

Dr. George Karraz, Ph. D.

Ch. 6: Face detection

Dr. George Karraz, Ph. D.

Face detection v4a

Introduction

Face detection [1]

- To detect faces in an image (Not recognize it yet)
- Challenges
 - A picture has 0,1 or many faces.
 - Faces are not the same: with spectacles, mustache etc.
 - Sizes of faces vary a lot.
- Available in most digital cameras nowadays
- The simple method
 - Slide a window across the window and detect faces.
 - Too slow, pictures have too many pixels.
 (1280x1024=1.3M pixels)

Evaluation of face detection

- Detection rate
 - Total number of faces that are correctly detected/total number of faces actually exist in the picture
 - Should be high > 95%.
- False positive rate
 - The detector output is positive but it is false (there is actually no face). Definition of False positive: A result that is erroneously positive when a situation is normal. An example of a false positive: a particular test designed to detect cancer of the is positive but the person does not have cancer. (http://www.medterms.com/script/main/art.a
 - \Box Should be low <10⁻⁶
- A good system has
 - High detection rate,
 - Low false positive rate.

Example

What are the detection rate and false positive 6 faces correctly

rate here?

detected in the picture, 9 actually faces exit in the image

- Answer
 - detection rate=(6/9)*100%
 - false positive rate=(1/7)*100%

7 windows reported to have faces, but in 1 window it is not a face

False positive result

The Viola and Jones method [1]

- The most famous method
- Training may need weeks
- Recognition is very fast, e.g. real-time for digital cameras.
- Techniques
 - Integral image for feature extraction
 - Ada-Boost for face detection
 - 3. Attentional cascade for fast rejection of non-face sub-windows

Class exercise 6.1

- Detected results are in red frames
- What are the detection rate and false positive rate here?

- Answer
 - detection rate=?
 - false positive rate=?

The Viola and Jones method Technique 1:

Integral image for feature extraction

Image Features ref[3]

A very simple feature calculation method "Rectangle filters"

Rectangle_Feature_value f=

∑ (pixels values in white area) –

∑ (pixels values in shaded area)

Example

- Find the
 Rectangle_Feature_value
 (f) of the box enclosed by
 the dotted line
- Rectangle_Feature_value f=
- ∑ (pixels values in white area) –
 ∑ (pixels values in shaded area)
- f=(8+7)-(0+1)
- **=** =15-1= 14

1	2	3	3
3	0	1	3
5	8	7	1
0	2	3	6

Class exercise 6.2

- Find the Rectangle_Feature_value (f) of the box enclosed by the dotted line
- Rectangle_Feature_value f=
- ∑ (pixels values in white area) –
 ∑ (pixels values in shaded area)
- f=

Example: A simple face detection method using one feature

- □ Rectangle_Feature_value f
- $\Box f = \sum (pixels in white area) \sum (pixels in shaded area)$
- □ If (f) is large, then it is face, i.e.
- □if (f)>threshold, then
- face
- **□**Else
- non-face

This is not a face. Because f is small

This is a face: The eye-area (shaded area) is dark, the nose-area (white area) is bright.
So f is large, hence it is face

Result

How to find features faster?

Integral images fast calculation method [Lazebnik09]

- The integral image = sum of all pixel values above and to the left of (x,y)
- Can be found very quickly

Examples

- The integral image = $\frac{\text{top-left corner}(x,y)=(1,1)}{\text{sum of all pixel values}}$ 1 2 3 above and to the left of (x,y)
- Pixel P is at (x=3,y=2)
 - integral image of P is
 =1+2+3+3+4+6
- integral image of Q is
- = 1+2+3+3+4+6+5+2+ 4+0+2+3

-leπ corner(x,y)=(1,1)				
1	2	3	3	
3	4	6 P	3	
5	2	4	1	
0	2	3 Q	6	

Computing the integral image [Lazebnik09]

```
(x=1,y=1)
                      ii(x, y-1)
                  s(x-1, y)
                                         i(x, y)
```

- Cumulative row sum: s(x, y) = s(x-1, y) + i(x, y)
- Integral image: ii(x, y) = ii(x, y-1) + s(x, y)
- MATLAB: ii = cumsum(cumsum(double(i)), 2);

Calculate sum within a rectangle

- A,B,C,D are the values of the integral images at the corners of the rectangle R.
- The sum of image values inside R is:

$$Area_R = A - B - C + D$$

- If A,B,C,D are found, only 3 additions are needed to find Area_R
- Calculations of areas can reused for other windows.

