

Dr. George Karraz, Ph. D.

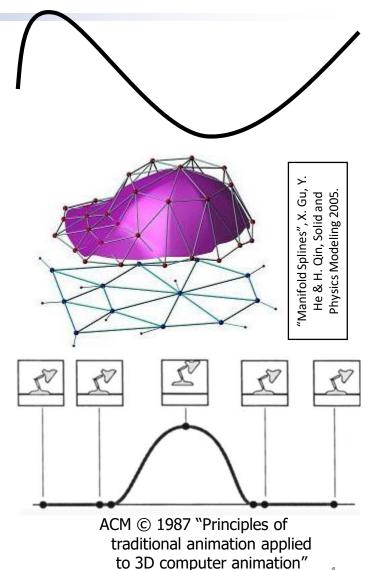
Spline Representations

Contents

- Introduction to splines
- Bézier origins
- Bézier curves
- Bézier cubic splines

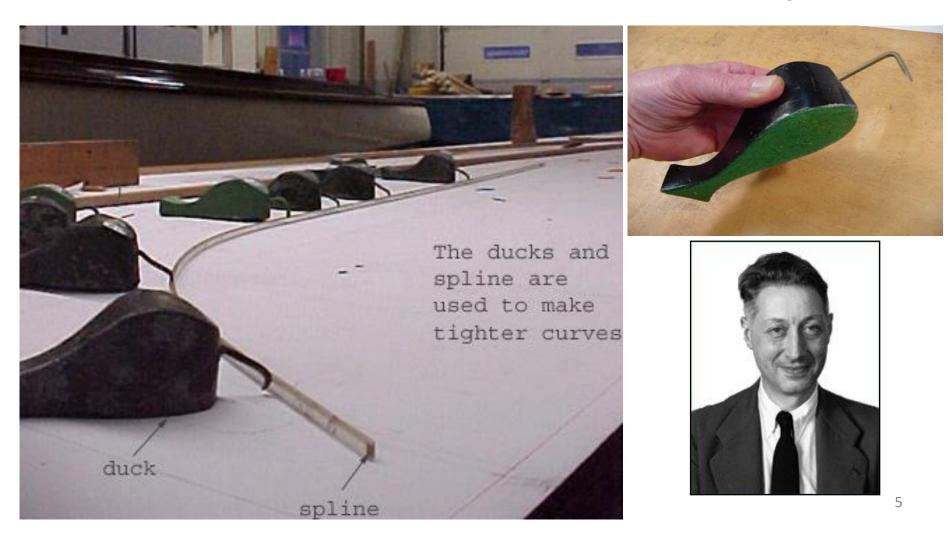
Spline Representations

- A spline is a smooth curve defined mathematically using a set of constraints
- Splines have many uses:
 - 2D illustration
 - Fonts
 - 3D Modelling
 - Animation

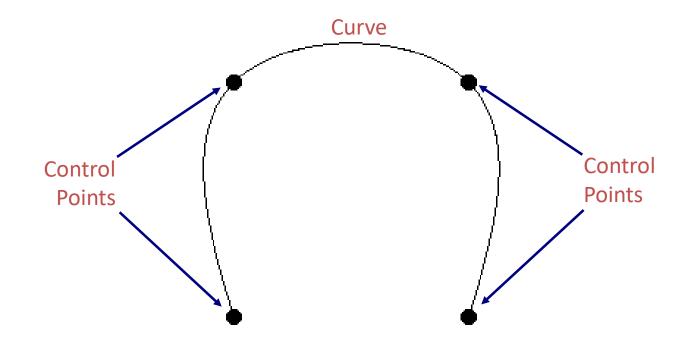


Physical Splines

Physical splines are used in car/boat design

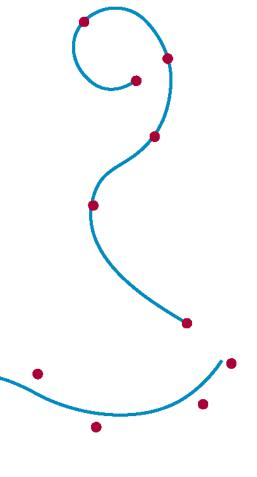


- User specifies control points
- Defines a smooth curve



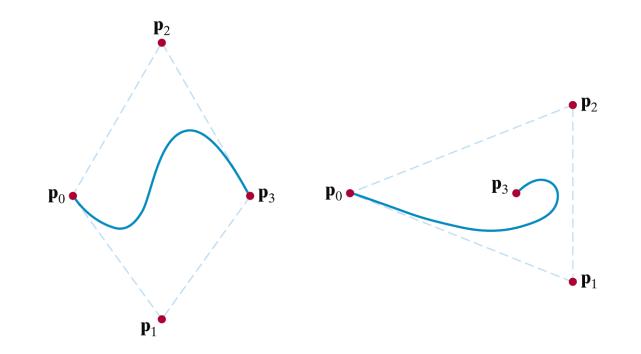
Interpolation vs Approximation

- A spline curve is specified using a set of control points
- There are two ways to fit a curve to these points:
 - Interpolation the curve passes through all of the control points
 - Approximation the curve does not pass through all of the control points



