

Dr. George Karraz, Ph. D.

Ch. 6: Face detection Dr. George Karraz, Ph. D.

Introduction

- Face interface
- Face detection
- Face recognition

Face detection [1]

- To detect faces in an image (Not recognize it yet)
- Challenges
- A picture has 0,1 or many faces.
- Faces are not the same: with spectacles, mustache etc.
- Sizes of faces vary a lot.
- Available in most digital cameras nowadays
- The simple method
- Slide a window across the window and detect faces.
- Too slow, pictures have too many pixels.
(1280x1024=1.3M pixels)

Evaluation of face detection

- Detection rate
- Total number of faces that are correctly detected/total number of faces actually exist in the picture
- Should be high > 95\%.
- False positive rate
- The detector output is positive but it is false (there is actually no face). Definition of False positive: A result that is erroneously positive when a situation is normal. An example of a false positive: a particular test designed to detect cancer of the is nositive hut the person does not have cancer. (http://www.medterms.com/script/main/art.a
- Should be low <10-6
- A good system has
- High detection rate,
- Low false positive rate.

Example

- What are the detection rate and false positive rate here?
- Answer

6 faces correctly detected in the picture, 9 actually faces exit in the image

- detection rate=(6/9)*100\%
- false positive rate $=(1 / 7)^{*} 100 \%$

7 windows reported to have faces, but in 1
 window it is not a face

The Viola and Jones method [1]

- The most famous method
- Training may need weeks
- Recognition is very fast, e.g. real-time for digital cameras.
- Techniques

1. Integral image for feature extraction
2. Ada-Boost for face detection
3. Attentional cascade for fast rejection of non-face sub-windows

Class exercise 6.1

- Detected results are in red frames
- What are the detection rate and false positive rate here?
- Answer
- detection rate=?
- false positive rate=?

The Viola and Jones method Technique 1:

Integral image for feature extraction

Image Features ref[3]

A very simple feature calculation method "Rectangle filters"

Rectangle_Feature_value $f=$

\sum (pixels values in white area) -
Σ (pixels values in shaded area)

Example

- Find the

Rectangle_Feature_value (f) of the box enclosed by the dotted line

- Rectangle_Feature_value $f=$
- $\quad \sum$ (pixels values in white area) -
Σ (pixels values in shaded area)
- $f=(8+7)-(0+1)$
- $=15-1=14$

Class exercise 6.2

- Find the Rectangle_Feature_value (f) of the box enclosed by the dotted line
- Rectangle_Feature_value $f=$
- $\quad \sum$ (pixels values in white area) \sum (pixels values in shaded area)
- $f=$

2	7	5	8
2		6	2
	1		19 1 5
	1	4	8
12			
8	2	5	10

Example: A simple face detection method using one feature
 -Rectangle_Feature_value f
 $\square f=\Sigma$ (pixels in white area) $-\Sigma$ (pixels in shaded area)

Dlf (f) is large, then it is face ,i.e.
Dif (f)>threshold, then

- face
-Else
- non-face

This is a face: The eye-area (shaded area)is dark, the nosearea(white area) is bright. So f is large, hence it is face
This is not a face.

How to find features faster?

Integral images fast calculation method [Lazebnik09]

- The integral image = sum of all pixel values above and to the left of (x, y)

Examples

- The integral image $=$ Top-left comen $x, y)=(1,1)$ sum of all pixel values above and to the left of (x, y)
- Pixel P is at $(x=3, y=2)$
- integral image of P is

$$
=1+2+3+3+4+6
$$

- integral image of Q is
- $=1+2+3+3+4+6+5+2+$ $4+0+2+3$

Computing the integral image [Lazebnik09]

$$
(x=1 y=1)
$$

- Cumulative row sum: $s(x, y)=s(x-1, y)+i(x, y)$
- Integral image: ii $(x, y)=i i(x, y-1)+s(x, y)$
- MATLAB: $\mathrm{ii}=$ cumsum(cumsum(double(i)), 2);

Calculate sum within a rectangle

- A,B,C,D are the values of the integral images at the corners of the rectangle R .
- The sum of image values inside R is:
Area_R = A - B - C + D
- If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are found, only 3 additions are needed to find Area_R
- Calculations of areas can reused for other windows.