Why do we need to find pixel sum of rectangles? Answer: We want to get face features

- You may consider these features as face features
 - □ Left Eye: (Area_A-Area_B)
 - □ Nose :(Area_C+Area_E-Area_D)
 - Mouth:(Area_F+Area_H-Area_G)
- They can be different sizes, polarity and aspect ratios

Face feature and example

Pixel values inside the areas

Shaded area

White area

F=Feat_val =

pixel sum in white area - pixel sum in shaded area

Example

- Pixel sum in white area= 216+102+78+129+210+111=846
- Pixel sum in shared area= 10+20+4+7+45+7=93

Else

feature= -1 End if;

If we can choose threshold =700, so feature is +1.

A face

Definition: Area_X = sum of pixels in the rectangular area from the left-top corner to pixel X (including the top left corner and pixel X).

Find the feature output of this image.

- Area_D=1
- Area B=1+2+3=6
- Area C =1+3=4
- Area A=1+2+3+3+4+6=19
- Area E=? 1+3+5=9
- Area F=? 1+2+3+3+4+6+5+2+4=30
- Pixel sum of the area inside the box enclosed by the dotted lines=
- Area_F Area_B Area_E +Area D =? 30-6-9+1=16

Top-left corner					
	1	2	3	3	
	D		В		
	3	4	6	3	
	C <mark>l</mark>		А		
:	5 	2	4 F	1	
	0	2	3	6	

Class exercise 6.3

Definition: Area at X = pixel sum of the area from top-left corner to X= Top-left corner

Area_X

- Find the feature output of this image.
- Area D=1
- Area B=1+2+3=6
- Area C = 1 + 3 = 4
- Area A=1+2+3+3+4+6=19
- Area E=? 1+3+5=9
- Area_F=? 1+2+3+3+4+6+5+2+4=30
- Pixel sum of the area inside the box enclosed by the dotted lines=
- Area F Area B Area E + Area D =30-6-9+1=16
- WA=White area enclosed by the dotted line=?
- GA=Gray area enclosed by the dotted line=?
- (white area-shaded area)=WA-WG=?

1	2	3	3
D		В	
3	4	6	3
C¦		А	
5	2	4	1
I El		F	
0	2	3	6

4 basic types of <u>Rectangular Features</u> for (white_area)-(gray_area)

- Type) Rows x columns
- Type 1) 1x2
- Type 2) 2x1

Type 3) 1x3

Type 4) 3x1

Type 5) 2x2

- Each basic type can have difference sizes and aspect ratios.
- I.e. the following feature windows are of the same type (Type2) even they have different sizes, or aspect ratios
- Each rectangle inside is of the same dimension

Faces can be any sizes,

Example: a face can be big or small, from to 24 x24 to 1024x1024,

 There are faces with different sizes

So, we need feature windows with different sizes.

- As long as white/gray areas have the relations
- The followings are Type2
 Rectangular Features
 - The white rectangle is above the shaded rectangle
 - White and shaded rectangle are of same dimension

Class exercise 6.4

Feature selection [Lazebnik09]

- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
- Name the types (type 1,2,3,4,5) of the rectangular features in the figures.

Some examples and their types
Fill in the types for the 2nd, 3rd rows

Class exercise 5: Features in a 24x24 (pixel) window

- Exercise 5a: How many rectangular features of all 5 types can be found a 24x24 pixel window?
- Answer: 162,336 (explain)
- Exercise 5b : How many type 1 features in a 24x24 (pixel) window?
- Answer:_43200 (explain)

Type **5**)

Class exercise 6.6?

- Still keeping the 5 basic rectangular features types (1,2,3,4,5) (5 types: 2x1,1x2,3x1,1x3,2x2)
 - Find the number of rectangular features for a resolution of 36 x36 windows
 - Answer: 816264, explain your answer.

The Viola and Jones method Technique 2:

AdaBoost for face detection

Class exercise 7: The detection challenge

- Use 24x24 base window
- For y=1;y<=1024;y++ $\{For x=1; x<=1024; x++\}$
 - Set (x,y) = the left top corner of the 24x24 sub-window, different scales are needed to be considered too.
 - For the 24x24 sub-window, extract 162,336 features and see they combine to form a face or not.}
- Exercise 7: Discuss the number of operations required.
- Conclusion: too slow, solution use boosting

Answer 7:

Y-

Solution to make it efficient

- The whole 162,336 feature set is too large
 - Solution: select good features to make it more efficient.
 - Use: "Boosting"
- Boosting
 - Combine many small weak classifiers to become a strong classifier.
 - Training is needed.