Convex Hulls

- The boundary formed by the set of control points for a spline is known as a convex hull
- Think of an elastic band stretched around the control points



Parametric Continuity Conditions

- We can impose various Continuity Conditions at the connection points.
- section of a spline curve is described with a set of parametric coordinate functions of the form

$$x = x(u), y = y(u), z = z(u), u_1 \le u \le u_2$$

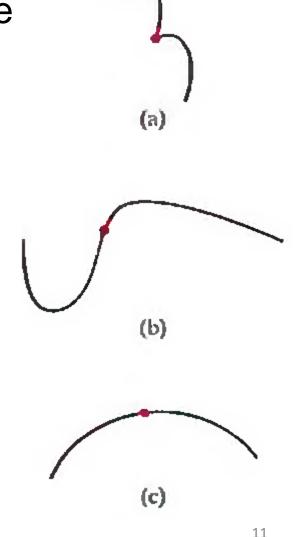
 We set parametric continuity by matching the parametric derivatives of adjoining curve sections at their common boundary.

Parametric Continuity Conditions Contd.

- Zero-order parametric continuity, represented as C° continuity, means simply that the curves meet. That is, the values of x, y and z evaluated at u_2 for the first curve section are equal, respectively, to the values of x, y, and z evaluated at u_1 for the next curve section.
- First-order parametric continuity, referred to C¹ continuity, means that the first parametric derivatives (tangent lines) of the coordinate functions for two successive curve sections are equal in their joining point.
- Second-order parametric continuity, or C² continuity, means that both the first and second parametric derivatives of the two curve sections are the same at the intersection.

Parametric Continuity Conditions Contd.

- Piecewise construction of a curve by joining two curve segments using different orders of continuity:
- a. zero-order continuity only,
- b. first-order continuity,
- c. second-order continuity.



Bézier Spline Curves

- A spline approximation method developed by the French engineer Pierre Bézier for use in the design of Renault car bodies
- A Bézier curve can be fitted to any number of control points – although usually 4 are used

- Consider the case of n+1 control points denoted as p_k=(x_k, y_k, z_k) where k varies from 0 to n
- The coordinate positions are blended to produce the position vector P(u) which describes the path of the Bézier polynomial function between p₀ and p_n

$$P(u) = \sum_{k=0}^{n} p_k BEZ_{k,n}(u), \qquad 0 \le u \le 1$$

 The Bézier blending functions BEZ_{k,n}(u) are the Bernstein polynomials

$$BEZ_{k,n}(u) = C(n,k)u^{k}(1-u)^{n-k}$$

• where parameters C(n,k) are the binomial coefficients

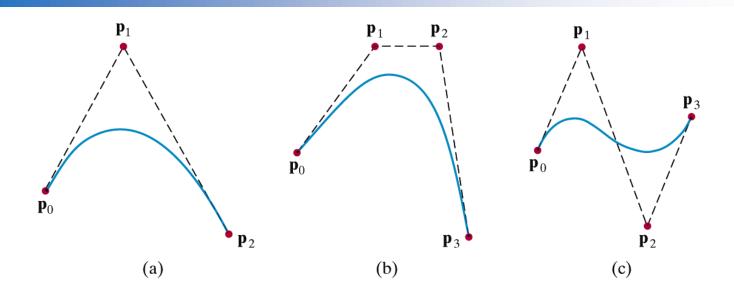
$$C(n,k) = \frac{n!}{k!(n-k)!}$$

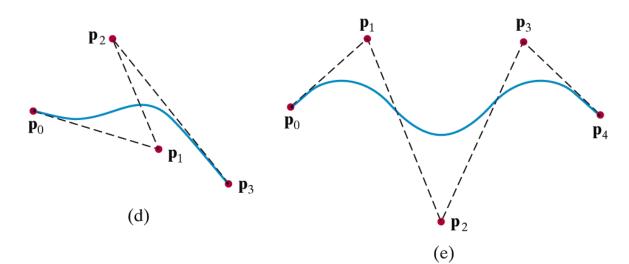
So, the individual curve coordinates can be given as follows

