

ŻŻŻŻ

مدونة المناهج السعودية https://eduschool40.blog الموقع التعليمي لجميع المراحل الدراسية في المملكة العربية السعودية

PHYS 101

Ch. 2

Motion along a Straight Line

Chapter 2

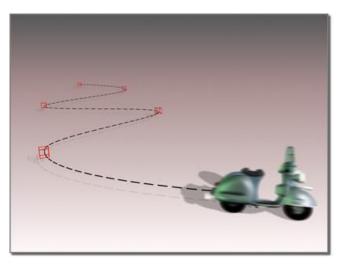
Physics Department

Chapter Two Motion along a Straight Line

- Displacement, Time, and Average Velocity
- Instantaneous Velocity
- Average and Instantaneous Acceleration
- Motion with Constant Acceleration
- Free Falling Bodies

Position and Displacement

Position


- The position of a particle locates the particle with respect to the origin.
- The simple for position is x
- It has a unit of *m*

Displacement

- The displacement of a particle is the change in its position.
- The simple for displacement is Δx

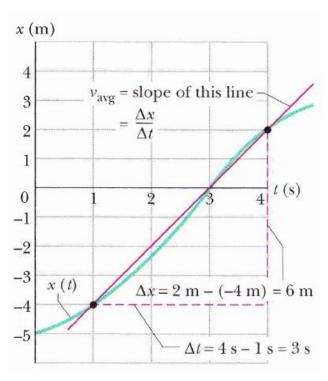
• It can be expressed as:

$$\Delta x = x_2 - x_1.$$
• It has a unit of *m*
• It has a unit of *m*

Physics Department

x (m)

University of Jeddah

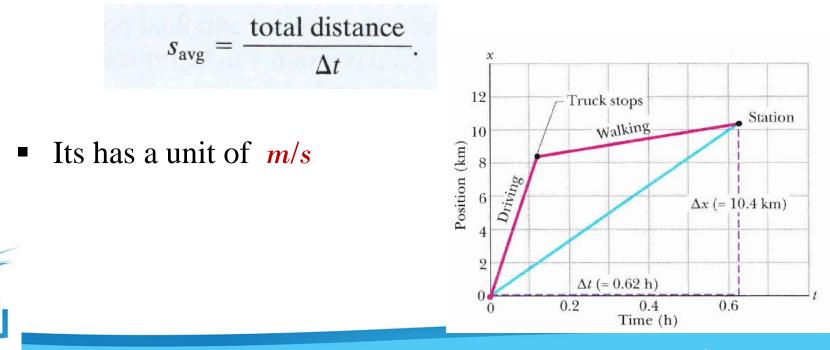

Average Velocity and Average Speed

Average Velocity

 The average velocity for a particle moves from one position to another during a time interval is:

$$v_{\text{avg}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}.$$

• It depends on original and final positions not on the actual distance.



Its has a unit of m/s

Average Speed

• The average speed for a particle depends on the total distance that it moves during a time interval as

Physics Department

University of Jeddah

Example 1:

A bicycle travels 12 km in 90 min. Its average speed is:

Solution:

(A)

(A) 8 km/h (B) 18 km/h (C) 28 km/h (D) 48 km/h

Instantaneous Velocity

Instantaneous Velocity and Speed

Instantaneous velocity for a particle is given by

$$v = \frac{dx}{dt}.$$

Instantaneous speed is the magnitude of instantaneous velocity.

Instantaneous Velocity

Example 2:

The position of a particle moving on an x axis is given by $x = 4 + 7 t - t^2$, with x in (m) and t in (s). The velocity at 3 s is:

Solution:

(C)

(A) 4 m/s
(B) 2 m/s
(C) 1 m/s
(D) 0.4 m/s

Acceleration

Acceleration

Average Acceleration Instantaneous Acceleration

Average Acceleration

• Average acceleration for a particle is the change in velocity during a time interval as follows:

$$a_{\rm avg} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t},$$

It has a unit of m/s^2

Example 3:

A car uniformly changes its speed from 20 m/s to 5 m/s in 5 s. The average acceleration is:

Solution:

(B)

(A) 9 m/s² (B) -3 m/s² (C) 4 m/s² (D) -6 m/s²

Instantaneous Acceleration

Instantaneous acceleration for a particle is the first time derivative of velocity v(t) and the second time derivative of position x(t):

$$a=\frac{dv}{dt}.$$

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}.$$

It has a unit of m/s^2

Example 4:

The velocity of a train is given by v(t)=98 - 3t, (where *t* in seconds and *v* is in m/s), has an acceleration of:

Solution:

(B)

