

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

(Chem 108 Chapter 1)

Ques. no.				Qu	estic	n		
1	Wł	nich is not an ex	amp	le of a pure subs	stance	?		
	A	Sugar	B	Water	C	Air	D	Aluminium foil
2	Wł	nich is an exam	ple of	a physical chan	ige?			
	A	The rusting of an iron nail	B	The burning of propane in a gas grill	C	Baking cookies	D	Melting of an ice cube in a glass of soda
3	Wł	nich state of ma	tter 1	has a definite vo	lume	, but takes on s	hape	of the container
	п А	solid	В	liquid	C	gas	D	plasma
4	Wł	nich state of the	matt	er has definite v	olum	e and indefinit	e shaj	pe?
	٨	solid	R	nlasma	C	liquid	р	gas
5	A Wł	nich state of the	matt	er has indefinite	e volu	me and indefin	D nite sh	ane?
5								
	A	solid	B	plasma	C	liquid	D	gas
6	Wł	nich substance	canno	ot be broken do	wn ir	nto simpler sub	ostanc	es by a chemical
	A	mixture	B	alloys	C	element	D	compound
7	Th	ose that detern	nine	how a substanc	e car	be converted	to a	nother substance
	are A	: physical properties	B	Electronic properties	С	Chemical properties	D	Photo properties
8	Silv	ver jewellery ta	rnish	ing is considered	d as .	chan	ge.	
	A	physical	B	Electronic	C	Chemical	D	Photo
9	Th	e type of matter	r of b	lood is	I			I
	٨	Flement	R	compound	C	mixture	Л	all of these
10	A Wł	nich pure substa	ance f	formed by chem	ically	combining two	o or n	nore elements?
IV		1						
	A	mixture	B	element	C	compound	D	none of the previous

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.				Que	estic	n		
11	Oz	one (O ₃) is an exa	mpl	e of?				
	A	Compound	B	Element	C	mixture	D	colloid
12	Wh	nich of the follow	ing e	example is an ele	men	t?		
	A	aspirin	B	table sugar	C	the rust on an iron nail	D	the gas inside a helium balloon
13	Wh	nich of the follow	ing e	example is an ele	emen	t?		
	A	Ozone (O ₃)	B	table sugar	C	Hydrogen gas (H ₂)	D	a) and c)
14	Th	e alcohol & H ₂ O	is an	example of				
	A	compound	B	element	C	mixture	D	alloys
15	Mi	lk is an example	of	•••••				
	A	compound	B	mixture	C	element	D	alloys
16	Wh	nich of the follow	ing i	s an example for	r che	mical change?		
	A	Boiling of water	B	Combustion of wood	C	Freezing of water	D	Melting of wax
17	Wh	nich of the follow	ing p	processes repres	ents	a physical chang	ge?	
	A	baking bread	B	making ice cubes	C	$\begin{array}{rrr} H_2 &+& O_2 & \rightarrow \\ H_2 O & & \end{array}$	D	burning natural gas
18	Ho	w many nanomet	tres a	are there in one	mete	er?		
	I	0			I	4 0-6	I	1 6
	A	109	B	10-9	C	10-0	D	100
19	Ho	w many microgra	ams	are there in one	grai	n?		
	A	10 ⁹	B	10 ⁻⁹	C	10 ⁶	D	10-6
20	Th	e term is used for	· a m	illion meters is	•••••	••••		
	I			I	1		I	1
	A	Deci meter	B	Nano meter	C	Mega meter	D	Micro meter

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.				Quest	ion					
21	Th	e basic unit of ma	ass ir	1 the metric system	is tl	ne				
	A	gram	B	Kilo gram	С	Deci gram	D	Micro gram		
22	The temperature 98,6 F° is equal toin kelvin									
	Α	310	B	130	С	330	D	350		
23	W	nich of the follow	ing i	s the smallest quan	tity?					
	A	10 kg	B	10 g	С	10 mg	D	10 µg		
24	W	nich of the follow	ing i	s the largest quant	ity?					
	Α	10 L	B	10 mL	С	10 kL	D	10 µL		
25	W	nich of the follow	ing i	s <i>not</i> equal to 1 L?						
	Α	1000 mL	B	1000 cc	С	1000 cm^3	D	1000 m ³		
26	W	nich volume is eq	uiva	lent to 225 mL?						
	A	$2.25\times 10^5 \mu\mathrm{L}$	B	0.225 μL	С	2.25×10^{-5} µL	D	2.25 L		
27	If a	piece of rock ha	s a v	olume of 0.73 L an	d a 1	mass of 1524 g, v	vhat	is the density		
	011	the rock in g/mL			_	0.40 / 1	-	2.000 / 1		
	Α	$2.1 \times 10^3 \text{ g/mL}$	B	2.1 g/mL	Ċ	0.48 g/mL	D	2.088 g/mL		
28	Wi bec	ien 0.022189 is co comes	orrec	ctly rounded to two	sign	inficant figures t	he n	umber		
	A	0.02	B	0.022	С	0.023	D	22		
29	W	nich number cont	tains	four significant fig	gures	s?				
	A	3.978	B	0.0085	C	1700	D	0.780		
30	Ca	rry out the follow	ving	calculation and re	port	the answer usin	g th	e proper		
	nu	mber of significa	nt fi	gures: 549.101 + 8	.12 +	- 95.0076 - 651.9	,			
	A	0.328	B	0.3286	C	0.329	D	0.33		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.				Qu	esti	on		
31	Wh bec	ten 5.5490× 10 ⁸ : somes	is co	rrectly rounded	to tł	ree significant fig	gures	the number
	A	5.55	B	$5.55 imes 10^8$	С	5.54×10^{8}	D	555
32	Wh	ich measureme	nt ha	as the fewest nu	nber	of significant fig	ures?	
	A	12.80 m	B	0.1280 m	C	0.001280 m	D	1280 m
33	Wh	hich quantity is a	an ey	act number?				
	Α	3 cars	B	1,000 m	С	2 L	D	453.6 g
34	Th	e number 0.0035	5880	expressed corre	ctly	using scientific no	otatio	n is
	A	0.0035889	B	3.5880×10^{-3}	С	3.5880×10^{-4}	D	3.5880×10^{3}
35	Th	e measurement '	78,00	05,760 expressed	l cor	rectly using scient	tific n	otation is
	A	7.8005760×10 ⁷	B	7.800576×10 ⁻⁷	C	$7.8 imes 10^7$	D	7.8005760×10^{-7}
36	Wh	ten 4.870 × 10^{-3}	is co	rrectly converte	d to	its standard form	the n	umber
	A	4870	B	0.00487	С	0.0004870	D	0.487
37	Ho	w many signific	ant f	ïgures are prese	nt in	the measuremen	t 0.00	2030 g?
	A	4	B	5	С	6	D	3
38	Th	e number of sign	nifica	ant figure of 250	.00 i	S		
	A	3	B	4	C	5	D	all previous
39	Ho	w many signific	ant f	ïgures does this	num	ber 50 contain?		
	A	1	B	2	C	4	D	3
40	Th	e following num	ber	1.002 has	Signi	ficant figure		
	A	4	B	3	С	5	D	2

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.		Qu	estion		
41	Round off these nu	umber 1.2567 to three	e significant figures?		
	A 1.25	B 1.20	C 1.26	D	1.257
42	Round off these nu	umber 0.05651 to two	significant figures?		
	A 0.56	B 0.056	C 0.057	D	0.06
43	Carry out this calc	culation (120.085/106	=?), using proper num	nber	of significant
	ingures:	1 1			
	A 1.132	B 1.13	C 1.14	D	1.12
44	Calculate the follow $X = (0.00630 \times 2.0000)$	wing, using proper n 030 × 20.01)	umber of significant fi	igures	s?
				-	0.25
	A 2.52	B 0.253	C 0.2525	D	0.25
45	Write the daily die	etary intake of vitami	in B12, 0.000006 g, in	scier	tific notation
	$\mathbf{A} 6 \times 10^{-5} \text{ g}$	B 6×10^{-6} g	C 6×10^{-1} g	D	$6 \times 10^{-7} \mathrm{g}$
46	Write the diameter	r of a red blood cell,	0.000006 m, in scientif	ic not	tation?
	$\mathbf{A} \mid 6 \times 10^{-5} \text{ m}$	B 6×10^{-6} m	C 6×10^{-1} m	D	$6 \times 10^{-7} \mathrm{m}$
47	The unit of temper	rature in S.I. system i	s		
	A Kelvin	B Celsius	C Fahrenheit	D	all
48	An infant had a bo	ody temperature of 10	04 °F. Convert this ten	npera	ture to °C?
	A 37 °C	B 40 °C	C 140 °C	D	70 °C
49	What is the mass in	n grams of 15.0 mL o	of a saline solution tha	t has	a density 1.05
	g/mL?				
	A 15.8 g	B 1.58 g	C 0.00158 g	D	1.05 g
50	On an autumn day	y in Washington, DC	the outdoor temperat	ure w	as 21 °C.
	vv nat was this out	uoor temperature in	- r :		
	A 44 °F	B 57 °F	C 69 °F	D	70 °F

