/u-1/v graph.

Theoretical background

Spherical mirrors have the shape of a piece cut out of a spherical surface. Two types of spherical
mirrors are;

« Concave mirror: Its inner concave surface reflects, and has polished outer surface.
»  Convex mirror: Its outer convex surface reflects, and has polished inner surface.

Reflecting
swrfoce
LN

P L g

Concave ond Convex Micror

Different terms associated with spherical mirrors are;

Pole (P): The centre of the spherical mirror.
Centre of curvature (C): The centre of the sphere, of which the mirror is a part.

Principal focus (F): The point on the principal axis, on which all parallel rays meet after
reflection.



Radius of curvature (R): The distance between pole and centre of curvature.

Focal length (f): The distance between pole and principal focus.

[Spherical concave mirror

Concave Mirror
Concave mirrors have the reflecting surface that bulges inward. They are also called converging
mirrors because it converges all parallel beam of light incident on it. Unlike a flat mirror, concave

mirrors can form real images that are projected out in front of the mirror at the place where the

light focuses. Concave mirrors can be used in satellite
Parallet fayn

dishes, vehicle headlights, astronomical telescopes

and many more areas.
Principat

ol

F o v
(Focus) . ..
TRy

+
I
|
|

L | 1’ Y

{
by ) n""".l

Mirror Formula

P § The equation connecting the distance between
Focal tength

mirror and object (u), distance between mirror and
Convergence of light rays m concave muror



image (v), and the focal length of the mirror (f) is called mirror formula.

1 1 N
f u v
Or ; The focal length of the concave mirror, f = %

Focal length by a graphical method From 1/u — 1/v graph :
We can also measure the focal length by plotting graph between 1/u and 1/v. Plot a graph with 1/u
along X axis and 1/v along Y axis by taking same scale for drawing the X and Y axes. The graphis a

straight line intercepting the axes at A and B.

The focal length can be calculated by using the relations, OA=0OB= 1/f.
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{. Determination of a resistance using Meter Bridge



7.1 Objective:

- Determination of an unknown resistance using the Meter Bridge.

7.2 Theoretical background

The Meter Bridge is another form and represents a direct application of the Wheatstone bridge.

Both Bridges are shown in Figure 1, and 2 respectively.

The Meter Bridge consists of the unknown resistance R, resistances box Z exactly as in the
Wheatstone bridge, and a one-meter long steel wire fixed on a wooden table with a ruler
representing the two resistances X and Y in the Wheatstone bridge. One of the two terminals of
the Galvanometer is connected between the R and Z, while the other terminal is connected via a

slider to the 1 meter wire, such that it divides that wire into two parts, namely |1, and L.

BI‘1

4

A X, C
R R

A ' ‘v

D

Figure 1: Wheatstone bridge



AN

Figure 2: Meter Bridge

At balance condition: (i.e. when the reading of the galvanometer points to zero).

|1R:|1R|1 (1)

|zz =|2R|2 (2)

Where Ri1 and Ri2 are the resistance of the length |1 and |, respectively,
which could be determined as follow:
R|_1=P.|1/A, (3)
4
RL2:p.I2/A ( )
where P and A are the specific resistance and the cross-sectional area of the 1 meter wire used.

Then, by substituting (3), (4) into (1) and (2) and canceling |1 from both equations and dividing the
resultant two equations, then we have

i-2 (5)



So, the unknown resistance R could be determined by knowing the Z and measuring the |;
and I, values at balance condition.
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2- Forces Table Experiment

2.1 Objective
To find the resultant of a combination of different forces using three different methods

(component method, graphical method and using a force table) and compare the results to that
obtained by analytical method.



2.2 Theoretical Background of Adding Vectors

A scalar quantity is a quantity that has only a magnitude. When scalar quantities are added
together (e.g., prices), the result is a sum. Vectors are quantities that have both magnitude and
direction; specific methods of addition are required. When vector quantities are added, the result
is a resultant. For example, if you walk 1 mile north, then 1 mile east, you will walk a total distance
of 2 miles (distance is a scalar quantity). Displacement, a vector, involves both distance and
direction. So the same

2 mile walk results in a displacement of \/E miles northeast of where you began (= 1.41 miles,
northeast of your starting position). A negative vector has the same length as the corresponding
positive vector, but with the opposite direction. Making a vector negative can be accomplished
either by changing the sign of the magnitude or by simply adjusting the direction by 180°.

- Adding Vectors Graphically

Vectors can be added together graphically by drawing them end-to-end. A vector can be moved to
any location; so as long as its magnitude and orientation are not changed, it remains the same
vector. When adding vectors, the order in which the vectors are added does not change the
resultant.

* Draw each vector on a coordinate system; begin each from the origin.

