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Spline Representations

• A spline is a smooth curve 

defined mathematically 

using a set of constraints

• Splines have many uses:

– 2D illustration

– Fonts

– 3D Modelling

– Animation
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Physical Splines

• Physical splines are used in car/boat design
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Big Idea

• User specifies control points

• Defines a smooth curve
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Interpolation vs Approximation

• A spline curve is specified using a 

set of control points

• There are two ways to fit a curve to 

these points:

– Interpolation - the curve passes 

through all of the control points

– Approximation - the 

curve does not pass 

through all of the control 

points
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Convex Hulls

• The boundary formed by the set of control points 

for a spline is known as a convex hull

• Think of an elastic band stretched around the 

control points
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Parametric Continuity Conditions

• We can impose various Continuity Conditions at 

the connection points.

• section of a spline curve is described with a set 

of parametric coordinate functions of the form

x = x(u), y = y(u), z = z(u),    u1 ≤ u ≤ u2

• We set parametric continuity by matching the 

parametric derivatives of adjoining curve 

sections at their common boundary.
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Parametric Continuity Conditions Contd.

• Zero-order parametric continuity, represented as C°

continuity, means simply that the curves meet. That is, 

the values of x, y and z evaluated at u2 for the first curve 

section are equal, respectively, to the values of  x, y, and 

z evaluated at u1 for the next curve section. 

• First-order parametric continuity, referred to C1

continuity, means that the first parametric derivatives 

(tangent lines) of the coordinate functions for two 

successive curve sections are equal in their joining point.

• Second-order parametric continuity, or C2 continuity, 

means that both the first and second parametric 

derivatives of the two curve sections are the same at the 

intersection.
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Parametric Continuity Conditions Contd.

• Piecewise construction of a curve 

by joining two curve segments 

using different orders of 

continuity: 

a. zero-order continuity only, 

b. first-order continuity, 

c. second-order continuity. 
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Bézier Spline Curves

• A spline approximation method developed by the 

French engineer Pierre Bézier for use in the 

design of Renault car bodies

• A Bézier curve can be fitted to any number of 

control points – although usually 4 are used
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Bézier Spline Curves (cont…)

• Consider the case of n+1 control points denoted 

as pk=(xk, yk, zk) where k varies from 0 to n

• The coordinate positions are blended to produce 

the position vector P(u) which describes the 

path of the Bézier polynomial function between 

p0 and pn
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Bézier Spline Curves (cont…)

• The Bézier blending functions BEZk,n(u) are the 

Bernstein polynomials

• where parameters C(n,k) are the binomial 

coefficients
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Bézier Spline Curves (cont…)

• So, the individual curve coordinates can be 

given as follows
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Bézier Spline Curves (cont…)
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Important Properties of Bézier Curves

The first and last control points are the first and 

last point on the curve

– P(0) = p0

– P(1) = pn

The curve lies within the convex hull as the Bézier

blending functions are all positive and sum to 1
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Important Properties of Bézier Curves

• Values for the parametric first derivatives of a Bezier 
curve at the endpoints can be calculated from 
control-point coordinates as 

P’(0) = -n.p0 + n.p1

P’(1) = -n.pn-1 + n.pn

• From these expressions, we see that the slope at 
the beginning of the curve is along the line joining 
the first two control points, 

• and the slope at the end of the curve is along the 
line joining the last two endpoints. 
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Cubic Bézier Curve

• Many graphics packages restrict Bézier curves 

to have only 4 control points (i.e. n = 3)

• The blending functions when n = 3 are simplified 

as follows:
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Cubic Bézier Blending Functions
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Bézier Spline Curve Exercise
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Summary

• We had a look at spline curves and in particular 

Bézier curves

• The whole point is that the spline functions give 

us an approximation to a smooth curve
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