CHEM 101

SECOND SEMESTER

1438-1439 H / 2017-2018 G

FINAL EXAM

Da	Date: Sunday 20/08/1439 H				Н												الاسم :
Tir	ne: 8	:00 - 1	1:00	AM		الرقم الجامعي :											
Tir	ne all	owed	: 180 r	ninute	s											عبة :	رقم الش
						Write your answer in the table below											
01			08.			Q15:				10 000							
<i>Q1</i>	•		<i>Q8:</i>			QIS:			<i>Q22</i> :			Q29	<i>Q29</i> :		230	Q36:	
Q2	:		Q9:			Q16:			Q23:		Q30	:		Q37	•		
<i>Q</i> 3	Q3: Q10:		Q17:			Q24:		Q31	:		Q38:						
Q4	<i>Q4: Q11:</i>		Q18:			Q25: Q		Q32	<i>Q32:</i>		Q39:						
<i>Q5: Q12:</i>		Q19:		<i>Q26:</i>		Q33	<i>Q33:</i>		<i>Q40:</i>								
<i>Q6: Q13:</i>			Q20:		<i>Q27:</i>		Q34:										
Q7	•		Q14:			<i>Q21:</i>			<i>Q28:</i>		Q35	Q35:					
IA																	VIIIA
1 H 1.008 3 Li 6.94 11 Na	2 IIA 4 Be 9.01 12 Mg	3	4	5	6	7	8	9	10	11	12	13 IIIA 5 B 10.811 13 A I	14 IVA 6 C 12.01 14 Si	15 VA 7 N 14.01 15 P	16 VIA 8 O 16.00 16 S	17 VIIA 9 F 19.00 17 CI	2 He 4.003 10 Ne 20.18 18 Ar
23.00	24.31	IIIB	IVB	5 VB	VIB	VIIB		VIIIB	,	IB	IIB	26.98	28.09	30.97	32.07	35.45	39.98
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	²⁵ Mn	26 Fe	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	32 Ge	33 As	³⁴ Se	35 Br	36 Kr
39.09	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.546	65.41	69.72	72.64	74.9216	78.96	79.90	83.80
³⁷ Rb	38 Sr	39 Y	40 Zr	41 Nb	42	43 Tc	44 D 11	45 Rh	46 Dd	47 A a	48 Cd	49 10	50 Sn	51 Sb	52 Te	53	54 X 0
85.47	87.62	T 88.91	91.23	92.91	Mo 95.94	[98]	Ru 101.07	102.91	Pd 106.42	Ag 107.87	Cd 112.41	In 114.82	Sn 118.71	121.760	127.60	126.90	Xe 131.29
55	56	71	72 I I F	73 T o	74	75	76	77	78	79 ^	80	81 T I	82 Db	83	84 Do	85 ^ 	86 Dra
Cs 132.91	Ba 137.33	Lu 174.97	Hf 178.49	Ta 180.95	W 183.84	Re 186.21	OS 190.23	Ir 192.22	Pt 195.08	Au 196.97	Hg 200.59	TI 204.38	Pb 207.2	Bi 208.980	P0 [209]	At [210]	Rn [222]
87	88	103	104	105	106	107	108	109	110	111	112	113					<u> </u>
Fr [223]	Ra [226]	Lr [262]	Rf [261]	Db [262]	Sg [266]	Bh [264]	HS [269]	Mt [268]	Ds [271]	Rg [272]	Uub [285]	Uut [286]					

Constants: 1 atm = 760 torr = 101.325 kPa R = 0.0821 atm L mol⁻¹ K⁻¹ = 8.314 J mol⁻¹ K⁻¹