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.				Qu	esti	on		
51	An ov	en is set for a	tem	perature of 298	°F.	What is the oven	temp	erature in K?
	A 16	66 °K	B	420.78 °K	C	148° K	D	571 °K
52	What	is the densit	y of	a sample of rul	bing	g alcohol if it has	a spo	ecific gravity of
	A 1.	r 27 g/mL	B	0.789 g/mL	C	0.895 g/mL	D	1.00 g/mL
53	Calcu	late the mas	s in	grams of 10.0	mL	of diethyl ether	· tha	t has a density
	$\begin{vmatrix} 0 & 13 \\ \mathbf{A} & 71 \end{vmatrix}$	g/mL ? I.3 g	B	0.173 g	C	7.13 g	D	13.7
54	What	is the mass in	ı gra	ms of 85.32 mL	of b	lood plasma with	a den	sity of 1.03
	$\begin{array}{c c} \mathbf{g/mL} \\ \mathbf{A} \\ \mathbf{B} \\ \mathbf{S} \\ \mathbf{S}$	5.32 g	B	82.83 g	C	82.8 g	D	87.88 g
55	The es	stimated aver	age	daily requireme	nt of	folic acid for pre	gnan	t females is 520
	micro	ograms. Whic	ch ac	curately express	ses th	nis value?		
	A 52	20 mg	B	520 Mg	C	520 ng	D	520 µg
56	A pati mL o	ient's urine sa f urine in one	ampl e dav	e has a density o , what mass of u	of 1.(Irine)2 g/mL. If the pa was eliminated?	tient	excreted 1250
				,		1075	1_	100
	A 1.	28 kg	B	1225 g	C	1275 g	D	128 g
57	Calcu densit	late the volur	ne m L?	\mathbf{mL} of 5.0 g Ac	etic a	<i>icid</i> for synthesis (of asp	oirin which has
		9 m I	D	5.0 mI	C	5.5 mL	П	5.8 mL
58	A 4. Norm	al urine has a	D a den	sity of 1.030 g/n	nL, v	vhat is the specific	grav	vity of normal
50	urine	?	1	,	., ,		8	10.00
	A 1.	354	B	13.02	C	1.030	D	10.03
59	If spe	cific gravity o	of a s	ubstance is 2.3,	what	t is the density of s	subst	ance?
	A 3.	2 g/mL	B	2.3 g/mL	С	4.6 g/mL	D	6.4 g/mL
60	Nitrog	gen gas (N ₂) v	voulo	l properly be cla	assifi	ied as a compound	1	
	Δ Τ1	me	R	False				
			D	1 0150				

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.			Question	
61	Changes in sta	ate such as melting an	d boiling are physical c	hanges.
	A Trees			
	A Irue	B False		
62	A compound of	cannot be broken dow	n into simpler substand	ces.
	A True	B False		
63	The base unit	for volume in the met	ric system is litter (L).	
	A True	B False		
64	An inexact n	umber results from a	a measurement or obs	servation and contains
V T	some uncertai	inty.		
	A True	B False		
65	A zero counts	s as a significant figur	e when it occurs at the o	end of a number that
	contains a dee	cimal point.		
	A True	B False		
66	8 mL is larger	than 8 dL.		
		B False		
67	A The Specific gravit	\mathbf{D} ¹ and \mathbf{D}	mpares the density of s	a substance with the
0/	density of wat	er.	imparts the density of a	a substance with the
	A True	B False		
68	The specific g	ravity of a substance l	has units of g/mL.	
		1 1	1 1	1 1
	A True	B False		
69	When the liqu	id carbon tetrachlorid	de (density = 1.59 g/mL) is added to water, the
	top layer will	be the water layer.		
	A True	B False		
70	In reading a n	umber with a decima	l point from left to righ	t, all digits starting
	with the first i	nonzero number are s	ignificant figures.	
		B False		
	A nuc	D Faise		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.				Qu	esti	on		
71	Th	e number 900,02	27,30	0 has four signi	ficar	nt figures.		
			Б			I	I	
	A	True	R	False	•			
72	Dis	solving sugar in	wat	er involves a che	emic	al change.		
	A	True	B	False				
73	W	nen subtracting	15 fr	om 762.85 the a	nswo	er should be repor	rted w	vith two
	sig	nificant figures.						
	Α	True	B	False				
74	Div	viding a number	by 1	0 ⁵ is the same a	s mu	lltiplying a numbe	er by	10 ⁻⁵ .
	Δ	True	R	False				
75	Th	e measurement	10.3	cm has more	sign	ificant figures the	an th	e measurement
75	10.	3 m.			8	8		
		I	-		I	I	I	
	Α	True	B	False				
76	Th	e temperature –	60 °C	is higher than	-60	oF.		
	A	True	В	False				
77	Th	e temperature 6	0 °C	is higher than 6	0 K.			
	•	T	п	F 1		l	I	
70	A	I rue	B	False	aifia	d as nuns substan	0.05	
78	LI	ments and com	Joun	us are poin clas	51110	u as pure substant	155.	
	•	Tmio	D	Falsa		l		
70	A Th	e number 87 92	<u>В</u> / 000	raise	he n	umber 9 7 × 10 ⁶		
/9	11	e number 07,927	,000	is in ger than t	псп			
	٨	True	R	False				
80	A	nixture can be s	epar	ated into its con	1DON	ents by physical c	hang	es.
00			1		1			
	Δ	True	R	False				
	A	True	Ŋ	raise				

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

(Chem 108 Chapter 2)

Ques. no.				Qu	estic	on				
1	On	e element with	24 ne	eutrons is:						
	A	24Cr ⁵²	B	$_{12}Mg^{24}$	C	₂₁ Se ⁴⁵	D	$_{11}Na^{23}$		
2	Which of the following element is <u>NOT</u> a metal ?									
	A	Li	B	Κ	C	Ν	D	Са		
3	Th	e isotope ₁ H ³ co	ntain	s two:			1			
	A	Protons	B	Electrons	C	Neutrons	D	Both A and B		
4	Th	e number of pr	otons	is:		1		<u>'</u>		
	A	Atomic number	B	Atomic weight	С	Mass number	D	Oxidation number		
5	The electronic configuration of ${}_{16}S^{32}$ is:									
	A	$1s^22s^22p^63s^2$ $3p^3$	B	$1s^{2}2s^{2}2p^{6}3s^{2}$ $3p^{5}$	C	$\frac{1s^{2}2s^{2}2p^{6}3s^{2}}{3p^{4}}$	D	$1s^22s^22p^63s^23p^6$		
6	Th	e following elen	nent i	s a metalloid:						
	A	Cl	B	Al	C	Si	D	Р		
7	Ho	w many protor	is, ne	utrons, electrons	s are	contained in ³⁴ ₁₆	S ?	<u>.</u>		
	A	18, 16, 17	В	16, 18, 17	C	16,18, 16	D	16, 17, 16		
8	An	example of a r	noble	gases is:						
	A	Fe	В	Xe	C	Na	D	Н		
9	An	example of an	alkal	ine earth metals	is:					
	A	K	B	Са	C	Р	D	Na		
10	Th	e following elen	nent i	s in period 2 an	d gro	up 2:				
	A	Al	B	Be	C	С	D	Ni		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques. no.			Que	estic	on			
11	Which sets of orbital is possible for second energy level?							
	A s, d	B	s, p	C	s, p, d	D	s, p, d, f	
12	The following eleme	ent h	as electronic co	nfigu	uration, 1s ² 2s ² 2p	$6^{6}3s^{2}3$	p ¹ ?	
	A P	B	Si	C	Al	D	Cl	
13	The following eleme	ent h	as four valence (elect	rons:	D		
	A B	R	0	C	N	D	Li	
14	The following elem	ent	has chemical pro	oper	ties similar to or	xygen	, 0?	
	A B	R	Р	C	S	П	Ν	
15	Arrange the elemen	ts C	a, Mg, and Be in	n ord	ler of increasing	g aton	nic size ?	
10	$\mathbf{A} = \mathbf{D}_{\alpha} \leq \mathbf{M}_{\alpha} \leq \mathbf{C}_{\alpha}$	р	$M_{\alpha} < C_{\alpha} < D_{\alpha}$		Be< Ca < Mg	П	Ca< Be< Mg	
16	A Be < Mg < Ca Arrange the elemen	B ts C	I. F. and Br in o	rder	of increasing in	D nizat	ion energy?	
10	i i i i i i i i i i i i i i i i i i i							
	$\mathbf{A} \mathbf{Br} < \mathbf{Cl} < \mathbf{F}$	B	Cl < Br < F	C	F < Cl < Br	D	Cl < F < Br	
17	Arrange the elemen	ts N	, B, and C in or	der	of increasing at	omic	size?	
	$\mathbf{A} \mid \mathbf{N} < \mathbf{C} < \mathbf{B}$	B	C < N < B	С	B < N < C	D	N < B < C	
18	Which element is a	non-	metal?					
	A K	B	Со	C	Br	D	Al	
19	The mass number o	f 11N	a ²³ atom is:			1		
	A 11	B	12	C	23	D	37	
20	Which element is a	tran	sition metal in p	erio	d 4?		<u> </u>	
	A K	R	0	C	Sn	П	Sc	
	A	D	V	U	~11	ν	\sim	