® Select an appropriate scale. (Ex. 20 cm =5 N).

® Choose any vector drawn to be the first vector, Fi.

® Choose a second vector F, and redraw it, beginning from the end of the first, F.
® Repeat, adding as many vectors as are desired to the end of the “train” of vectors.

* The resultant is a vector, R, that begins at the origin and ends at the tip of the last vector drawn.

It is the shortest distance between the beginning and the end of the path created.
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This method of adding vectors graphically is also referred to as the headto-tail method.

While the calculation of |R| can be performed using:

IR| = R =\/F12 + F,% 4 F,%F,%cosf

F2sin®
|R|

Sina =

- Component Method (Analytical Method)

To add two vectors by components, calculate how far each vector extends in each dimension. The
lengths of each of the x- and y-components of a vector depend on the length of the vector and the
sine or cosine of its direction, 6,



1x

F
cosf =—=

3

le

Fiy

X
Fl.r

By use vector algebra to solve for each component, Fix and F1, and 6, we can use these equations:

Fi, = |17:1| cos @
Fy
6 =tan~1 =2
Fix

When each vector is broken into components, add the x-components of

each vector:



INgh
<
X
I
RS

...
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Then add all of the y-components:

M=
-
<
I
=

~
Il
_

The sums are the x- and y-components of the resultant vector, R. The components of R can be
converted back into polar form (R, ) using the Pythagorean theorem and the tangent function:

IRf=R = /sz +R)*

~

y

0 =tan" 1=
an Rx

N. B.: Verify the quadrant! A calculator will return only one of two possible angles. To verify the
quadrant, determine if Ry, Ry are positive or negative.

If your calculation puts the resultant in quadrant |, but R and R, are both negative, it must be in
quadrant Ill; simply add 180° to the angle.

- Force Table Verification
We will use a force table to verify our results of vector addition and gain a hands-on perspective.
The force table is a circular steel disc with angles 0° to 360 ° inscribed on the edge. As noted
above, when adding vectors, a resultant vector is determined. To balance the force table,
however, a force that is equal in magnitude but opposite in direction must be used. This force is
the equilibrant, E, = —R.

For example, when a 10.0 N force at 0° and a 10.0 N force at 90° are added, the resultant
force has a magnitude of 14.1 N at 45 °. The equilibrant force has the same magnitude,



but the direction is 180° +45° = 225°. The equilibrant must be used to balance the two
10.0 N forces.
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Free Fall Experiment

Objective:

To determine the acceleration due to gravity by studying the motion of a freely falling body.

Theoretical background :
In this experiment, measurements of distance and time for a freely falling body will be conducted in order to verify
theoretical predictions, and to verify the value of g, the acceleration due to gravity, which is 9.8 m /s 2. The data will be

analyzed to determine a functional relationship of distance vs. time and of velocity vs. time, and checking this with what
is expected from the theoretical equations.



The equation of distance as a function of time for a freely falling object is described, according to theory, by the equation:
1
y(©) =y + vt + Egtz

Where we are picking a coordinate system in which down is the positive direction. In the situation that you will

use the object will be dropped from rest (v; = 0) and the distance that it falls will be measured from the release point

(y; = 0)Thus, the equation becomes:
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Convex Lens Experiment
1 Objective

Determination of the focal length and power of a convex lens.

2 Theoretical background

With a convex lens, the surface of the refracting material (glass) is curved in such a way as to produce
a greater refraction for rays that are incident upon the outer parts of the lens than for those passing
through the center. A convex lens has the quality that rays that are parallel to each other will all
intersect at the same point after passing through the lens. The point at which rays that are parallel to
each other and perpendicular to the plane of the lens intersect is called the “focal point” of the lens.
The distance from the plane of the lens to this point will be written as f. In addition, rays that pass
through the center of a thin lens will continue through unrefracted. The following diagram illustrates

how these light rays pass through a thin convex lens:



An interesting result of this property of thin convex lenses is that they can produce “real images.” An
image is said to be real because light passes through the location where the image appears. A real

image is formed when rays from a given point on an object pass through a lens and converge at a
respective point on the other side of the lens.

A thin convex lens can be characterized by its focal length f, the object distance, u and the image
distance, v. These two variables are related to the focal length, f, by the lens equation:
1 1 1

f u v
All the distances are measured from the center of the lens. If the object is placed very far away from

the lens (u = o) then 1/u approaches zero. In this case, v = f. This allows us to determine the focal



length of a convex lens. If the object is not very far away from the lens, the lens equation must be used
to calculate the focal length.
The power, P, of a lens is related to its focal length by the expression:

1
P=2
fl

where f is measured in metres, and the units of P are dioptres (A).
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