Why do we need to find pixel sum of rectangles?
Answer: We want to get face features

- You may consider these features as face features
- Left Eye: (Area_A-Area_B)
- Nose :(Area_C+Area_E-Area_D)
- Mouth:(Area_F+Area_H-Area_G)
- They can be different sizes, polarity and aspect ratios

Face feature and example

Pixel values inside the areas
Shaded area $\left\{\begin{array}{|l|l|l|}\hline 10 & 20 & 4 \\ \hline 7 & 45 & 7 \\ \hline 216 & 102 & 78 \\ \hline 129 & 210 & 111 \\ \hline\end{array}\right.$

F=Feat_val =
pixel sum in white area - pixel sum in shaded area
Example
-Pixel sum in white area=
$216+102+78+129+210+111=846$

A face
-Pixel sum in shared area= $10+20+4+7+45+7=93$

Feat_val=F=846-93=753
If $F>$ threshold, feature $=+1$
Else
feature=-1 End if;
If we can choose threshold $=700$, so feature is, +1 .

Definition: Area_X = sum of pixels in the rectangular area from the left-top corner to pixel X (including the top left corner and pixel X).

- Find the feature output of this image.
- Area_D=1
- Area _B=1+2+3=6
- Area_C $=1+3=4$
- Area _A=1+2+3+3+4+6=19
- Area_E=? $1+3+5=9$
- Area_F=? $1+2+3+3+4+6+5+2+4=30$
- Pixel sum of the area inside the box enclosed by the dotted lines=
- Area F - Area B - Area E +Area_D =? 30-6-9+1=16

Class exercise 6.3

Definition: Area at $\mathrm{X}=$ pixel sum of the area from top-left corner to $\mathrm{X}=$ Area_X

- Find the feature output of this image.
- Area_D=1
- Area_B=1+2+3=6
- Area_C $=1+3=4$
- Area_A=1+2+3+3+4+6=19
- Area_E=? $1+3+5=9$
- Area_F=? $1+2+3+3+4+6+5+2+4=30$
- Pixel sum of the area inside the box enclosed by the dotted lines=
- Area_F - Area_B - Area_E +Area_D $=30-6-9+1=16$
- WA=White area enclosed by the dotted line=?
- GA=Gray area enclosed by the
dotted line=?
(white area-shaded area)=WA-
$W G=?$
dotted line=?
- (white area-shaded area)=WA-
WG=?
dotted line=?
(white area-shaded area)=WA-
WG=?
image.

4 basic types of Rectangular Features
for (white_area)-(gray_area)

- Type) Rows x columns
- Type 1) 1x2
- Type 2) $2 x 1$ \square
- Type 3) 1x3 \square
- Type 4) 3x1
- Type 5) 2x2

- Each basic type can have difference sizes and aspect ratios.
- I.e. the following feature windows are of the same type (Type2) even they have different sizes, or aspect ratios
- Each rectangle inside is of the same dimension

Faces can be any sizes,

Example: a face can be big or small, from to 24×24 to 1024x1024,

- There are faces with different sizes

So, we need feature windows with different sizes.

- As long as white/gray areas have the relations
- The followings are Type2 Rectangular Features
- The white rectangle is above the shaded rectangle
- White and shaded rectangle are of same dimension

Class exercise 6.4

Feature selection $\left[\begin{array}{l}\text { Lazebnik } \\ \text { some examples and their types }\end{array}\right]$

- For a 24×24 detection region, the number of possible rectangle features is $\sim 160,000$!
- Name the types (type $1,2,3,4,5$) of the rectangular features in the figures.

Class exercise 5: Features in a 24×24 (pixel) window

- Exercise 5a: How Type 5)
 many rectangular features of all 5 types can be found a 24×24 pixel window?
- Answer: 162,336 (explain)
- Exercise 5b : How many type 1 features in a 24×24 (pixel) window?
- Answer:_43200 (explain)

Class exercise 6.6?

- Still keeping the 5 basic rectangular features types (1,2,3,4,5) (5 types:
$2 \times 1,1 \times 2,3 \times 1,1 \times 3,2 \times 2$)
- Find the number of rectangular features for a resolution of 36×36 windows
- Answer: 816264, explain your answer.