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques. no.		Que	stio	n		
21	Which element is a l	noble gas?				
	АН	B Ne	C	Br	D	Ra
22	Which element is no	ot an alkali metal?				1
	A Li	B Kr	C	Rb	П	Na
23	The element symbol	for manganese is:	C		ν	
			1		1	
	A M	B Ma	C	Mg	D	Mn
24	The element symbol	for sulphur is:				
	A S	B Su	C	Sf	D	Sl
25	What is the maximu	m number of electron	s tha	t can occupy the	thir	rd (n=3) shell?
	A 2	D	C	18	D	32
26	A 2	B δ		10	D	52
20	How many neutrons					
	A 23	B 14	C	92	D	27
27	The elements in a co	olumn of the periodic t	able	are collectively 1	refer	red to as:
	A Metals	B A period	C	A group	П	A series
28	Which element is a	d block element?	U	0	D	
20					_	
	A S	B Ar	C	Ag	D	As
29	The proper electron	-dot symbol for alumi	nium	is:		
	A • A1	B	C	·Al·	D	Both(B)and(C)
30	What is the element	symbol for antimony?		4 A4	D	
50		•				
	A A	B An	C	At	D	Sb

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques. no.				Qu	esti	on			
31	An example of an inner transition elements is:								
	A	Гi	R	s	C	U	D	N	
32	The	subshells consi	st of	orbitals.					
		r	р	F 1					
33	A col	l rue	riodi B	False ic table is called	a pe	riod.			
55		F							
	A	Гrue	B	False					
34	Prote	ons and electro	ns r	reside in the nuc	leus	of an atom			
	A	Гrue	B	False					
35	All a	toms of the san	ne e	lement contain t	he s	ame number of pr	otons	5.	
	Δ	Гпие	R	False					
36	The	element symbo	l S r	epresents sodiu	m.				
			-	L	1	1			
27		Frue	B	False					
3/	mem		A CIE						
	A	Гrue	B	False					
38	The -	4s orbital is lov	ver i	in energy than t	he 3d	l orbital.			
	A	Гrue	B	False					
39	All o	f the elements	in gi	roup 6A are non	-met	tals.			
		r	п	D-1					
40	A The	maximum num	B	of electrons tha	t car	occupy the 3d su	bshel	l is 10.	
40									
	A	Гrue	B	False					

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques. no.				Qu	estic	n				
41	Wł	nich atom has tl	he lar	gest atomic rad	ius?					
	A	Κ	B	Ga	C	Br	D	Rb		
42	Wł	lich element ha	s the	smallest ionizat	ion en	ergy?	I			
	٨	K	R	Ca	C	Br	п	Rb		
43	Th	e electron confi	D gurat	tion of aluminur	n is:	1s ² 2s ² 2p ⁶ 3s ² 3	р ⁵			
		Tmio	р	Falsa	1		l			
	A	True	В	Faise			•			
44	In	e electrons in th	ie oui	ermost shell of	an ato	om are called the	ie pai	rd electrons.		
	A	True	B	False						
45	The name of the halogen in period 3 is Chlorine.									
	A	True	B	False						
	Elements in the same group have the same number of valence electrons									
	Δ	True	B	False						
47	Tu	ngsten is a meta	al con	taining 74 prote	ons th	at is widely use	ed in t	the electronics		
	ind	ustry. the elem	ienta	symbol for tun	gsten	is:				
		T .	р	T.		То	р	W 7		
- 10	A	11	<u> </u>	le		1a	<u>D</u>	vv		
48	n ato	e ionization ene m.	ergy is	s the energy nee	aea to	o remove an ele	ectron	from a neutral		
	A	True	B	False						
49	Th	e electron confi	gurat	tion for calcium	is 1s ²	2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	2			
		T	р	D 1	l					
	A	I rue	B	False	4h = 4	have a difference	4	hor of northeast		
50	150	topes are atoms	s 01 th	ie same element	tnat	uave a differen	i nun	iver of neutrons		
	A	True	B	False						

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

(Chem 108 Chapter 3)

Ques no.	Question										
1	Coval	ent bonds resu	lt from the ele	ctrons between tw	wo atoms?						
	A	lost	B gained	C shared	D donate						
2	Which	n one of the fol	lowing compounds h	as <u><i>not</i></u> an ionic co	ompound?						
	Α	CO ₂	B CaCl ₂	C KCl	D NaF						
3	Whiel	n one of the fol	lowing compounds ha	as ionic bond?							
	Α	H ₂ O	B Cl ₂	C NaF	\mathbf{D} N ₂						
4	Whiel	n one of the fol	lowing compounds h	as covalent bondi	ing?						
	A	MgO	B N ₂	\mathbf{C} CaF ₂	D LiCl						
5	Which one of the following compounds has <u>not</u> a covalent compound?										
	A	Br ₂	B NaI	C NO ₂	\mathbf{D} CO ₂						
6	Write	the ion symbo	l for an atom with 9]	protons and 10 el	lectrons?						
	Α	F^{-}	B Na ⁺	$\mathbf{C} \mid \mathbf{O}^{-2}$	$\mathbf{D} \mid \mathbf{F}^+$						
7		are negatively	charged ions that ha	ve electron	ns than protons.						
	Α	Cations, more	B Anions, more	C Anions, less	s D Cations, less						
8	What electro	is the ion syml ons?	bol for an atom with t	twenty (20) proto	ons and eighteen (18)						
	•	C.	D A .2+	\mathbf{C} Ca^{2+}							
9	A Write	the ion symbo	B Ar I for an atom with 26	protons and 23	D						
			D -+3								
10	A How r	Fe ^{rs}	B F ¹⁰ and electrons are pre-	Sent in Ca^{2+} ion?	$\frac{ \mathbf{D} ^{\mathbf{F}}}{P(\mathbf{Z}=20)}$						
10		in protons			$10 \overline{} \overline{} $						
	A	p=18,e=20	B p = 20, e = 22	C $p = 20, e = 1$	D $p = 22, e = 18$						

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques. no.				Qu	esti	on		
11	Writ	e the ion symbol	for	an atom with t	he 7	protons and 10 ele	ctro	ns?
	Α	O^{-2}	B	N^{-3}	C	F^{-}	D	Al^{+3}
12	Wha	t is the ion symb	ol f	or an atom with	8 p	rotons and 10 elect	rons	s?
	Α	Na^+	B	F^{-}	C	O^{-2}	D	N^{-3}
13	The kryp	noble gas that hat hat hat hat hat hat hat hat ha	ıs tł	ne same electron	ic c	onfiguration as the	iodi	ide ion is
	Α	True	B	False				
14	Elem	ents in group 2A	A fo	rm ions with a +	-2 cl	harge?		
	Α	True	B	False			ĺ	
15	Whic	ch of the followin	ng si	tatement is <i>Fals</i>	e ab	oout the ionic comp	oun	ds?
	Α	Ionic compounds have high melting points.	B	The solution of Ionic compound conduct electricity.	С	Most ionic compounds are insoluble in water	D	Ionic compounds have high boiling points.
16	Selec	t the ionic comp	oun	d formed from	Alu	minum, Al and oxy	gen	, 0?
	Α	Al ₂ O ₃	B	Al_3O_2	C	AlO ₂	D	Al_2O_2
17	Writ O)	e the formula fo	r th	e ionic compour	nd fo	ormed from pair of	elei	nents (Mg and
	A	Mg ₂ O	B	MgO	C	MgO ₂	D	Mg ₂ O ₄
18	Writ	e the formula of	ion	ic compound, fo	orme	ed from the element	ts, F	e(III) and Br?
	A	FeBr ₃	B	FeBr	C	Fe ₂ Br ₃	D	Fe ₃ Br ₂
19	Wha	t is the formula	for	the ionic compo	und	, formed from the I	Li ai	nd O?
	Α	Li ₂ O	B	Li ₂ O ₃	C	LiO ₂	D	Li ₃ O ₂
20	Ionic	compounds are	ust	ally solids at ro	om	temperature?	<u>.</u>	
	Α	True	B	False				

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques. no.				Questio	n						
21	Use elem	the group numbe lent?	er to) determine the char	ge oi	n an ion derived	fron	n Se			
	A	Se ⁺²	B	Se ⁺⁴	С	Se ⁻²	D	Se ⁻⁴			
22	Give	e the name of Al ^{+.}	ion	?							
	Α	Aluminous	B	Aluminum	С	Aluminic	D	Alum			
23	Give the name of S ⁻² ion?										
	Α	Sulphide	B	Sulphur	С	Sulphuric	D	Sulphate			
24	Give	Give the name of Fe ⁺² ion?									
	A	Ferric	B	Ferous	С	Ferion	D	Iron			
25	Name the ionic compound Al ₂ O ₃ ?										
	A	Aluminum oxide	B	Alum oxide	С	Aluminous oxide	D	Aluminic oxide			
26	Pota	ssium sulfide has	s the	e chemical formula I	K ₂ S?						
	Α	True	B	False							
27	Whi	ch compound ha	s th	e highest melting po	int?						
	Α	KC1	B	CH ₄	С	$C_{6}H_{12}O_{6}$	D				
28	How	w many covalent l	oon	ds are predicted for .	N at	o m ?					
	Α	5	B	7	С	3	D	0			
29	How	w many covalent l	oon	ds are predicted for	Si at	om?					
	Α	4	B	5	С	3	D	7			
30	Nun	nber of non-bond	ed o	electron pairs are pr	edict	ted for Cl?					
	Α	4	B	3	С	5	D	7			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.				Q	uest	ion		
31	Ho ^r NH	w many lone pa	airs	of electrons are	pres	ent in the Lewis	str	ucture of ammonia,
	Δ	0	R	1	C	2	D	5
32	Giv	ve the formula	for a	linitrogen tetroxi	ide co	ompound?		
	A	NO ₂	B	N ₂ O	C	N_2O_4	D	N ₄ O ₂
33	Ato	oms with seven	vale	ence electrons ty	pical	ly form one cov	aler	it bond?
	A	True	B	False				
34	Ho	w many non bo	onde	d electron pairs	are i	in the Lewis stru	ıctu	re below?
	٨	4	D			8	п	16
35	A Use	4 electronegativ	D vity y	² values to classify	the	bond, H—Cl? [(a) and $H(2,1)$]
33	0.54	,	105) II(=·I)]
	A	non-polar covalent	B	polar covalent	С	Ionic bond	D	all of these
36	Wh	ich Lewis-dot	stru	cture represents	a ch	lorine atom in t	he g	ground state?
	A	·ċi·	B	: CI	С	CI	D	Cl
37	Ra	nk these atoms	(B,	O and N) in ord	er of	increasing elect	tron	egativity?
	A	B < O < N	B	N < O < B	С	B < N < O	D	O < N < B
38	Wh	nich one of the	follo	wing molecule is	s a n	onpolar with no	net	dipole?
	A	HC1	B	Br ₂	C	H ₂ O	D	NaCl
39	Wh	ich atom has t	he lo	west electroneg	ativi	ty?		
	A	Al	B	S	C	Se	D	Rb
40	Ra	nk these atoms	(Cl,	I and F) in orde	er of	increasing elect	ron	egativity?
	A	F < Br < Cl	B	Br < Cl < F	С	Cl < Br < F	D	F < Cl < Br

