BMT- 2272 I
Chap.#5 and Chep#F

Addition and subtraction ) Basic Technical Mathematics with Calculus Peter K. F, Kuhfitting

Chapter 5 Factoring and Fractions (Summary

Exercises / Section 5.8 (page 183-185)

° Combine the given fractions and simplify.
Problem # 1. l——L+£, Problem # 11
o 2 18 9
2

Problem # 23! ahe 8 —+ e Problem # 35=

b bla+2b) (a+2b)
Problem # 9. —)f+—3y—ﬂ

xX—y x+y
3 1

August 2015
Y +2x-2y
xy(x=y)
1 1 1

Problem # 15!

A

2 27 2 3t 52 o
2x"+3xy+y° x +4xy+3y° 2x +7xy+3y

2 1 2x-l
-3 x+2 (x=-3)(x+2)

Problem # 29 ¢ +

(Problems solved in class # 1, 11, 23, 35)

Problem#Pl: 1 (i—z](Answer: x+y)
= x-y\y x xy

Problem # P2:

(r=2)(r+2) (x+2)(x+2) " (v=x)(x+)

W) Py W HQ. P ; : e R
@. Problem # 9; Problem # 15, Problem # 29.

Sw+3
w (w+1)

+%(Answer:
= w(w+l) w

Exercises / Section 5.9 (page 188-189)

° Simplify the complex fractions.

1_16 I " 1
'_2 _—
Problem # 7! J; , Problem # 19.‘M~TE—_2
b 1+
x E-2

Problem # 31 The total resistance of the circuit shown in the figure is given by p _

. y s B
Simplify the complex fractions: Problem # 5: ~ x

1
oo
Kk __6
k+1 (k+1)
o d
(k+1)2
(Problems solved in class # 7, 19, 23, 31)
2 l 5
Problem # P3:-_x-2 x (Answer:
o e 3x 2 x(x-2)
x=5 x-5 ) -
1 o
S Sx+9)(x+
Problem # PE: ° x+2 (Answer: M—ﬁ“)—)
= 3 (x+2)(4x+3)
]+—?
I+=
X

X 2
Problem #23: x-2 (x-1)(x-2)
(x=4)

(x-1)

1

, simplify the expression for R.

Problem # 15, ___w—=35

HW: Problem # 5, Problem # 15. Problem # 21,

—
—_—

(Answer: 2—m?)

Problem # P4: 2 -

= 1—

—h

Q)

Problem # 21
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"ORING AND FRACTIONS | =
| | ige %
| ”_.o m%- (or subtract) two or more fractions, we find the LCDH
asm_.mm:osm and .n:m:mn each fraction to an equivalent fraction having t, M
1epfor its denominator, Next, we add (or subtract) the numerators of gy

._rh:o:m. placing the result over the LCD, Finally, we sim lify 3
fraction. n Y the s i

cen pLHE | _g%\mpnﬁ_ | |
Combine

5 4 « B
6a’bc  15ab’c ~ 20abe?

Solution. In terms of prime factors, the different denominators are
mmu&num.u.mu.w.n
15ab¢ JeSeqepleg
20abc? = eu.m.a.v.nu

To construct the LCD, observe that the factors are 2,3,5,a,b, and Al

largest exponent on the factor 2 is 2, the largest €Xponent on the factor 318
and so forth. So the LCD is given by

LCD =22x3x5x a’b’c? = 60a2p2e2

I

Now we write the fractions so that they all have the

. i same denominators;
example, since 60a2pc2

= (6a’bc)(10bc), we get for the first fraction

5 _ 5 ._cwnr 50b¢
mnuvﬁ 6a’bc  10bc ~ 604’522

The other fractions are adjusted similarly:

5(10bc¢) _ 4(dao) 3(3ab)
6a’bc(10be) ~ 15abic(dac) ~ 20abc(3ab)
_ 50bc __l6ac 9ab
60a%b°c?  §0g2p2c2 60abc?
_ 50bc — . 16ac ~ 9ab
60a’bic?