$$x(u) = \sum_{k=0}^{n} x_k BEZ_{k,n}(u)$$

$$y(u) = \sum_{k=0}^{n} y_k BEZ_{k,n}(u)$$

$$z(u) = \sum_{k=0}^{n} z_k BEZ_{k,n}(u)$$





Important Properties of Bézier Curves

The first and last control points are the first and last point on the curve

$$-P(0) = p_0$$
$$-P(1) = p_n$$

The curve lies within the convex hull as the Bézier blending functions are all positive and sum to 1

$$\sum_{k=0}^{n} BEZ_{k,n}(u) = 1$$

Important Properties of Bézier Curves

 Values for the parametric first derivatives of a Bezier curve at the endpoints can be calculated from control-point coordinates as

$$P'(0) = -n.p_0 + n.p_1$$

 $P'(1) = -n.p_{n-1} + n.p_n$

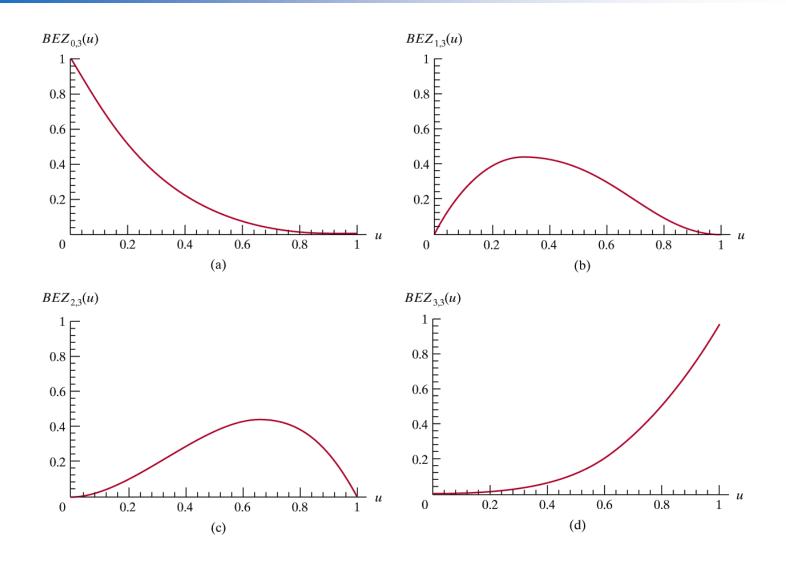
- From these expressions, we see that the slope at the beginning of the curve is along the line joining the first two control points,
- and the slope at the end of the curve is along the line joining the last two endpoints.

Cubic Bézier Curve

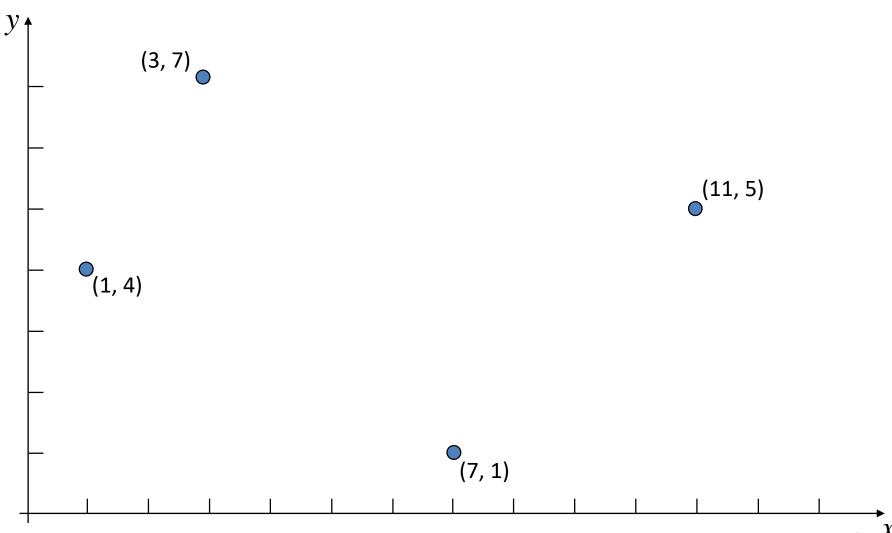
- Many graphics packages restrict Bézier curves to have only 4 control points (i.e. n = 3)
- The blending functions when n = 3 are simplified as follows:

$$BEZ_{0,3} = (1-u)^{3}$$
$$BEZ_{1,3} = 3u(1-u)^{2}$$
$$BEZ_{2,3} = 3u^{2}(1-u)$$
$$BEZ_{3,3} = u^{3}$$

Cubic Bézier Blending Functions



Bézier Spline Curve Exercise



Summary

- We had a look at spline curves and in particular Bézier curves
- The whole point is that the spline functions give us an approximation to a smooth curve