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.				Q	uest	ion				
41	Th	e bond results f	from	the transfer of	elect	rons is?				
	A	Ionic	B	Covalent	C	metallic	D	none of the previous		
42	Wł	nat is the bond	type	if the electrone	gativ	ity difference is	gre	ater than 1.9 unite?		
	A	Nonpolar	B	polar	C	Ionic	D	All the previous		
43	What is the proper name for MgF ₂ ?									
	A	Magnesium fluoride	B	Magnesium (I) fluoride	C	Magnesium (II) fluoride	D	Magnesium difluoride		
44	Which atom fits the electron-dot symbol?									
	•	т:	D	р	$\cdot X$	N	П	Na		
45	A Wł	L1 nat period 4 ele	B men	в t forms an ion w	vith a	a –1 charge?	υ	110		
73		F	Ð	· - · ·						
	Α	Sulfur	B	Bromine	C	Iodine	D	Rubidium		
46	Wł	iat is the charg	e on	the chromium i	on ir	i the ionic comp	oun	d CrCl ₃ ?		
	Α	+6	B	+3	C	-6	D	-3		
47	Wł	at is the Lewis	stru	icture for chloro	oethy	lene (C ₂ H ₃ Cl)?				
	Α	H H H C C C	В	H = H = H H = C = C = C	С	H H H H H H H H C = C - CI:	D	н—ё—ё—ё: Н Н Н Н Н		
48	Ra	nk the atoms B	r, C	l, and K in orde	r of i	ncreasing electr	one	gativity?		
	A	K < Br < Cl	B	Cl < Br < K	С	Br < Cl < K	D	K < Cl < Br		
49	An	ions are forme	d wh	en a neutral ato	m ga	ains one or more	e ele	ctrons		
	A	True	B	False						
50	Bo	nding is the join	ning	of two atoms in	a sta	able arrangeme	nt			
	A	True	B	False						

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

(Chem 108 Chapter 4)

Que s. no.				Que	esti	0 n					
1	Th	e law of conservation of	ene	rgy states that							
	A	The energy of the reactants and products in a chemical reaction are always equal	B	All chemical reactions are reversible.	C	Energy can be created, but not destroyed.	D	Energy cannot be created or destroyed.			
2	Cal	lorie is a unit of energy a	and	equals	Jo	oule.					
	A	4.184	B	0.4184	C	41.18	D	418.4			
3	31	39 kJ. How many kiloc	alor	ies does this corre	spor	nd to?					
	A	7,502 kcal	B	7.502 kcal	C	131.3 kcal	D	0.1313 kcal			
4	The interaction between the solid particles is										
	A	strong	B	very strong	C	moderate	D	Weak			
5	55.2 kcal. How many kilojoules does this correspond to?										
	A	231 kJ	B	0.231 kJ	C	13.2 kJ	D	1,320 kJ			
6	Th	ere are three types of in	term	olecular forces be	etwee	en particles, one of	then	ı is bond			
	A	hydrogen	B	covalent	C	ionic	D	Coordinate			
7	Wh	iich of the following ene	rgy	quantities is equiv	alen	t to 578 J?					
	A	$5.78 \times 10^5 \text{ kJ}$	B	138 kcal	C	0.138 kcal	D	1.38×10^5 kcal			
8	Th	e types of intermolecula	r foi	rces presents in NI	H ₃ m	olecule are	•••••				
	A	London dispersion force	B	dipole-dipole interaction	C	hydrogen bond	D	A+B+C			
9	A r	eaction in which the end	ergy	of the products is	higł	er than the energy	of t	he reactants?			
	A	Oxidation-reduction	B	Endothermic	С	Exothermic	D	Combustion			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

10	The	boiling point of wat	ter is	tha	in CH	4•					
	A	lower]	B higher	C	equal]	D	SS			
Ques. no.				Qu	estic	n					
11	Th	e particles of a gas	•••••	1 / 1		1 / 1	1_				
	A	are far apart from each other	B	other but somewhat disorganized	С	other and highly organized	D	None of the above			
12	Wł	Which of the following compounds is Only nonpolar ?									
	Α	NH ₃	B	CH ₄	C	CH₃OH	D	HCI			
13	Th	e particles of a liqui	d	•••••		1	I				
	A	are far apart from each other	B	are close to each other but somewhat disorganized	С	are close to each other and highly organized	D	None of the above			
14	Th	e conversion of solid	l to v	apor is called		· • • • • • • • • • • • • • • • • • • •	1				
	Α	vaporization	B	condensation	C	Melting	D	sublimation			
15	Th	e particles of a solid		•••••• 1 / 1		1 , 1		NT C (1 1			
	A	are far apart from each other	B	other but somewhat disorganized	C	other and highly organized	$\frac{1}{7}$ D	None of the above			
16	A r	eaction release 421	kj of	energy. How many b	kiloca	lories does this corr	espon	ds to			
	Α	100.4	B	100.5	C	100.6	D	100.7			
17	Wł	nich of the following	is tr	ue about the shape a	nd vo	lume of liquids		No 641 1			
	A	Expands to fill its container	B	A fixed volume that takes the shape of the container it occupies	C	and volume	D	None of the above			
18	Wł	nich of the following	exh	ibit London dispersi	on for	ce Only ?					
	A	NH ₃	B	H ₂ O	C	HCl	D	C ₂ H ₆			
19	Wł	nich of the following	is tr	ue about the shape a	nd vo	lume of gases?	1_				
	A	Expands to fill its container	B	A fixed volume that takes the shape of the container it occupies	С	A definite shape and volume	D	None of the above			
20	Th	e hydrogen bond for	rmed	when H atom attach	ned wi	ith					
	A	Ν	B	F	С	0	D	A+B+C			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.				Ques	stic	on				
21	W	hich of the following	g is	true about the shape a	nd	volume of solids?				
	A	Expands to fill its container	B	A fixed volume that takes the shape of the container it occupies	C	A definite shape and volume	D	None of the above		
22	wh	ich of the following	; mo	lecules has higher boi	ling	point ?				
	A	H ₂ O	B	CH_4	C	NH ₃	D	C_2H_6		
23	W	hich of the following	g is	true about the density	of g	gases?				
	A	Low(<0.01g/mL)	B	High (1 – 10 g/mL)	C	High(~1 g/mL)	D	Low (>0.01but <1.0 g/mL)		
24	wl	nen energy is abs	ort	oed, a process is sai	d to	be				
	A	endothermic	B	exothermic	С	equilibrium	D	None of the above		
25	Which of the following is true about the density of liquids?									
	A	Low(<0.01g/mL)	B	High (1 – 10 g/mL)	C	High(~1 g/mL)	D	Low (>0.01but <1.0 g/mL)		
26	W	hich of the following	g m	olecules can form hydr	roge	en bonding ?				
	A	H ₂ O	B	CH ₄	С	NH_3	D	A and C		
27	W	hich of the following	g is	true about the density	of s	solids?				
	A	Low(<0.01g/mL)	B	High (1 – 10 g/mL)	С	High(~1 g/mL)	D	Low (>0.01but <1.0 g/mL)		
28	Jo	ule is a unit of ener	gy a	and equals	ca	alorie.				
	A	4.184	B	0.4184	C	41.18	D	1/4.184		
29	W	hich of the following	g is	true about the interac	tion	between particles of	gas	es?		
	A	Weak interaction	B	No interaction	C	Strong interaction	D	Very strong interaction		
30	Th	e weakest types of i	nte	rmolecular forces betw	veen	ı particles, is	• • • • •			
	A	London dispersion force	B	dipole-dipole interaction	С	hydrogen bond	D	None of the above		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques. No.			Que	estic)n					
31	The strongest types	of inte	rmolecular forces bet	twee	n particles, is	•••				
	A London dispersion force	B dip	pole-dipole interaction	C	hydrogen bond	D	None of the above			
32	Propanol, CH ₃ CH ₂ CH ₂ OH, has the structure shown below. What is the strongest type of									
	Intermolecular force that exists between two propanol molecules? H H H H									
	$\mathbf{H} - \mathbf{\dot{c}} - \mathbf{\dot{c}} - \mathbf{\dot{c}} - \mathbf{O} - \mathbf{H}$									
	A London dispersion force	B	dipole-dipole interaction		hydrogen bond	D	None of the above			
33	Which compound h	nas the l	owest boiling point?							
	$\mathbf{A} \begin{vmatrix} \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ $	B		С		D	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
34	Which molecule(s)	exhibit	hydrogen bonding?							
	A CH	D	CHCI		NF ₂	п	HF			
25	A Cn ₄ Which of the follow	$\frac{\mathbf{D}}{\mathbf{D}}$	nounds has the high	L Lest b	niling noint?	D				
35	$\mathbf{A} \begin{vmatrix} & H & H & H & H & H \\ H & H & H & H & H$	B	нронная ная спе нідн н-с-с-с-о-н н н н	C	ннн н-с-с-0-с-н 	D	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
36	Which molecule(s)	exhibit	London dispersion fo	orces	\$?					
	\mathbf{A} CH ₄	B	CHCl ₃	C	NF ₃	D	HF			
37	What kind of attrac	ctive for	rces between octane i H H H H H H -	nole H C H H	cules ? н н н -cсн н н н					
	A London dispersion force	B	o dipole-dipole interaction	C	hydrogen bond	D	A+B+C			
38	Which of the follow	ving is t	rue about melting?	1		1				
	A Energy is released in melting	ⁿ B	Energy is absorbed in melting	C	of vaporization	D	Melting is the opposite of sublimation			
39	Which of the follow	ving is t	rue about freezing?							
	A Energy is released in freezing	ⁿ B	Energy is absorbed in freezing	C	Freezing is the opposite of vaporization	D	Freezing is the opposite of sublimation			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