 N_A (Avogadro's Number) = 6.022×10^{23} 1 atm.L = 101.325 J

A) 1×10^{-18}	ssed in nanometers " nm "? B) 1×10^{-1}	A) H_3PO_4	B) H_2PO	
C) 1×10 ⁻¹⁵	D) 1×10 ⁻⁹	C) H ₂ PO ₃	D) H ₃ P0	
 Q2 : Convert 20 mg into '	 ' kg ''?	~	mass of an element " of the third isoto	
A) 2×10 ⁻²	B) 2×10 ⁻⁶	information belo	w:	
C) 2×10 ⁻⁴	D) 2×10 ⁻⁵	isotope	% abundance	mass "amu"
D2. What is the density i	 n "~/~~ ³ "	1	75.00	220.9
23 : What is the density i of 52 g of a metal, as sho		2	10.00	220.0
A) 0.14	wn in: $A = 6 \text{ cm}^2$	3	15.00	????
B) 5.20		A) 221.0	B) 222.9	D
C) 1.44	l = 6 cm	C) 223.9	D) 222.	
D) 0.52		J		
	, ·	-	product in the follow	ing reaction:
04 : An object is moving	g at a speed of 750 m/s after		$l(s) + O_2(g) \rightarrow ?$ B) Al ₂ C	
3.5 min, its rate of accele		C) AlO ₂		5
A) 3.6	B) 214.3	,	D) AlO	
C) 0.3	D) 16.5		"" of Dt that conta	
		atoms, is:	n " g " of Pt that conta	uus 4.0×10 Pt
<i>Q5</i> :Potassium is a	and chlorine is a		D) 12 0	
A) metal, metal	B) metal, metalloid	A) 12.3	B) 13.9	
C) nonmetal, metal	D) metal, nonmetal	C) 14.9	D) 16.3	
	· · · · · · · · · · · · · · · · · · ·	<i>Q12</i> : What is th	e mass of "KI" (M _w	_t = 166 g/mol) i
	ng is a monoatomic cation?	-	ce 60.6 g of " K_2SC	
A) CN	B) NH ⁺³		$KI + 4H_2SO_4 \rightarrow 4K_2SO_4 \rightarrow 4K_2SO_4$ B) 138.3	
C) Fe ⁺³	D) Cl ⁻	A) 251.7 C) 331.3	в) 138. D) 115.	
<i>Q7</i> : The correct name of		013. What is	the empirical formu	ila that contain
A) tetrammonium phos	1	-	S and 30.3% O by m	
B) ammonium phosphaC) nitrogen hydrogen p		A) K ₂ SO ₄	B) K ₃ (S	
D) triammonium phosp	-	C K_2SO_3	D) K ₃ (S	$O_4)_2$
, <u> </u>		, <u> </u>	, 3(

Q14 :	The	density	in '	" g /L"	of	chlorine	gas	"Cl ₂ "	at
25°C	and (0.592 atr	n is:						

A) 1.7	B) 2.0
C) 4.9	D) 0.7

Q15: The pressure of a gas is 750 torr when its volume is 400 mL. Calculate the pressure in "*atm*" if the gas is allowed to expand to 600 mL at constant temperature:

A) 500	B) 1125
C) 1.48	D) 0.66

Q16: A gas sample occupies 200 mL at STP. What is the final temperature *in* "*K*" if the volume is doubled at constant pressure?

A) 149	B) 546
C) 1192	D) 397

Q17: In a gas mixture of He, Ne, and Ar with a total pressure of 8.40 atm. If the partial pressures of He is 1.50 and Ne is 2.00 atm, the mole fraction of Ar is:

A) 0.179	B) 0.238
C) 0.583	D) 0.357

Q18: When 8 L of " C_2H_6 " react with enough amount of " O_2 ", the volume in "L" of " H_2O (g)" at constant temperature and pressure, is:

 $2C_{2}H_{6}(g) + 7O_{2}(g) \rightarrow 4CO_{2}(g) + 6H_{2}O(g)$ A) 3 B) 1.5 C) 48 D) 24.0 *Q19*: The amount of heat in "*J*" required to raise the temperature of 350.0 g of copper from 25° C to 85° C is: (the specific heat of copper is 0.385 J/g °C).

A) 8085	B) 7676
C) 6806	D) 6485

O20: In endothermic reactions:

A) The products energy is less than reactants energy

B) The products energy is more than reactants energy.

C) The products energy is equal to reactants energy.

D) Heat released from the system.

Q21: 850 g of a metal has a specific heat of 0.46 J/g.°C. The heat capacity of this metal in " $J/^{\circ}C$ " is:

A) 391	B) 0.391
C) 1848	D) 0.541

Q22: The change in internal energy ΔE of a system is always a negative value if the system:

- A) Absorbs heat and does work.
- B) Gives off heat and does work.
- C) Gives off heat and has work done on it.
- D) Absorbs heat and has work done on it.

Q23: Which of the following reaction has $\Delta H \neq \Delta E$? A) HCl (aq) + NaOH (aq) \rightarrow NaCl (s) + H₂O (l) B) C(s) + O₂ (g) \rightarrow CO₂ (g) C) H₂ (g) + I₂ (g) \rightarrow 2HI (g) D) N₂ (g) + 3H₂ (g) \rightarrow 2NH₃ (g) *Q24*: 0.1 mole of "CH₄" was burned and the energy given out raised the temperature of 200 g of water from 18 °C to 28 °C. The enthalpy of combustion of "CH₄" in "*kJ/mol*" is: (s for water = $4.18 \text{ J/g.}^{\circ}\text{C}$)

A) - 8.36B) - 8360C) - 83.6D) - 836

Q25: Hydrazine is completely burned in oxygen at 25 °C according to:

 $N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$ $\Delta H = -622.4 \text{ kJ}$ Calculate the change in the internal energy ΔE° in "*kJ*" for this combustion process?