Boosting for face detection

Define weak learners based on rectangle features

value of rectangle feature

$$h_t(x) = \begin{cases} 1 & \text{if } p_t f_t(x) < p_t \theta_t \\ 0 & \text{otherwise} \end{cases}$$
 threshold window
$$P_t = \begin{cases} 1 & \text{otherwise} \end{cases}$$

Face detection using Adaboost

AdaBoost training

- E.g. Collect 5000 faces, and 9400 non-faces.
 Different scales.
- Use AdaBoost for training to build a strong classifier.
- Pick suitable features of different scales and positions, pick the best few. (Take months to do, details is in [Viola 2004] paper)

Testing

- Scan through the image (any where), pick a window (any size ≥ 24x24) and rescale it to 24x24,
- Pass it to the strong classifier for detection.
- Report face, if the output is positive

Boosting for face detection [viola2004]

In the paper it shows that the following two features (obtained after training) in cascaded picked by AdaBoost have 100% detection rate and 50% false positive rate:

But 50% false positive rate is not good enough

Approach [viola2004] :Attentional cascade |

I.e. Strong classifier
 H(face)=
 Sign{α₁h₁(image)
 +α₂h₂(image)}
 H(face)=+1→ face
 H(face)=-1→non-face

Boosting for face detection

- An experiment shows: A 200-feature classifier can yield 95% detection rate and a false positive rate of 1 in 14084 (7.1x10⁻⁵ Still not good enough)
- Recall: False positive rate
 - The detector output is positive but it is false (there is actually no face).

 <u>Definition of False positive</u>: A result that is erroneously positive, when a situation is normal. An example of a false positive: a particular test designed to detect cancer of the toenail is positive but the person does not have toenail cancer.

(http://www.medterms.com/script/main/art.asp?articlekey=3377)

The Viola and Jones method Technique 3:

Attentional cascade for fast rejection of non-face sub-windows

To improve false positive rate:

Attentional cascade

- Cascade of many AdaBoost strong classifiers.
- Begin with simple classifiers to reject many negative sub-windows.
- Many non-faces are rejected at the first few stages.
- Hence the system is efficient enough for real time processing.

An example

 More features for later stages in the cascade [viola2004]

Class exercise 6.8: Attentional cascade

Chain classifiers that are Receiver operating progressively more complex characteristic and have lower false positive % False Pos 50 rates: Fill in ?: Name the classifier (1 or 2 or3), explain your answer % Detection 0 False positive rate Input image True True Adaboost Adaboost Adaboost Face Classifier1 Classifier2 Classifier3 found False False False Non-face Non-face Non-face

Attentional cascade [Viola2004]

- Detection rate for each stage is 0.99, for 10 stages,
 - □ overall detection rate is $0.99^{10} \approx 0.9$

- False positive rate at each stage is 0.3, for 10 stages
 - □ false positive rate = $0.3^{10} \approx 6 \times 10^{-6}$)

Detection process in practice [smyth2007]

- Use 24x24 sub-window
- Scaling
 - scale the detection (not the input image)
 - Features evaluated at scales by factors of 1.25 at each level
 - Location : move detector around the image (1 pixel increments)
- Final detections
 - A real face may result in multiple nearby detections (merge them to become the final result)

Summary

Learned

- How to extract fece feature
- How to apply adaboost for face detection
- How to train up the system and how to detect face

Additional Exercise A1

- Definition: = Area_X = sum of pixels in the area from left-top corner to pixel X
- Based on the window in image1, answer the following questions.
- i) Find Area_A, Area_B, Area_C, Area_D, Area_E, Area_F
- In image1, calculate the number of Type-3 features found in each of the following different cases:
- W=1 pixel, H=1 pixel,
- W=2 pixels, H=2 pixels.

Туре	Rows × Column s	Feature value	Features
Type -3	1 × 3	(Sum of pixles in shaded area) - (Sum of pixles in white area)	Three rectangular blocks in a row. Width of each rectangle =W pixels. Height of each rectangle =H pixels.