40	Which of the following is true about vaporization?											
	A	Energy is released in vaporization	B	Energy is absorbed in vaporization	C	Vaporization is the opposite of melting	D	Vaporization is the opposite of freezing				
Ques. No.				Que	stic	n						
41	W	hich of the following	is t	rue about condensati	on?							
	A	Energy is released in condensation	B	Energy is absorbed in condensation	C	Condensation is the opposite of melting	D	Condensation is the opposite of freezing				
42	W	hich of the following	is t	rue about sublimation	n?							
	A	Energy is released in sublimation	B	Energy is absorbed in sublimation	C	Sublimation is the opposite of melting	D	Sublimation is the opposite of freezing				
43	W	hich of the following	is t	rue about deposition?								
	A	Energy is released in deposition	B	Energy is absorbed in deposition	C	Deposition is the opposite of melting	D	Deposition is the opposite of freezing				
44	W	hich processes are ei	ndot	hermic?								
		I. Deposition	I	. Vaporization	II	I. Sublimation	I	Condensation				
	A	I, II, III, and IV	B	I and III	C	II and III	D	I, II, and IV				
45	En	ergy is the capacity	to d	o work.								
	A	True	B	False	C		D					
46	Ki	netic energy is store	d en	ergy; and potential e	nerg	y is the energy of mo	tion.					
	A	True	B	False	C		D					
47	W	hen energy is absorb	ed,	the process is said to	be e	ndothermic.	1					
	A	True	B	False	C		D					
48	Lo	ndon dispersion for	ces a	re exhibited by all co	vale	ent compounds.	1					
	A	True	B	False	C		D					
49	Two molecules of dimethyl ether, whose structure is shown below, are capable of hydrogen											
				н—с́—	o—ċ- l	—H						
	A	True	B	False	C		D					
50	London dispersion forces can also be called van der Waals forces.											
	A	True	B	False	С		D					

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

(Chem 108 Chapter 5)

Ques no.				Qu	esti	on				
1	Brea	aking bonds betwe	en re	actants and form	natio	n new bonds between	pro	oducts is called		
	Α	ionization	B	dissociation	С	chemical reaction	D	addition		
2	From the p	n the following ba	lance 1 ator	ed equation, CH4	+ 20	$D_2 \rightarrow CO_2 + 2H_2O$				
	the l							a a u		
	A	С, 4О, 8Н	B	С, 2О, 8Н	C	С, 4О, 4Н	D	С, О, Н		
3	The number of molecules present in 0.5 mole CO ₂ are									
	A	5x6.02x10 ²³	B	$0.5x6.02x10^{23}$	C	50x6.02x10 ²³	D	6.02×10^{23}		
4	which of the following equations consider a balanced equation									
	٨	$C_3H_8 + 5O_2 \rightarrow$	P	$C_3H_8 + O_2 \rightarrow$	C	$C_3H_8 + O_2 \rightarrow$	D	$C_3H_8 + O_2 \rightarrow$		
5	A 05 r	$CO_2 + 4H_2O$	D	$CO_2 + H_2O$	or	$3CO_2 + 4H_2O$ ms(Na=23 Cl=35 44		$CO_2 + H_2O$		
Э	0.51	nore on water more	cuit		gi	ams(11a-23, C1-33.44)			
	A	2922	B	2.922	С	29.22	D	292.2		
6	Kno	wing that M.Wt o	fH ₂ (D = 18 grams, th	e ma	ss of 0.25 mole of H ₂	20 i	s		
	grar A	ns 45	R	9	C	13.5	n	18		
7	A Froi	T.S m the balanced equ	D 1atio	n. C ₆ H ₁₂ O ₆ \rightarrow 2	С С ₂ Н	$(0 + 2CO_2)$	ν			
/	<u>5</u> mo	oles of glucose (C ₆ l	$H_{12}O$	6) gives	- 2	. moles of ethanol(C ₂	H ₆ (D).		
	A	6	B	8	C	10	D	12		
8	The	reaction which ch	aract	terized by absorb	ing o	of heat is called		Reaction		
	A	endothermic	B	exothermic	<u>+</u>	precipitation	D	addition		
9	Sodi	ium azide (NaN ₃) c NaN ₂ \rightarrow Na ⁺ +	an b	e composed to N: $2 \text{NaN}_2 \rightarrow \text{Na}^+$	a' an	d N ₂ by the following $2NaN_2 \rightarrow 2Na^+ +$	bal	anced equation $3NaN_2 \rightarrow 2Na^+ +$		
	A	N_2	B	$+ N_2$	U	$3N_2$	υ	3N ₂		
10	The	law of conservatio	n of	mass states that .	•••••	•••••				
	A	Atoms cannot be created or destroyed in a chemical reaction	B	Molecules cannot be created or destroyed in a chemical reaction	C	Compounds cannot be created or destroyed in a reaction	D	Complexescannot be created or destroyed in a reaction		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques				Оце	stin	'n		
no.				Que	5110	/11		
11	Whi	ich chemical equat	tion is	s properly balance	ed?			
	A	$\begin{array}{c} \mathrm{SO}_2 + \mathrm{O}_2 + \mathrm{H}_2\mathrm{O} \\ \rightarrow \mathrm{H}_2\mathrm{SO}_4 \end{array}$	B	$\begin{array}{cccc} 2 & \mathrm{SO}_2 \ + \ \mathrm{O}_2 \ + \ 2 \\ \mathrm{H}_2\mathrm{O} \end{tabular} & 2 \ \mathrm{H}_2\mathrm{SO}_4 \end{array}$	C	$\begin{array}{l} \mathrm{SO}_2 + \mathrm{O}_2 + 4 \ \mathrm{H}_2\mathrm{O} \\ \rightarrow 2 \ \mathrm{H}_2\mathrm{SO}_4 \end{array}$	D	$\begin{array}{r} \mathrm{SO}_2 \ + \ \mathrm{O}_2 \ + \ 4 \ \mathrm{H}_2\mathrm{O} \\ \rightarrow 2 \ \mathrm{H}_2\mathrm{SO}_4 \end{array}$
12	In tl nitre	he chemical equati ogen atoms are on	ion 2 each	Co(NO ₃) ₃ + 3 (NI side of the equat	H ₄) ₂ S tion?	$S \rightarrow Co_2S_3 + 6 \text{ NH}$	4NC) ₃ , how many
	A	6	B	12	C	16	D	20
13	How	v many carbon ato	ms a	re in 3.85 mol of	carb	on?		
	A	3.85 atoms	B	2.32×10 ²⁴ atoms	С	6.02 x 10 ⁻²³ atoms	D	3.85 x 10 ⁻²³ atoms
14	Wha	at is the formula w	eight	t of KCl?				
	A	74.55 amu	B	66.42 amu	С	36.00 amu	D	36.00 amu
15	Wha	at is the formula w	eight	t of Co(NO ₃) ₃ ?				
	A	88.94 amu	B	244.96 amu	C	216.94 amu	D	2.1694 amu
16	Wha	at is the mass of 3.	81 m	ol of PH ₃ ?				
	A	130. g	B	8.92 g	С	34.0 g	D	340 g
17	How	w many moles of ca	rbon	dioxide are in 2	l1 g	of carbon dioxide	?	
	A	929 mol	B	4.79 mol	C	0.209 mol	D	209 mol
18	How	v many moles of su	ılfur	trioxide are form	ed fi	rom 3 moles of sul	fur	dioxide using the
	give	n balanced equation	on?	$2 \text{ SO}_2 + \text{O}_2 \rightarrow$	• 2 S	03		
	A	12	B	9	C	6	D	3
19	Con	sider the reaction	: 2 A	$l(OH)_3 + 3 H_2SO$	$4 \rightarrow A$	$Al_2(SO_4)_3 + 6 H_2O_{ads}^2$). H	low many grams of
	Al2(504j3 are generate	u wn	$152 \text{ g of } \Pi_2 SC$	74 rea	aus :		
	A	530	B	1590	C	177	D	214
20	The	number of molecu	ıles p	present in one mo	le O ₂	are	••••	
	A	8	B	16	C	$2x6.02x10^{23}$	D	6.02×10^{23}