Standard Types	
1)	\square
2)	\square
3)	\square
4)	\square
5)	\square

The Viola and Jones method Technique 2:

AdaBoost for face detection

Class exercise 7: The detection challenge

- Use 24×24 base window
- For $\mathrm{y}=1 ; \mathrm{y}<=1024 ; \mathrm{y}++$
\{For $\mathrm{x}=1 ; \mathrm{x}<=1024 ; \mathrm{x}++\{$
- Set $(x, y)=$ the left top corner of the 24×24 sub-window, different scales are needed to be considered too.
- For the 24×24 sub-window, extract 162,336 features and see they combine to form a face or not.\}
$\square\}$
- Exercise 7 : Discuss the number of operations required.
- Conclusion : too slow, solution use boosting

Solution to make it efficient

- The whole 162,336 feature set is too large
- Solution: select good features to make it more efficient.
- Use: "Boosting"
- Boosting
- Combine many small weak classifiers to become a strong classifier.
- Training is needed.

Boosting for face detection

 Define weak learners based on rectangle featuresvalue of rectangle feature

$$
h_{t}(x)=\left\{\begin{array}{ll}
1 & \text { if } p_{t} f_{t}(x)<p_{t} \theta_{t} \\
0 & \text { otherwise } \\
\text { window } & P_{t}= \\
\text { polarity }\{+1,-1\}
\end{array}\right. \text { threshold }
$$

Face detection using Adaboost

- AdaBoost training
- E.g. Collect 5000 faces, and 9400 non-faces. Different scales.
- Use AdaBoost for training to build a strong classifier.
- Pick suitable features of different scales and positions, pick the best few. (Take months to do , details is in [Viola 2004] paper)
- Testing
- Scan through the image (any where), pick a window (any size $\geq 24 \times 24$) and rescale it to 24×24,
- Pass it to the strong classifier for detection.
- Report face, if the output is positive

Boosting for face detection [viola2004]

- In the paper it shows that the following two features (obtained after training) in cascaded picked by AdaBipost have 100\% detection rate and 50% false positive rate
- But 50% false positive rate is not good enough
- Approach [viola2004] :Attert́tional cascade

Pick a window in the image and rescale it to 24×24 as "image"

I.e. Strong classifier H (face) $=$
$\operatorname{Sign}\left\{\alpha_{1} h_{1}\right.$ (image) $+\alpha_{2} h_{2}$ (image) $\}$

H (face) $=+1 \rightarrow$ face
$H($ face $)=-1 \rightarrow$ non-face

Boosting for face detection

- An experiment shows: A 200 -feature classifier can yield 95% detection rate and a false positive rate of 1 in 14084 (7.1×10^{-5} Still not good enough)
- Recall: False positive rate
- The detector output is positive but it is false (there is actually no face). Definition of False positive. A result that is erroneously positive, when a situation is normal. An, example of a false positive: a particular test designed to detect gáncer of the toenail is positive but the person does not have toenail cancer.
(http://www.médterms.com/script/main/art.asp?articlekey=3377)!

Correct
Detection rate

Still not
 good enough!

False positive rate

The Viola and Jones method Technique 3:

Attentional cascade for fast rejection of non-face sub-windows

To improve false positive rate: Attentional cascade

- Cascade of many AdaBoost strong classifiers.
- Begin with simple classifiers to reject many negative sub-windows.
- Many non-faces are rejected at the first few stages.
- Hence the system is efficient enough for real time processing.

An example

- More features for later stages in the cascade [viola2004]

Class exercise 6.8: Attentional cascade - Chain classifiers that are progressively more complex

Receiver operating characteristic and have lower false positive

Attentional cascade [Viola2004]

- Detection rate for each stage is 0.99 , for 10 stages,
- overall detection rate is $0.99^{10} \approx 0.9$
- False positive rate at each stage is 0.3 , for 10 stages
- false positive rate $=0.3^{10} \approx 6 \times 10^{-6}$)

Detection process in practice [smyth2007]

- Use 24×24 sub-window
- Scaling
- scale the detection (not the input image)
- Features evaluated at scales by factors of 1.25 at each level
- Location : move detector around the image (1 pixel increments)
- Final detections
- A real face may result in multiple nearby detections (merge them to become the final result)

Summary

- Learned
- How to extract fece feature
- How to apply adaboost for face detection
- How to train up the system and how to detect face

Additional

Exercise A1

- Definition: = Area_X = sum of pixels in the area from left-top corner to pixel X
- Based on the window in image1, answer the following questions.
- i) Find Area_A, Area_B, Area_C, Area_D, Area_E, Area_F
- In image1, calculate the number of Type-3 features found in each of the following different cases:
- $W=1$ pixel, $\mathrm{H}=1$ pixel,
- $\mathrm{W}=2$ pixels, $\mathrm{H}=2$ pixels.