2 A	7	3	8	2	4 B
2 A 0 C	4	2	3	5	5 D
1 E	3	6	8	2	8 F
8	0	3	5	3	2
1	3	5	7	4	1

Image 1

Answer A1

- Definition: = Area_X = sum of pixels in the area from left-top corner to pixel X
- Based on the window in Figure 1, answer the following questions.
- i) Find Area_A, Area_B, Area_C, Area_D, Area_E, Area_F
- Answer:
- Area_A=2
- Area B=2+7+3+8+2+4=26
- Area C=2
- Area D=AreaB+4+2+3+5+5=26+4+2+3+5+5=45
- Area_E=3
- Area_F=Area_D+1+3+6+8+2+8=45+73

13

- ii) Find the area inside the box CDFE based on the result in (i).
- Answer: Area_F-Area_B=73-26=47
- iii)Calculate the type 3 feature value in the area CDFE.
- Answer:(2+3+6+8)-(0+4+1+3)-(5+5+2+8)= -9
- iv)Calculate the number of features found in each of the following cases if W and H are the features are :
- W=1 pixel,H=1 pixels, answer=5x4=20
- W=2 pixels,H=2 pixels, Answer:4x1= 4

References

- [viola2004] Paul A. Viola, Michael J. Jones: Robust Real-Time Face Detection. International Journal of Computer Vision 57(2): 137-154 (2004) (PDF: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.4879&rep=rep1&type=pdf)
- [viola2001] Paul A. Viola, Michael J. Jones, Rapid object detection using a boosted cascade of simple features CVPR 2001 (PDF: http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf)
- 3. [Lazebnik09] www.cs.unc.edu/~lazebnik/spring09/lec23_face_detection.ppt
- 4. [stackoverflow] http://stackoverflow.com/questions/1707620/viola-jones-face-detection-claims-180k-features
- [Jensen 2008] Ole Helvig Jensen," Implementing the Viola-Jones Face Detection Algorithm "Kongens Lyngby 2008", IMM-M.Sc.-2008-93, Technical University of Denmark Informatics and Mathematical Modeling
- [smyth2007] Face detection using the viola Jones method ppt, UL Irvine (lecture notes of CS175 Fall 2007)
- 7. [yu tm]http://aimm02.cse.ttu.edu.tw/class_2009_1/PR/Lecture%207/Adaboost.ppt
- [stackoverflow] http://stackoverflow.com/questions/1707620/viola-jones-face-detectionclaims-180k-features

Appendix1

Advanced topics

Training

The face Adaboost detection system

Given : $(x_1, y_1), ...(x_n, y_n)$, where $x_i \in X, Y = \{-1, +1\}$ for negative and positive examples

- Initialize weights:
- $-w_{1,i} = 1/2M$, M = number of positive example
- $-w_{1,i} = 1/2L$, L = number of positive example

For t = 1, 2, ..., T

 $\blacksquare \{ \text{ Step1: Normalize weights } w_{t,i} \leftarrow \frac{w_{t,j}}{\sum_{j=n}^{j=n} w_{t,j}}$

Adaboost face detection
Training algorithm [Jensen

2008]

Step2: Select the weak classfier with smallest weighted error

find
$$\varepsilon_t = \min_{f,p,\theta} \sum_{i=1}^{n} w_i |h(x_i, f, p, \theta) - y_i|$$

Step3: Define $h_t(x) = h(x, f_t, p_t, \theta_t)$, where f_t, p_t, θ_t are minimizer of ε_t at stage t

Step4: update weigths

update the weights: $W_{t+1,i} = W_{t,i} \beta^{1-e_i}$

where $e_i = 0$ if example x_i is classfied correctly and $e_i = 1$ otherwise,

and
$$\beta = \frac{\varepsilon_t}{1 - \varepsilon_t}$$

The final strong classifier is: $C(x) = \begin{cases} 1 & \text{if } \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t, \text{ where } \alpha_t = \log \frac{1}{\beta_t} \\ 0 & \text{otherwise} \end{cases}$

Inside the main loop for training For t=1,...T

- Step1
 - Init all weights
 - Same weights all for samples at t=1

Inside the main loop for training For t=1,...T -assume at stage t

- Step2: select the best weak classifier (weak learner) $\operatorname{find} \varepsilon_t = \min_{f,p,\theta} \sum_{i=1}^{n} w_i |h(x_i, f, p, \theta) y_i|$
- For all f (1,2,3,... 162,336 feature set)
- For all p (p=+1 or -1)
 - For different θ, (θ as low as possible to produce good result)
 Mistakenly classified

$$\varepsilon_{f,p,\theta} = \sum_{i}^{n} w_{i} \left| h(x_{i}, f, p, \theta) - y_{i} \right|$$

$$\{f, p, \theta\}_{best_weak_classifier} = \operatorname{arguments}(\min\{\varepsilon_{f, p, \theta}\})$$