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques				Oue	estic	n		
no.				<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>			
21	A bala	inced chemical	equa	ition tells the nut	mbei	r ofof each	n reactant that combine	
			(n cach product r	UI IIIV	cu		
	A G	rams, grams	B	Grams, moles	C	Moles, moles	D Grams, liter	
22	How n	nany carbon at	oms a	are in 77.28 g of e	ethar	ne (C ₂ H ₆)?		
	A 2.	570	B	1.548×10^{24}	C	5.140	D 6.02×10^{24}	
23	What	is the mass of 3	6.4 × 1	0 ²⁰ molecules of	etha	nol (C ₂ H ₆ O) exp	ressed in milligrams?	
	1		1		1			
	A 26	5 mg	B	26000 mg	C	0.26 mg	D 260 mg	
24	If the	products are h	ighei	· in energy than	the	reactants, the re	action will be	
	reaction	n						
	A ex	othermic	B	endothermic	С	ionic	D covalent	
25	If the ΔH is negative, the reaction will be reaction							
	.			1.1			D solida	
	A ex	othermic	B	endothermic	C			
26	It the	heat is released	in a	reaction, the rea	ctioi	n will be	reaction	
	A en	dothermic	B	exothermic	C	solid	D liquid	
27	Which	sample contai	ns th	e largest number	of n	nolecules?		
	. 1		I			100 600		
	A 10	00 g of CO ₂	B	100 g of CH ₄	C	100 g of CBr ₄	D 100 g of CHBr ₃	
28	Potass	ium metal (K)	react	s violently when $2 KOH(aa)$	adde ∟⊔⊿	ed to water accor	ding to the balanced	
	to read	et completely w	with 7.) → 2 KOII(aq) = 54 mol of K?	F 112(g). How many n	notes of 11 ₂ O are needed	
	A 2	i v	B	15.1	C	7.54	D 3.77	
29	Which	quantity has t	he gr	eatest mass?	1	1		
	A 2.	0 mol of Na	B	2.0 mol of Na ₂ O	C	2.0 mol of NaCl	D 2.0 mol of O_2	
30	How n	nany carbon at	oms a	are in 77.28 g of e	ethar	ne (C ₂ H ₆)?		
			1		1	1 25		
	A 2.	570	B	1.548×10^{24}	C	1.238×10^{23}	D 3.094×10^{24}	

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

		Ques	stio	n		
The subscripts in o	chemi	cal formulas are	cha	nged in order to	bala	nce a chemical
equation						
A True	B	False				
A chemical change a	lters	the chemical comp	osit	ion of a substance	, and	therefore a new
substance is produce	ea.					
A True	B	False				
A mole of copper at	oms h	as more atoms tha	n a I	mole of lead atom	S	
	P	False			ĺ	
One mole of oxygen	mole	cules contains mor	e ato	oms than one mole	e of le	ad atoms
		1		1		
A True	B	False				
The molar mass of C	CaCO	$_3$ is greater than th	e m	olar mass of Ca(N	O ₃) ₂	
A True	B	False				
The balanced react	ion:	$4 \text{ NO}_2 + \text{O}_2 + 2 \text{ I}$	H ₂ O	\rightarrow 4 HNO ₃ state	es tha	t four moles of
nitrogen dioxide rea	ct wit	th each mole of oxy	gen			
The balanced react	ion: 4	1 anse	1-0	 → 4 HNO₂ state	s tha	t four grams of
nitrogen dioxide rea	cts w	ith each gram of o	xyge	n		g
A True	B	False				
A mole is a quantity	that	contains 6.02 × 10 ⁻	⁻²³ at	oms, molecules, o	r ions	5
A True	B	False				
The formula weight	of a (ed in	compound is the su atomic mass units	im o	f the atomic weig	hts of	all the atoms in
A True	B	False				
Consider the balance	ed re	eaction: $4 \text{ NO}_2 + 0$) ₂ +	$2 \text{ H}_2\text{O} \rightarrow 4 \text{ HNO}$	3. If	100. g of NO ₂ is
placed in a reaction	vesse	el the theoretical y	ield	of nitric acid (HI	NO 3)	collected will be
\mathbf{A} True	В	False				
	The subscripts in a equationATrueA chemical change a substance is produceATrueATrueATrueATrueATrueATrueATrueATrueATrueATrueATrueATrueATrueATrueATrueConsider the balanced react nitrogen dioxide react 	TrueBATrueBATrueBATrueBATrueBOne mole of copper atomsBATrueBOne mole of oxygenBATrueBThe molar mass of CaCOBATrueBThe balanced reaction: aBThe balanced reaction: aBATrueBBConsider the balanced reaction: aATrueBConsider the balanced reaction: aBConsider the balanced reaction: aATrueBConsider the balanced reaction: aBConsider the balanced reaction: a	QuesThe subscripts in chemical formulas are equationATrueBFalseA chemical change alters the chemical comp substance is produced.BFalseATrueBFalseATrueBFalseATrueBFalseATrueBFalseOne mole of oxygenBFalseOne mole of oxygenBFalseATrueBFalseThe molar mass of CaCO3 is greater than the nitrogen dioxide reaction: 4 NO2 + O2 + 2 H nit	QuestioQuestioThe subscripts in chemical formulas are charequationATrueBFalseA chemical change alters the chemical composit substance is produced.BFalseATrueBFalseATrueBFalseATrueBFalseOne mole of copper atoms has more atoms than a mole of oxygenBFalseOne mole of oxygenBFalseImage: Consider mass of CaCO3 is greater than the molar mass of CaCO3 is greater than the mole of oxygenATrueBFalseThe balanced reaction:4 NO2 + O2 + 2 H2Onitrogen dioxide reactor:4 NO2 + O2 + 2 H2Onitroge	QuestionThe subscripts in chemical formulas are changed in order to equationATrueBFalseA chemical change alters the chemical composition of a substance substance is produced.BFalseATrueBFalseImage: Composition of a substance substance is produced.ATrueBFalseImage: Composition of a substance substance is produced.ATrueBFalseImage: Composition of a substance substance substance is produced.ATrueBFalseImage: Composition of a substance substance substance substance substance substance substance is produced.ATrueBFalseImage: Composition of a substance sub	QuestionThe subscripts in chemical formulas are changed in order to bala equationATrueBFalseA chemical change alters the chemical composition of a substance, and substance is produced.BFalseATrueBFalseImage: Composition of a substance, and substance is produced.ATrueBFalseImage: Composition of a substance, and substance, and substance is produced.ATrueBFalseImage: Composition of a substance, and substance, and substance, and substance, and substance is produced.ATrueBFalseImage: Composition of a substance, and substan

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.			Ques	tio	n		
41	$2 \text{ Co(NO_3)_3(aq)} + 3$	(NH	$(a_1)_2 S(aq) \rightarrow Co_2 S_3(s)$	s) + (3 NH ₄ NO ₃ (aq) is	a pro	perly balanced
	chemical equation						
	A True	B	False	C		D	
42	One term in a bala	nced	chemical equation	con	tains the coefficient	ent 4	in front of the
	formula $Mg_3(PO_4)_2$. 16 O atoms in this to	This erm.	s term represents t	hat 1	there are 12 Mg a	toms	, 4 P atoms and
	A True	B	False	C		D	
43	The molar mass of dichloromethane (C	f dib HaCl	romomethane (CH	I ₂ Br	2) is larger than	the	molar mass of
		ii2Cl	2.]•				
	A True	B	False	C		D	
44	The mass of one eth	anol ((C ₂ H ₆ O) molecule	is 7.6	5×10^{-23} grams	•	
	▲ .	п			I	Б	
45	A Irue The molar mass of N	B MaC(False	C ho m	olar mass of NaN	D 0.	
45	A True	B	False			\mathbf{D}_{3}	
46	One mole of oxygen	mole	cules contains mor	e ato	oms than one mole	e of le	ad atoms
	A True	B	False	C		D	
47	$2 \operatorname{Co(NO_3)_3}(aq) + 3$	(NH	$(a_1)_2 S(aq) \rightarrow Co_2 S_3(aq)$	s) + (3 $NH_4NO_3(aq)$ is	a pro	perly balanced
	A True	В	False	C		D	
48	One term in a bala	nced	chemical equation	con	tains the coefficient	ent 4	in front of the
	formula $Mg_3(PO_4)_2$.	This	s term represents t	hat	there are 12 Mg a	toms	, 4 P atoms and
	A True	B	False	C		D	
49	The molar mass of	f dib	romomethane (CH	I ₂ Br	2) is larger than	the	molar mass of
	dichloromethane (C	H ₂ Cl	2)				
	A True	R	False	C		D	
50	The mass of one etha	anol ((C ₂ H ₆ O) molecule	is 7.6	55 × 10 ⁻²³ grams		<u> </u>
				1	-	1	
	A True	B	False	C		D	

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

(Chem 108 Chapter 6)