Type	Rows \times Column \mathbf{s}	Feature value	Features
Type -3	1×3	(Sum of pixles in shaded area) $-($ Sum of pixles in white area)	W W W Three rectangular blocks in a row. Width of each rectangle $=\mathrm{W}$ pixels. Height of each rectangle $=\mathrm{H}$ pixels.

$\left\lvert\, \begin{aligned} & 2 \\ & \mathbf{A} \end{aligned}\right.$	7	3	8	2	$\begin{aligned} & 4 \\ & B \end{aligned}$
$\begin{aligned} & 0 \\ & \mathrm{C} \end{aligned}$	4	2	3	5	$\begin{aligned} & 5 \\ & D \end{aligned}$
$\begin{aligned} & 1 \\ & \mathrm{E} \end{aligned}$	3	6	8	2	8
8	0	3	5	3	2
1	3	5	7	4	1

Image 1

Answer A1

- Definition: = Area_X = sum of pixels in the area from left-top corner to pixel X
- Based on the window in Figure 1, answer the following questions.
- i) Find Area_A, Area_B, Area_C, Area_D, Area_E, Area_F
- Answer:
- Area_A=2
- Area_B=2+7+3+8+2+4=26
- Area_C=2
- Area_D=AreaB+4+2+3+5+5=26+4+2+3+5+5=45
- Area_E=3
- Area_F=Area_D+1+3+6+8+2+8=45+73
- ii) Find the area inside the box CDFE based on the result in (i).
- Answer: Area_F-Area_B=73-26=47

- iii)Calculate the type 3 feature value in the area CDFE.
- Answer: $(2+3+6+8)-(0+4+1+3)-(5+5+2+8)=-9$
- iv)Calculate the number of features found in each of the following cases if W and H are the features are :
- $\mathrm{W}=1$ pixel, $\mathrm{H}=1$ pixels, answer $=5 \times 4=20$
- $W=2$ pixels, $H=2$ pixels, Answer: $4 \times 1=4$

References

[viola2004] Paul A. Viola, Michael J. Jones: Robust Real-Time Face Detection. International Journal of Computer Vision 57(2): 137-154 (2004) (PDF: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.4879\&rep=rep1\&type=pd f)
[viola2001] Paul A. Viola, Michael J. Jones, Rapid object detection using a boosted cascade of simple features CVPR 2001 (PDF: http://research.microsoft.com/enus/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf)
[Lazebnik09] www.cs.unc.edu/~lazebnik/spring09/lec23_face_detection.ppt [stackoverflow] http://stackoverflow.com/questions/1707620/viola-jones-face-detection-claims-180k-features
[Jensen 2008] Ole Helvig Jensen," Implementing the Viola-Jones Face Detection Algorithm "Kongens Lyngby 2008 ", IMM-M.Sc.-2008-93,Technical University of Denmark Informatics and Mathematical Modeling
[smyth2007] Face detection using the viola Jones method ppt, UL Irvine (lecture notes of CS175 Fall 2007)
[yu tm]http://aimm02.cse.ttu.edu.tw/class_2009_1/PR/Lecture\ 7/Adaboost.ppt [stackoverflow] http://stackoverflow.com/questions/1707620/viola-jones-face-detection-claims-180k-features

Appendix1

Advanced topics

Training

The face Adaboost detection system

Given : $\left(x_{1}, y_{1}\right), . .\left(x_{n}, y_{n}\right)$, where $x_{i} \in X, Y=\{-1,+1\}$ for negative and positive examples

- Initialize weights :
$-w_{1, i}=1 / 2 M, M=$ number of positive example
$-w_{1, i}=1 / 2 L, L=$ number of positive example
For $t=1,2, \ldots, T$
\{ Step1: Normalize weights $w_{t, i} \leftarrow \frac{w_{t, j}}{\sum_{j=1}^{j=n} w_{t, j}}$