(A) 2 m/s²
(B) -3 m/s²
(C) 98 m/s²
(D) 0.3 m/s²

Constant Acceleration: A Special Case

• The equations used to describe the motion of a particle with constant acceleration are:

$$v = v_0 + at.$$
 ----- (1)

$$x - x_0 = v_0 t + \frac{1}{2} a t^2$$
. ----- (2)

$$v^2 = v_0^2 + 2a(x - x_0)$$
. ____ (3)

$$x - x_0 = \frac{1}{2}(v_0 + v)t.$$
 ---- (4)

$$x - x_0 = vt - \frac{1}{2}at^2$$
. ---- (5)

Equation	Missing Quantity	uoition x(t)
$v = v_0 + at$	$x - x_0$	x_0 Slope varies
$x - x_0 = v_0 t + \frac{1}{2}at^2$	ν	<i>(a)</i>
$v^2 = v_0^2 + 2a(x - x_0)$	t	v $v(t)$
$x - x_0 = \frac{1}{2}(v_0 + v)t$	а	Slope = a
$x - x_0 = vt - \frac{1}{2}at^2$	ν_0	
		- 0 (<i>b</i>)

Physics Department

a(t)

Slope = 0

(*c*)

Acceleration

a

Example 5:

A particle starts motion at 15 m/s. If it moves 20 m in 2 s, its final velocity is:

Solution:

(B)

(A) 10 m/s
(B) 5 m/s
(C) 3 m/s
(D) zero

Example 6:

A car takes 10 s to accelerate from 0 to 50 m/s with constant acceleration. This acceleration is:

Solution:

(C)

(A) 15 m/s²
(B) 9 m/s²
(C) 5 m/s²
(D) 2 m/s²

Example 7:

A train changes its velocity from 70 km/h to 20 km/h in 6 s. The distance it covered is:

Solution:

(A)

(A) 75.0 m
(B) 9.87 m
(C) 15.4 m
(D) 20.6 m

Example 8:

A car moves along the x-axis with constant speed, the acceleration of the car is:

Solution:

(D)

(A) Decreasing
(B) Increasing
(C) 9.8 m/s²
(D) Zero

Free-Fall Acceleration

• Important example of straight line motion with constant acceleration.

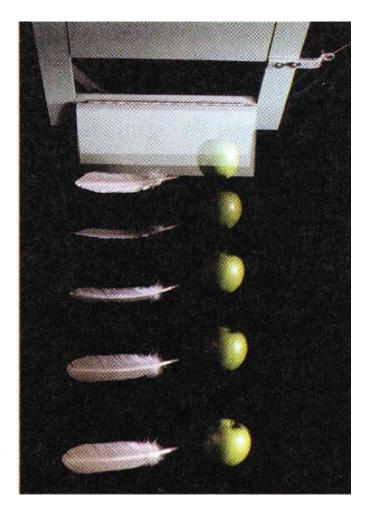
 Described by constant acceleration equations, but need to make two changes:

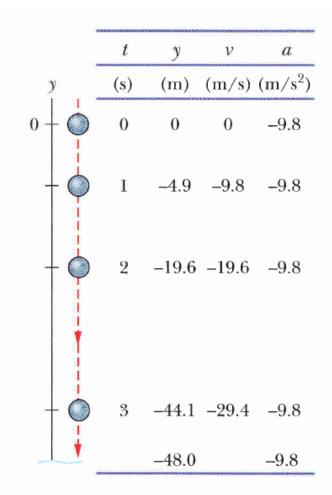
1) Replace x by y.

2) Replace *a* by
$$-g$$
, where $g = 9.8 \text{ m/s}^2$

• The equations will be as follows:

$$v = v_0 - gt \longrightarrow (1)$$


$$y - y_0 = v_0 t - \frac{1}{2}gt^2 \longrightarrow (2)$$


$$v^2 = v_0^2 - 2g(y - y_0) \longrightarrow (3)$$

$$y - y_0 = \frac{1}{2}(v_0 + v)t \longrightarrow (4)$$

$$y - y_0 = vt + \frac{1}{2}gt^2 \longrightarrow (5)$$

2014 IEHO Diversity of Jeddah

Example 9:

A ball is thrown vertically upward at a speed of 12 m/s. It will reach its maximum height in:

Solution:

(A)

(A) 1.22 s
(B) 1.84 s
(C) 2.33 s
(D) 3.21 s

Example 10:

A stone is dropped vertically downwards from a height h. If the stone reaches a height of 10 m above the ground in 2 s, the height h is:

(D)

Solution:

(A) 4.9 m
(B) 9.6 m
(C) 19.6 m
(D) 29.6 m

Example 11:

A boy shot a foot ball vertically up with an initial speed v_0 . When the ball was 2 m above the ground, the speed was 0.4 of the initial speed. The initial speed is:

(C)

Solution:

(A) 11.7 m/s
(B) 8.41 m/s
(C) 6.83 m/s
(D) 4.82 m/s