Ques. no.			Question	h Ch	apter 6					
1	A patient's systol	ic pres	ssure is measure	ed as	128 mm Hg. V	Vhat i	s this pressure in			
	units of atm?	n	1.00		0 168 atm		$0.72 \times 10^4 atm$			
	A 128 atm	B	1.28 atm	C	0.108 attil	D	9.75 x 10 aun			
2	An aerosol can l	ias a p	pressure of 1.86	atm.	What is this	press	sure expressed in			
	A 1.86 mm Hg	B	1410 mm Hg	C	1860 mm Hg	D	0.00245 mm Hg			
3	A birthday ball	oon co	ntains helium	at a	pressure of 81	5 tor	r. What is this			
	pressure expressed in units of mm Hg?									
	A 815 mm Hg	B	1.07 mm Hg	C	0.815mm Hg	D	6.1910 mm Hg			
4	A sample of neor	1 gas h	as a volume of	5.0 m	nL at a pressur	e of 1	.50 atm. What is			
	the pressure exer temperature?	ted by	the gas if the v	oium	e is increased i	0 30.0) mL, at constant			
	A 0.25 atm	B	9.0 atm	C	1.5 atm	D	0.21 atm			
5	Which gas law d	escribe	es the relationsh	ip be	tween the volu	me an	d temperature of			
	a sample of gas a	t const	ant pressure?	1		I				
	A Boyle's law	В	Avogadro's law	C	Charles's law	D	Gay-Lussac's law			
6	A balloon that	contair	ns 0.500 L of h	nelium	n at 25 °C is	coole	d to 11 °C, at a			
	constant pressur	e. Wha	t volume does t	he ba	lloon now occu	py?				
	A 0.22 L	B	1.1 L	C	0.477 L	D	0.525 L			
7	A 54.2 L sample	of gas	s at 115 K is he	ated 1	to 345 K, at co	nstan	t pressure. What			
	volume does the 10° J	gas nov	w occupy?		1811	D	732 I			
	$\mathbf{A} = 2.15 \times 10^{\circ} \mathrm{L}$		163 L		18.1 L	D	732 L			
8	I he temperature	01 a U inal nr	.750-L gas samj	ple at	25 °C and 2.00 at constant vol) atm : ume?	is changed to 250			
	\mathbf{A} 20.0 atm		0.200 atm		3.51 atm	D	0.427 atm			
0	A weather ballo	on con	tains 222 L of l	reliun	n at 20 °C and	760.	mm Hg. What is			
	the volume of the	e ballo	on when it ascer	nds to	an altitude wh	nere tl	ne temperature is			
	–40 °C and 540 n	ım Hg	?	1	.	l	.			
	A 467 L	B	116 L	C	2.24 × 10′ L	D	248.5 L			
10	A gas cylinder co	ontaini	ing 6.38 mol of	neon	has a pressure	e of 49	91 mm Hg at 295			
	K. It 3.22 mol o	t heliu 1 he th	Im is added to the pressure in the	this cy	ylinder, at con nder?	stant	temperature and			
	\mathbf{A} 9.73 mm Hg		739 mm Hg	C (1911)	1460 mm Hg	D	248 mm Hg			
	11 2000 1111 115				Ű		2			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques. no.				Que	estic	n			
11	Ho	w many moles a	re c	contained in 5.3	3 L	of O ₂ at standa	ard to	emperature and	
	pre A	5.33 mol of O_2	В	22.4 $mol of O_2$	C	0.238 mol of O ₂	D	$1.00 \text{ mol of } O_2$	
12	Wh	nich cylinder at S	TP v	vill contain the g	great	est number of g	as pa	rticles?	
	A	5.0-L cylinder of neon	B	5.0-L cylinder of helium	C	5.0-L cylinder of nitrogen	D	All of the cylinders above contain the same number of gas particles.	
13	Wh	nich cylinder at S	TP v	vill contain the g	great	est mass of gas	partic	eles?	
	A	5.0-L cylinder of neon	B	5.0-L cylinder of helium	C	5.0-L cylinder of nitrogen	D	All of the cylinders above contain the same mass of gas particles.	
14	Co	nsider the balance	ed r	reaction: Zn(s)	+ 2]	$HCl(aq) \rightarrow ZnC$	$\mathbf{l}_2(aq)$	+ H ₂ (g). What	
	vol	ume of H ₂ (g) at S	TP (can be generated	d wh	en 134 g of zinc	react	s?	
	A	2.05 L	B	5.98 L	C	$3.00 \times 10^3 \text{ L}$	D	45.9 L	
15	A s mn tot:	A sample of gas contains four gases with the following partial pressures: He (113 mm Hg), Ne (184 mm Hg), Ar (35 mm Hg), and Xe (445 mm Hg). What is the total pressure of the sample?							
	A	777 mm Hg	B	760. mm Hg	C	445 mm Hg	D	332 mm Hg	
16	A s mn tota	ample of gas con 1 Hg), Ne (184 m al pressure of the	tain 1m l sam	s four gases with Hg), Ar (35 mm ple?	n the Hg	following partia , and Xe (445 1	al pre nm H	essures: He (113 Ig). What is the	
	A	777 mm Hg	B	760. mm Hg	С	445 mm Hg	D	332 mm Hg	
17	wh	lat is the volume	01 62	2.3 g of nitrogen	gas	at SIP?			
	A	22.4 L B) C)	B	49.8 L	C	99.6 L	D	2.78 L	
18	Wh	at volume does 7	7.50	× 10 ²⁰ molecules	of C	2 occupy at STI	?		
			р	1.69×10^{22} T	C	0 0279 I	П	2 79 L	
10	A Th	22.4 L B) C)	D	is large compar	ed to	the snace hetwo	D een th	e narticles	
19	A	True	B	False		the space betwee		e pai neres.	
20	Wh ten	ien a sample of perature, the pro	f ga essu	s is compresse re of the gas dou	d fr ıbles	om 6.0 L to 2	2.0 L	at a constant	
	A	True	B	False					

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

Ques. no.	Question										
21	When a sample of g	gas is	heated from 80. °C to 160. °C at a constant pressure, the								
	volume of the gas u	oubl									
	A True	B	False								
22	STP is defined as a	pres	ssure of exactly one atmosphere and a temperature of 25								
	A True	B	False								
23	When the pressure and temperature are held constant, the volume of a gas is										
	inversely proportional to the number of moles present.										
	A True	B	False								
24	The value of the un	ivers	al gas constant, R, changes as a function of temperature.								
	A True	р	Falsa								
25	The value of the un	D ivers	al gas constant, R, depends on its units.								
23											
	A True	B	False								
26	When the volume o in half, the pressure	fasa e of a	ample of gas is doubled and the Kelvin temperature is cut sample remains constant.								
	A True	B	False								
27	When the volume of doubled, the pressu	of a re of	sample of gas is doubled and the Kelvin temperature is a sample remains constant								
	A True	B	False C								
28	The density of a sa pressure is held con	mple stan	e of gas increases if the temperature is increased but the t.								
	A True	B	False								
29	A sample of 22.4 g o	of O ₂	will occupy less than 22.4 L at STP.								
20	A True The pressure of a g	B	False								
30	temperature increa	ses tl	he pressure at constant volume.								
		-									
	A True	B	False								

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques. no.				Qu	esti	on					
31	Wh	nen 88.4 g of hyd	drog	en gas is put in	a 25	5.8-L container at	300.	K the pressure			
		1 De 85.7 atm.	P	False							
22	A CH	IIUC	D d as								
32	A	True	B	B False							
33	Wł	nat is the %O ₂ in	$r_{\rm is}$ the %O ₂ in the air mixture?								
	Α	78%	В	1%	С	21%	D	50%			
34	Wł	nat is the %N ₂ in	the	air mixture?	_			· · · · · · · · · · · · · · · · · · ·			
	A	78%	B	1%	С	21%	D	50%			
35	Wł	nat is the formul	a of	Pressure (P)?							
	A	$\mathbf{P} = \mathbf{F}/\mathbf{A}$	B	$P = F \times A$	С	P = A/F	D	$\mathbf{P} = \mathbf{F} - \mathbf{A}$			
36	Ty	pical pressure in	Der	iver is 630 mm I	Hg. (Convert this value	to at	mospheres?			
	A	0.83 atm	B	0.75 atm	С	0.45atm	D	0.33 atm			
37	Co	nvert the pressu	re u	nit 1.5 atm to m	m H	g?					
	A	1140 mm Hg	B	114 mm Hg	С	140 mm Hg	D	760 mm Hg			
38	Fo	r a fixed amount	t of g	as at constant v	olum	e, the pressure of	a gas	s is			
	pro	Fahrenheit [.] °F	п	temperature?		Calairen 9C	Б	none			
	A		R	Kelvin; K	C	Celsius; °C	D	none			
39	Wł	nich of the follow	ving	relation represe	nts t	he "Ideal gas law'	?				
	A	$\frac{PV}{T} = R$	B	$\frac{PV}{nT} = R$	С	$\frac{nT}{PV} = R$	D	$\frac{nV}{PT} = R$			
10	Th	e total prossuro (P) of a gas mixtu	re is	the sum of the na	rtial 1	pressures of its			
40	cor	nponent gases. 7	his	law relates to	i U 13	the sum of the pa	1 1141	51 vəsul və Ul 113			
	A	Avogadro's law	B	Gay–Lussac's law	С	Boyle's law	D	Dalton's law			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques. no.				Qu	esti	on					
41	A t pre	ank of compress essure. What vol	sed a ume	ir for scuba divi of air does this	ing c gas (ontains 8.5 L of ga occupy at 1.0 atm	as at 2 ?	204 atm			
	A	1734 L	B	173 L	С	174 L	D	1347 L			
42	A s the	ample of helium volume of gas a	gas t 2.5	has a volume of atm pressures?	2.0	L at a pressure of	'4.0 a	tm. What is			
	A	0.32 L	B	3.2 L	С	32 L	D	23L			
43	A s the	ample of helium volume of gas a	gas t 10	has a volume of atm pressures?	2.0	L at a pressure of	⁻ 4.0 a	tm. What is			
	A	8.0 L	B	10.8 L	С	80 L	D	5 L			
44	A b	oalloon that cont	tains	0.50 L of air at	25 °(C is cooled to –196	5 °C. '	What volume			
	uot	is the barroon no		cupy.							
	A	1.3 L	B	0.13 L	С	1.9 L	D	19 L			
45	If a	a 4.0 L containe	er of	helium gas ha	s a p	pressure of 10.0 a	ntm, y	what			
	pre	essure does the	gas	exerts if the vo	lum	e is increased to	0.U L	1			
	A	7.6 L	B	6.7 L	С	8.7 L	D	7.8 L			
46	A s	ample of helium	gas	has a volume of	2.0	L at a pressure of	4.0 a	tm. What is			
	the	volume of a gas	als	ov mm rig:							
	A	1.6 L	B	6.1 L	С	16 L	D	7.2 L			
47	A s	ample of N ₂ gas	has	a volme of 15.0	mL a	at a apresure of 0.	50 atı	m. What is the			
	pre	ssure exerted by	y the	gas ii tiie voluii	10 15						
	A	0.0075 atm	B	0.075 atm	С	0.750 atm	D	7.50 atm			
48	At	<i>STP</i> , one mole o	f any	y gas has the vol	ume						
	A	24.2 L	B	22.0 L	С	4.22 L	D	22.4 L			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