Adaboost face detection Training algorithm [Jensen

 2008]Step2: Select the weak classfier with smallest weighted error

$$
\text { find } \varepsilon_{t}=\min _{f, p, \theta} \sum_{i}^{n} w_{i}\left|h\left(x_{i}, f, p, \theta\right)-y_{i}\right|
$$

Step3: Define $h_{t}(x)=h\left(x, f_{t}, p_{t}, \theta_{t}\right)$, where f_{t}, p_{t}, θ_{t} are minimizer of ε_{t} at stage t
Step4:update weigths
update the weights : $w_{t+1, i}=w_{t, i} \beta^{1-e_{i}}$
where $e_{i}=0$ if example x_{i} is classfied correctlyand $e_{i}=1$ otherwise,
and $\beta=\frac{\varepsilon_{t}}{1-\varepsilon_{t}}$
\}
The final strong classifier is : $C(x)=\left\{\begin{array}{c}1 \text { if } \sum_{\mathrm{t}=1}^{\mathrm{T}} \alpha_{\mathrm{t}} h_{t}(x) \geq \frac{1}{2} \sum_{t=1}^{T} \alpha_{\mathrm{t}} \\ 0\end{array}\right.$ otherwise where $\alpha_{\mathrm{t}}=\log \frac{1}{\beta_{t}}$

Inside the main loop for training

For $\mathrm{t}=1, \ldots \mathrm{~T}$

Step1

- Init all weights
- Same weights all for samples at $t=1$

Inside the main loop for training

For $\mathrm{t}=1, \ldots$ T
-assume at stage t

- Step2: select the best weak classifier (weak learner) find $\varepsilon_{t}=\min _{f, p, \theta} \sum^{n} w_{i}\left|h\left(x_{i}, f, p, \theta\right)-y_{i}\right|$
- For all $f(1,2,3, \ldots 162,336$ feature set)

For all p ($p=+1$ or -1)

- For different θ, (θ as low as possible to produce good result)
- \{

$$
\varepsilon_{f, p, \theta}=\sum_{i}^{n} w_{i} \overbrace{\left|h\left(x_{i}, f, p, \theta\right)-y_{i}\right|}^{\text {Mistakenly classif }}
$$

$\{f, p, \theta\}_{\text {best_weak_lassifier }}=\operatorname{arguments}\left(\min \left\{\varepsilon_{f, p, \theta}\right\}\right)$

Step2 : more explanation
-assume at stage t

- Test every feature in the feature set $\{1,2,3, \ldots$ 162,336 feature set\}
- Test different polairty\{+1,-1\}: dark/white reversed.
- Try different θ (for simplicity start from 0.4), make it lower to see if performance (recognition, falsepositive rates are improved.
- Output= $\left\{f_{t}\right.$ (type of feature), p_{t} (polarity), θ_{t} (threshold) $\}$ which give the minimum error ε_{t}
- $\left\{f_{t}, p_{t}, \theta_{t}\right\}=\left(\right.$ minimizer of $\left.\varepsilon_{t}\right)$ at stage t

Inside the main loop for training
For $t=1, \ldots$ T
-assume at stage t
Step3

$$
\begin{aligned}
& h_{t}(x)=h\left(x, f_{t}, p_{t}, \theta_{t}\right) \\
& f_{t}, p_{t}, \theta_{t} \text { are minimizer of } \varepsilon_{t} \text { at stage } t
\end{aligned}
$$

Inside the main loop for training

For $\mathrm{t}=1, \ldots$ T
-assume at stage t

- step4
update the weights:
$w_{t+1, i}=w_{t, i} \beta^{1-e_{i}}$
where $e_{i}=0$ if example x_{i} is classfied correctlyand $e_{i}=1$ ortherwsie,
and $\beta=\frac{\varepsilon_{t}}{1-\varepsilon_{t}}$

Inside the main loop for training
For $\mathrm{t}=1, \ldots$ T
-assume at stage t

- step5
where $\alpha_{\mathrm{t}}=\log \frac{1}{\beta_{t}}$

Appendix2

- Answers to exercises

Answer: Class exercise 6.1

- Detected results are in red frames
- What are the detection rate and false positive rate here?
- Answer

7 faces correctly detected in the picture, 9 actually faces exit in the image

- detection rate=(7/9)*100\%
- false positive rate $=(3 / 10)_{4}^{*} 100 \%$

10 windows reported to have faces, but in 3

False positive results windows they are not faces.