A) – 627.4	B) – 597.9
C) – 646.8	D) – 619.9

Q26: Given the following thermochemical equations:

$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$	$\Delta H^\circ = -2043 \text{ kJ}$
$C(gr) + O_2(g) \rightarrow CO_2(g)$	$\Delta H^{\circ} = -394 \text{ kJ}$
$\mathrm{H_2}(g) + {}^{1}\!\!/_2\mathrm{O}_2(g) \longrightarrow \mathrm{H_2O}(g)$	$\Delta H^{\circ} = -242 \text{ kJ}$
Find ΔH°_{rxn} (in kJ) for:	
$3C(gr) + 4H_2(g) \rightarrow C_3H_8(g)$	

A) – 132	B) – 107
C) – 99	D) – 118

Q27: Given the reaction

 $2C_{2}H_{6}(g)+7O_{2}(g)\rightarrow 4CO_{2}(g) + 6H_{2}O(l) \quad \Delta H = -2920 \text{ kJ}$ If ΔH_{f}^{0} of $CO_{2}(g)$ is -393.7 kJ mol⁻¹ and ΔH_{f}^{0} of $H_{2}O(l)$ is -285.6 kJ mol⁻¹, what is ΔH_{f}^{0} of $C_{2}H_{6}(g)$ in "*kJ mol⁻¹*"?

A) + 184.2	B) – 184.2
C) + 780.7	D) - 780.7

*Q28***:** In the figure shown below:

If the work done by the system is 1327 J , what is the final volume in "L"?

A)	32.4	B)	37.8
C)	26.6	D)	22.4

Q29: If the change in the internal energy (ΔE) is 48 J when a sample of gas is compressed. As a results, 26 J of heat is given off to the surroundings. The value of the work "w" in "J", is:

A) + 22	B) – 22
C) – 74	D) + 74

Q30: How many grams of NaOH ($M_{Wt} = 40g/mol$) are there in 500.0 mL of a 0.175 M NaOH solution?

A) 3.5	B) 14
C) 114	D) 31

Q31: The molality "*m*" of urea ($M_{Wt} = 60$ g/mol) in a solution prepared by dissolving 16 g of urea in 39 g of water is:

A) 96	B) 5.9

C) 6.8 D) 0.7

Q32: If the concentration of "NaCl" is 13.0% by mass with density of 1.10 g/mL, what is the molarity "*M*" of this solution?

C) 2.75	D) 2.15	
A) 2.98	B) 2.44	

Q33: What is the molality "*m*" of a 2.5 M ethanol (C_2H_5OH) solution whose density is 0.90 g/mL?

A) 2.11	D) 5.51
C) 2.92	D) 3.18

Q34: The vapor pressure of pure water at 25 °C is 23.8 torr. What is the vapor pressure in "*torr*" of water above a solution prepared by dissolving 18.0 g of glucose (a nonelectrolyte, $M_{Wt} = 180.0$ g/mol) in 95.0 g of water?

A) 25.1	B) 23.4
C) 0.44	D) 0.51

Q35: What is the boiling point of a solution in " oC "made by dissolving 66 g of a compound (a nonelectro-lyte, $M_{wt} = 331$ g/mol) in 500 g of water?(For water: $K_b = 0.512$ °C/m).A) 100.2B) 100.05

C) 100.5 D) 100.8

Q36: The freezing point of an aqueous solution is -2.79° C. Determine the boiling point of this solution.

(For water: K_{f} = 1.86 °C/m , $K_{b}\,$ = 0.512 °C/m).

- A) 101.26 B) 100.51
- C) 100.78 D) 102.79

Q37: A 33.7 g sample of a nonelectrolyte wasdissolved is 750. g of water. The solution's freezingpoint was -2.86 °C. What is the molar mass of thecompound?(K_f of water = 1.86 °C/m)A) 68.8B) 122C) 38.8D) 29.2

Q38: At 1 atm, the solubility of a gas in water is 0.75 mol/L. If the partial pressure becomes 7.5 atm, what is the solubility of this gas in "mol/L"?

A) 10.0	B) 6.22
C) 5.63	D) 7.13

Q39: Calculate the osmotic pressure in "*torr* "at 25°C of a 1.1 x 10^{-5} mol/L protein solution ?

A) 0.20	B) 0.10
C) 2.00	D) 0.02

Q40: If 1×10^{-3} g of a substance (a nonelectrolyte) dissolved in 10 mL of solution generates an osmotic pressure of 9.87×10^{-3} atm at 300K, what is the molar mass in "g/mol" of the substance?

A) 2.5×10 ⁴	B) 2.5×10 ⁵
C) 2.5×10 ²	D) 2.5×10 ³