Step2: more explanation

-assume at stage t

- Test every feature in the feature set {1,2,3,... 162,336 feature set}
- Test different polairty{+1,-1}: dark/white reversed.
- Try different θ (for simplicity start from 0.4), make it lower to see if performance (recognition, falsepositive rates are improved.
- Output= $\{f_t \text{ (type of feature)}, p_t \text{ (polarity)}, \theta_t \text{ (threshold)} \}$ which give the minimum error ε_t
- $\{f_t, p_t, \theta_t\}$ = (minimizer of ε_t) at stage t

Inside the main loop for training For t=1,...T -assume at stage t

Step3

$$h_t(x) = h(x, f_t, p_t, \theta_t)$$

 f_t, p_t, θ_t are minimizer of ε_t at stage t

Inside the main loop for training For t=1,...T -assume at stage t

step4

update the weights:

$$W_{t+1,i} = W_{t,i} \beta^{1-e_i}$$

where $e_i = 0$ if example x_i is classfied correctly and $e_i = 1$ orthorwsie,

and
$$\beta = \frac{\varepsilon_t}{1 - \varepsilon_t}$$

Inside the main loop for training For t=1,...T -assume at stage *t*

step5

$$C(x) = \begin{cases} 1 & \text{if } \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where
$$\alpha_{t} = \log \frac{1}{\beta_{t}}$$

Appendix2

Answers to exercises

Answer: Class exercise 6.1

- Detected results are in red frames
- What are the detection rate and false positive

rate here?

7 faces correctly detected in the picture, 9 actually faces exit in the image

- Answer
 - detection rate=(7/9)*100%
 - false positive rate=(3/10)*100%

10 windows reported to have faces, but in 3 windows they are not faces.

False positive results

Answer: Class exercise 6.2

- Find the
 Rectangle_Feature_value
 (f) of the box enclosed by
 the dotted line
- Rectangle_Feature_value f=
- ∑ (pixels values in white area) –
 ∑ (pixels values in shaded area)
- f=(4+8)-(6+2)=12-8=4

Answer: Class exercise 3

Definition: Area at X = pixel sum of the area from top-left corner to X = Area X

Find the feature output of this image.

- Area D=1
- Area B=1+2+3=6
- Area_C =1+3=4
- Area A=1+2+3+3+4+6=19
- Area_E=? 1+3+5=9
- Area_F=? 1+2+3+3+4+6+5+2+4=30
- Pixel sum of the area inside the box enclosed by the dotted lines=
- Area_F Area_B Area_E +Area_D=? 30-6-9+1=16
- WA=White area enclosed by the dotted line= Area_F - Area_A -Area_E +Area_C=30-19-9+4= 6
- GA=Gray area enclosed by the dotted line= Area_A - Area_B -Area_C +Area_D=19-6-4+1=10
- (white area-shaded area)=WA-WG=6-10=-4

	_		
1	2	3	3
D		В	
3	4	6	3
C		A	
5		4	1
I Ei		F	
0	2	3	6

Answer: class exercise 4

Feature selection [Lazebnik09]

- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
- Name the types (type 1,2,3,4,5) of the rectangular features in the figures.
- Answer: see the labels in the diagram.

Some examples and their types
Fill in the types for the 2nd, 3rd rows

Answer5a1: Class exercise 5a: How many type 1 features in a 24x24 (pixel) window?

- temp=0; %Type1 feature: block aspect ratio is width=2 units, height=1unit
- for nx=1:win_width/2%nx=no. of x pixels in white area. Min =1,max=win_width/2
- for ny=1:win_height%ny=no. of x pixels in white area. Min =1,max=win_width
- number_of_blocks_x=(win_width-2*nx+1);%no.of x Blocks fit in win_width
- number_of_blocks_y=(win_height-ny+1);%no.of y Blocks fit in win_height
- temp=number_of_blocks_x*number_of_blocks_y+temp;
- end
- end
- temp %is the total= 43200 nx (from 1 to win_width/2 pixels for Type1)

Answer5a2: Class exercise 5a: How many type 3 features in a 24x24 (pixel) window?

- temp=0;
- %Type3: aspect ratio of the feature block, width=3 units, height=1unit
- for nx=1:win_width/3 %nx=no. of x pixels in white area.Min =1,max=win_width/3
- for ny=1:win_height %ny=no. of y pixels in white area.Min =1,max=win_width
- number_of_blocks_x=(win_width-3*nx+1);%no.of x Blocks fit in win_width
- number_of_blocks_y=(win_height-ny+1);%no.of y Blocks fit in win_height
- temp=number_of_blocks_x*number_of_blocks_y+temp;
- end
- end
- N_Type3=temp %answer= 27600

nx (from 1 to win_width/2 pixels for Type3)

Answer5a3 Exercise 5a: How many type 5 features in a 24x24 (pixel) window?