Answer: Class exercise 6.2

- Find the

Rectangle_Feature_value (f) of the box enclosed by the dotted line

- Rectangle_Feature_value $f=$
- $\quad \sum$ (pixels values in white area) \sum (pixels values in shaded area)
- $f=(4+8)-(6+2)=12-8=4$

2	7	5	8
2		6	2
19			
	1		
1			
5	1	4	8
8	2	5	10

Answer: Class exercise 3

Definition: Area at $\mathrm{X}=$ pixel sum of the area from top-left corner to $\mathrm{X}=$ Area_X

- Find the feature output of this image.
- Area_D=1
- Area_B=1+2+3=6
- Area_C $=1+3=4$
- Area_A=1+2+3+3+4+6=19
- Area_E=? $1+3+5=9$
- Area_F=? $1+2+3+3+4+6+5+2+4=30$
- Pixel sum of the area inside the box enclosed by the dotted lines=
- Area_F - Area_B - Area_E +Area_D $=$? $3 \overline{0}-6-9+1=1 \overline{6}$
- WA=White area enclosed by the dotted line= Area_F - Area_A Area_E +Area_C=30-19-9+4=6
- GA=Gray area enclosed by the dotted line= Area_A - Area B Area_C +Area_D=19-6-4+1=10
- (white area-shaded area)=WA-Top-left corner $W G=6-10=-4$

Answer: class exercise 4
Feature selection $\left[\begin{array}{l}\text { Lazebnik } \\ \text { some examples and their types }\end{array}\right]$

- For a 24×24 detection region, the number of possible rectangle features is $\sim 160,000$!
- Name the types (type $1,2,3,4,5$) of the rectangular features in the figures .
- Answer: see the labels in the diagram.

Answer5a1: Class exercise 5a: How many

type 1 features in a 24×24 (pixel) window?

- temp=0; \%Type1 feature: block aspect ratio is width=2 units, height=1unit
- for $n \mathrm{nx}=1$:win_width/2\%nx=no. of x pixels in white area. $\operatorname{Min}=1, \mathrm{max}=$ win_width $/ 2$ for $n y=1$:win_height\%ny=no. of x pixels in white area. $\operatorname{Min}=1$, max $=$ win_width number_of_blocks_x=(win_width-2*nx+1);\%no.of x Blocks fit in win_width number_of_blocks_y=(win_height-ny+1);\%no.of y Blocks fit in win_height temp=number_of_blocks_x*number_of_blocks_y+temp;
end
- end
- temp \%is the total 43200
nx (from 1 to win_width/2 pixels for Type1)

Answer5a2: Class exercise 5a: How many

type 3 features in a 24×24 (pixel) window?

- temp=0;
- \%Type3: aspect ratio of the feature block, width=3 units, height=1unit
- for $n x=1$:win_width/3 $\% n x=n o$. of x pixels in white area.Min $=1$, max=win_width/3
- for ny=1:win_height \%ny=no. of y pixels in white area.Min =1,max=win_width
- number_of_blocks_x=(win_width-3*nx+1);\%no.of x Blocks fit in win_width
- number_of_blocks_y=(win_height-ny+1);\%no.of y Blocks fit in win_height
- temp=number_of_blocks_x*number_of_blocks_y+temp;
- end
- end
- N_Type3=temp \%answer= 27600
nx (from 1 to win_width/2 pixels for Type3)

Answer5a3 Exercise 5a: How many type 5 features in a 24×24 (pixel) window?

- temp=0; \%
- \%type5: aspect ratio of the feature block, width=2 units, height=2unit
- for $n x=1$:win_width/2\%nx=no. of x pixels in white area.Min =1,max=win_width/2
- for ny=1:win_height/2\%ny=no. of y pixels in white area.Min =1,max=win_width/2
- number_of_blocks_x=(win_width-2*nx+1);\%no.of x Blocks fit in win_width - number_of_blocks_y=(win_height-2*ny+1);\%no.of y Blocks fit in win_height - temp=number_of_blocks_x*number_of_blocks_y+temp;
- end
- end
- N_Type5=temp \%=20736
nx (from 1 to win_width/2 pixels for Type5)