49	How many liters of 0.3mol of O2 gas occupy at STP?										
	A	22.4 L	B	12.6 L	C	7.84 L	D	24.2L			
50	Α	volume of 0.5		of air at 37 °	C is	expelled from t	he lu	ings into cold			
	sur ten	roundings at operature?	0.0	C. what volum	ie a	oes the expelled	air (occupy at this			
	A	4.5 L	B	0.44 L	C	3.3 L	D	0.33 L			
51	Th	e lungh of an av	verag	ge male hold 0.25	i mol	of air in a volum	e of 5	.8 L. how			
•	ma	ny moles of air	do t	he lungs of an av	erag	e female hold if th	ne vol	ume is 4.6 L?			
		0.00 1	D	2 0 1	C		n				
	Α	0.20 mol	В	2.0 mol	U	3.2 mol	D	2.3 mol			
52		volume (25.0 L) v occupy?) of g	gas at 45 K is he	ated	to 450 K. What	volun	ne does the gas			
	nov	woecupy.									
	Α	450 L	B	250 L	C	300 L	D	224 L			
53	Но	w much volume	e is c	alled the <i>standar</i>	d mo	<i>lar volume</i> of any	gas?				
	Α	24.4 L	B	22.0L	C	4.22 L	D	22.4 L			
54	Wł	nat do you mear	ı by	STP?							
51	Α	(1 atm, 25 °C)	B	(760 atm,25 °C)	C	(1atm, 760 °C)	D	(1 atm, 0 °C)			
55	Но	w many liters o	f 18.	0 g O ₂ gas occup	y at	STP?					
	A	0.38 mol	B	8.3 mol	C	3.8 mol	D	2.8 mol			
56	Ho of a	w many moles (air at 1.0 atm p)	oi ga ressu	ses are contained ure and 37 °C?	1 IN 8	i numan breath th	iat ta	kes in 0.50 L			
	Α	0.165 mol	B	2.0 mol	C	1.2 mol	D	2.1 mol			
57	Bu	rning 1 mol of j	prop	ane in a gas grill	add	s 132.0 g of carbon	n diox	xide (CO2) to			
	the	atmosphere. W	hat D	volume of CO_2 d	loes 1	this correspond to	at S'. D	27.6 L			
50	A If a	nerson exhale	D 25 (Do of CO2 in an h		what volume doe	L s this	occupy at			
50	1.0	0 atm and 37 °C	, 2 .3.4 C? G	iven molar mass	, CO	$_{2} = 44 \text{g/mol. } R = 0$.0821	L. atm			
	A	14.5 L	B	22.4 L	C	5.14 L	D	<i>тоl. К</i> 11.2 L			
59	De	termine the pre	ssur	e of N ₂ for the co	nditi	ions of 0.45mol at	25 °C	C in 10.0 L?			
57	Giv	ven, $R = = 0.082$	$1\frac{L}{max}$	utm							
			mut		I		1				
	A	1.1 atm	B	6.7 atm	C	2.2 atm	D	7.6 atm			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة <u>السنة التحضيرية</u>

6	50	Air is a mixture of 21 % O_2 , 78% N_2 and 1% Ar by volume. What is the partial pressure of O_2 , whaere total pressure is 760 mm Hg?										
		A 205 mm Ha	р	260 mm Ua	C	593 mm Hg	п	160 mm Hg				
		A 393 mm Hg	B	200 mm Hg								
6	A S	ample of exhaled a sures. No. (562 m	air fi m H	rom the lungs color $(a) \cap (118 \text{ mm})$	ntair Hg)	is four gases with	the fo	ollowing partial				
1	Hg). What is the total	l pre	ssure of the sam	ble?	CO ₂ (50. mm 11g	<i>,)</i> , an	u 1120 (30. mm				
	0	,	•					_				
	A	670 mm Hg	B	760 mm Hg	С	768 mm Hg	D	0.5 torr.				
6	CO	2 was added to a c	ylin	der containing 2.	5 atn	n of O ₂ to give a to	otal p	ressure of 4.0				
2	atn	n of gas. What is tl	ie pa	artial pressure CO	O_2 in	the final mixture	?					
	٨	$\mathbf{D} = 0.625 \mathrm{stm}$	р	D = -0.275 atm	C	$P_{cor} = 1.25$ atm	п	$P_{cor} = 1.5$ atm				
	A	P _{CO2} -0.025attii	B	$P_{CO2} = 0.373$ aun		1.25 utili						
6	According to the kinetic-molecular theory of gases, A gas consists of particles that move randomly and rapidly											
3	mo	ve randonný and r	apr	*19								
	A True B False											
6	Ac	ording to the kine	tic_1	nolecular theory	of o	ases. The size of a	as na	rticles is small				
4	con	npared to the space	e be	tween the particle	es.	ases, The size of g	as pa	tieles is sman				
				-								
	A	True	B	False								
6	Ac	cording to the kine	etic-1	nolecular theory	of g	ases, gas particles	exert	no attractive				
5	for	ces on each other,l	beca	use the space bet	weer	1 gas particles is la	rge.					
	٨	True	D	False								
	A	kinotic onormy of	D	narticles does no	tohe	ngo with increasi	ng to	moratura				
6	1 11	e kinetic energy of	gas	particles does no	t Cha	ange with increasi	ing ter	inperature.				
6	Α	True	B	False								
6	Ac	cording to the kin	etic	molecular theor	y of	gases,when gas p	oartic	les collide with				
7	eac	h other, they rebo	und	and travel in new	v dir	ections.						
	A	True	B	False								
6	If 1	0.3 g of Ne and 10	.3 g	of N ₂ are put into	a 7.	.0 L container, the	part	ial pressure of				
8	N_2	will be less than th	ie pa	rtial pressure of	Ne i	n the container.						
_	A	True	В	False								

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

6 9	If av	the erag	lungs of a child ge female adult,	holc with	l 0.11 mol of air a volume is 4.6	[.] in a L, ca	volume of 2.8 L, an be expected to 1	then hold (the lungs of an 0.18 mol of air.		
	A	Г	rue	B	False						
7 0	A g If the	gas (1.22 e pro	cylinder contair mol of neon is a essure will rise t Yrue	ning : adde to 17 B	3.88 mol of heliu d to this cylinde 50 mm Hg. False	ım ha	as a pressure of 54 constant tempera	49 mr ture :	n Hg at 298 K. and volume,		
7	/1	Charles's law can be used to explain the dangerous condition for scuba divers called "the bends", which is caused by the formation of nitrogen gas bubbles in the bloodstreamATrueBFalse									
7	2	Wł pro A	Ten the pressure oportional to the Charles's law relates	and e nui	and temperature are held constant, the volume of a gas is number of moles present. The law relates to Boyle's law relates C Gay-Lussac's law D Avogadro's law						
7	3	Th Wł	e temperature o 1at is the final p	f a g ressu	as sample at 25 ° ire of the system	°C a 1?	nd 1.00 atm is cha	nged	to 200 °C.		
		A	15.9 atm	B	1.59 atm	C	16.7 atm	D	1.67 atm		
7	4	A v gas	volume (50.0 ml now occupy?	L) of	gas at 400. °C	is co	oled to 50. °C. W	hat v	olume does the		
		A 24 ml B 42 ml C 5.6 ml D 6.7 ml									
7	/5	Which of the following relation represents the "Combined gas law"?									
		A	$\frac{PT}{V} = k$	B	$\frac{VT}{P} = k$	C	$\frac{PV}{T} = k$	D	$\frac{P1V1}{T1} = \frac{P2V2}{T2}$		