- temp=0; %------
- %type5: aspect ratio of the feature block, width=2 units, height=2unit
- for nx=1:win_width/2%nx=no. of x pixels in white area.Min =1,max=win_width/2
- for ny=1:win_height/2%ny=no. of y pixels in white area.Min =1,max=win_width/2
- number_of_blocks_x=(win_width-2*nx+1);%no.of x Blocks fit in win_width
- number_of_blocks_y=(win_height-2*ny+1);%no.of y Blocks fit in win_height
- temp=number_of_blocks_x*number_of_blocks_y+temp;
- end
- end
- N_Type5=temp %=20736

nx (from 1 to win_width/2 pixels for Type5)

Answer for Exercise 5 and 6:Matlab: for a 24x24 windows, add all types N_type1x2+N_type3x2+N_type5=(43200x2+27600x2+20736)=162336

```
clear; temp=0;
%--matlab program to find number of features %(5 types (columns x rows):
%type1: 2x1; type2: 1x2; type3: 3x1; type 4: 1x3; type 5: 2x2)
%in Viola-Jones face detection cascaded Adaboost algorithm-
%%%% 2x1 shape: (2 rows x 1 column, same as 1 row x 2 columns), 2 types
%win_width=24%(you may choose 36 or 24 etc.)
win width=24%(you may choose 36 or 24 or 12etc.)
win_height=win_width; %x=hornizontal direction; y=vertical direction
%Type1: aspect ratio of the feature block, width=2 units, height=1unit
for nx=1:win_width/2%nx=no. of x pixels of each square. Min =1,max=win_width/2
  for ny=1:win height%ny=no. of y pixels of each square. Min =1,max=win width
   number_of_blocks_x=(win_width-2*nx+1);%no.of x Blocks fit in win_width
   number of blocks y=(win height-ny+1);%no.of y Blocks fit in win height
    temp=number_of_blocks_x*number_of_blocks_y+temp;
  end
end
N_Type2=N_Type1 % same as 2 rows x 1 column
pause
%Type3: aspect ratio of the feature block, width=3 units, height=1unit
for nx=1:win_width/3%nx=no. of x pixels of each square.Min =1,max=win_width/3
  for ny=1:win_height%ny=no. of y pixels of each square.Min =1,max=win_width
   number of blocks x=(win width-3*nx+1);%no.of x Blocks fit in win width
   number_of_blocks_y=(win_height-ny+1);%no.of y Blocks fit in win_height
    temp=number_of_blocks_x*number_of_blocks_y+temp;
end
N Type3=temp
N_Type4=N_Type3 % same as 3 rows x 1 column
pause
%type5: aspect ratio of the feature block, width=2 units, height=2unit
for nx=1:win width/2%nx=no. of x pixels of each square.Min =1,max=win width/2
  for ny=1:win_height/2%ny=no. of y pixels of each square.Min =1,max=win_width/2
   number of blocks x=(win width-2*nx+1);%no.of x Blocks fit in win width
   number_of_blocks_y=(win_height-2*ny+1);%no.of y Blocks fit in win_height
    temp=number of blocks x*number of blocks y+temp;
  end
N_Type5=temp
N_ALL=N_Type1+N_Type2+N_Type3+N_Type4+N_Type5
%Result= 162336 if width =24
%Result=: 816264 if width =36 (??or 704004??)
```

Answer 7: The detection challenge

- Use 24x24 base window
- For y=1;y<=1024;y++ $For x=1;x<=1024;x++{$
 - Set (x,y) = the left top corner of the 24x24 sub-window, different scales are needed to be considered too.
 - For the 24x24 sub-window, extract 162,336 features and see they combine to form a face or not.
- Exercise 7: Discuss the number of operations required.
- Conclusion: too slow, solution use boosting

Answer 7:

Y-

- possible locations of (x,y)=1024x1280.
- Each (x,y) location, for i=1,2,3...obtain subimages: each has size (24ix24i) with lefttop corner at (x,y) as long as x+24i<1024
- For a sub-image, shrink it to a 24x24 window.
- For each 24x24 window, it has 162336 features to be calculated.

Answer: Class exercise 6.8: Attentional cascade