Answer for Exercise 5 and 6:Matlab: for a 24×24 windows, add all types N_type1x2+N_type3x2+N_type5=(43200x2+27600x2+20736)=162336

clear; temp=0;
\%--matlab program to find number of features \%(5 types (columns x rows):
\%type1: 2×1; type2: 1×2; type3: 3×1; type 4: 1×3; type 5: 2×2)
\%in Viola-Jones face detection cascaded Adaboost algorithm
$\% \% \% \% 2 \times 1$ shape : (2 rows $\times 1$ column, same as 1 row $\times 2$ columns), 2 types
\%win_width= 24% (you may choose 36 or 24 etc.)
win_width=24\%(you may choose 36 or 24 or 12etc.)
win height=win width; \%x=hornizontal direction; $\mathrm{y}=$ vertical direction
\%Type1: aspect ratio of the feature block, width=2 units, height=1unit
for $n x=1$:win_width/2\%nx=no. of x pixels of each square. $\operatorname{Min}=1$, max $=$ win_width/2
for $\mathrm{ny}=1$:win_height\%ny=no. of y pixels of each square. $\mathrm{Min}=1$, max $=$ win_width number_of_blocks_x=(win_width-2*nx+1);\%no.of x Blocks fit in win_width number_of_blocks_y=(win_height-ny+1);\%no.of y Blocks fit in win_height temp=number_of_blocks_x*number_of_blocks_y+temp;

end

end
N_Type1=temp
N_Type2=N_Type1 \% same as 2 rows x 1 column
pause
temp=0;
\%Type3: aspect ratio of the feature block, width=3 units, height=1 unit
for $n x=1$:win_width/3\%nx=no. of x pixels of each square.Min $=1$, max=win_width/3
for $n y=1$:win_height\%ny=no. of y pixels of each square. $M i n=1, \max =$ win width
number_of_blocks_x=(win_width-3* $n x+1$);\%no.of x Blocks fit in win_width number_of_blocks_y=(win_height-ny+1);\%no.of y Blocks fit in win_height temp=number_of_blocks_x*number_of_blocks_y+temp,
end
end
N_Type3=temp
N Type4=N Type3 \% same as 3 rows $\times 1$ column
pause
\%
temp=0; \% \qquad
\%type5: aspect ratio of the feature block, width=2 units, height=2unit
for $n x=1$:win_width $/ 2 \% n x=n o$. of x pixels of each square. $\mathrm{Min}=1, \mathrm{max}=$ win_width $/ 2$
for ny $=1$:win_height $/ 2 \%$ ny $=$ no. of y pixels of each square. $M i n=1$, max $=$ win_width $/ 2$ number_of_blocks_x=(win_width-2*nx+1);\%no.of x Blocks fit in win_width number_of_blocks_ $y=\left(\right.$ win_height- $\left.2^{*} n y+1\right)$;\%no.of y Blocks fit in win_height temp=number_of_blocks_x*number_of_blocks_y+temp;
end
end
N_Type5=temp
'total'
N_ALL=N_Type1+N_Type2+N_Type3+N_Type4+N_Type5
\%Result= 162336 if width $=24$
\%Result= : 816264 if width = 36 (??or 704004??)

Answer 7: The detection challenge

- Use 24×24 base window
- For $\mathrm{y}=1 ; \mathrm{y}<=1024 ; \mathrm{y}++$
\{For $\mathrm{x}=1 ; \mathrm{x}<=1024 ; \mathrm{x}++\{$
- Set $(x, y)=$ the left top corner of the 24×24 sub-window, different scales are needed to be considered too.
- For the 24×24 sub-window, extract 162,336 features and see they combine to form a face or not.
- \} \}
- Exercise 7 : Discuss the number of operations required.
- Conclusion : too slow, solution use boosting

Answer 7:

- possible locations of $(x, y)=1024 \times 1280$.
- Each (x, y) location, for $\mathrm{i}=1,2,3$..obtain subimages: each has size (24ix24i) with lefttop corner at (x, y) as long as $\mathrm{x}+24 \mathrm{i}<1024$
- For a sub-image, shrink it to a 24×24 window.
- For each 24×24 window, it has 162336 features to be calculated.

Answer: Class exercise 6.8: Attentional cascade

- Chain classifiers that are progressively more complex

Receiver operating characteristic and have lower false positive