The procedure for adding or subtracting fractions containing polynomE4

als is similar. . |
PeA2 Tvanmpliag)

Combine

5.8 ADDITION AND SUBTRACTION OF FRACTIONS 179

"ﬂnw .

Thie acceleration of the system is

Basic Technical Mathematics with Calculus ;|
Peter K. F. Kuhfitting :

S

rr-.,llil.,.ll.

(w1 — w2)g

wy + owy

a=

n the study of the dispersion of X rays, the expression
Ne® :

wm(fe® — )

%wnm. K.._Eu_w.m by m(fy + f) and simplify.

flexible cable. suspended from two
its lowest point is

.b.“

points at the same height, hangs under its own weight. The

o

: .,Mv A perfectly
== tension Ty ar.

S it it

; where s is the length of the ¢able, / the sag. and w the weight per unit length. Find an expression for

9.8 Addition and Subtraction of Fractions

In considering the addition and subtraction of algebraic fractions, recall from
arithmetic that the fractions 4 and ¢ can be added if } is changed to %, so that
e d D1

6767672
The number 6 is called the lowest common denominator (LCD).
Since algebraic fractions are added by the same rules, let us first state

the definition of the lowest common denominator.

Lowest common denominator: The lowest common denominator
(LCD) of two or more fractions is an expression that is divisible by -
every denominator and does not have any more factors than needed to
satisfy this condition.

The LCD can be found by the procedure described next.

To construct the lowest common denominator for a set of algebraic
fractions, factor zach of the denominators. Then the LCD is the prod:
uct of the factors of the denominators, each with an exponent equal to
the largest of the exponents of anv of these factare




FACTORING AND FRACTIONS ~

36. A light rod of length
end of the rod, then the deflection is
.x\ A.«m Lv

W LT i bhere
Y E G

0=x=<

2] =

where # jc o roncstant Writa v ac'a inala Fraciian

1 is clamped at both ends and carries a load W' atthe center. If x is the

X it

Linte Y

. CHAPTER § xmx
r\.m u.ﬂ+ulu_l...._. 6. X1 _ x  7x
\. 4x x x * Sy .wa‘ﬂlwcle.
4y 3a _4a a-3 X X -y
_Q.A..v 9 * 36b m.k+u| X
Vioox+ 3y x-— 3y X x
.w.».l% X+ mc.mh+.<r.,..+v_
/. 2 )
1 2 _1_ 3y +2c-2y x Y
hdl, Sos = L 2T 2E" Iy ; -
; 1 Xy x x(x = y) 2 X—=3r 2x+y
/
W X+ y X 3 4
Hu.x.+m%+..nl.._.. Ha.klulhlu
;. 2 26— L& } X 1
v A, x—-37 ﬂ Tix = INx +2) Is, (x ¥ ¥Nx + 2y) ¥ X+y
7 1 4y F T g X ¥
&_._ Li. x + 3y + (x = 3vix —7y) i 18 25 ~% Y = 3x
" 2x 2y 1 2 |
Q..Hw. 3x -y 3y -3y .Nc. ¥t Yox+ ¥
¥ 1 ¥ i ¥ 2y X+ 2y
- 2L £ ¥ 2zt _ _ 2 &4y e +y) * x
,\Nma+vl a4 g , 24, 306 a a-p
R TR s B I R
/ A B 2B _ 35— 1
25, - ) - =
_\ A+ B \:&lw_l*.b mm.:u.r: .q+«+u.
n m Im?
27. . - — !
z\. n—m ntm p>= g2
28. 4 7 A G RN N
) (R+3r(R~71) " (R = INNR+2 "R+ IR F r)
3 1 , I q
29, !
v (x = ¥)x + 2y) (x4 ) (x+ 2y) .m = x)x +y)
30, -2 2x . - B g .,,_: X" 2 x?
&+ T B x =1 _ 4 x=2 .«+N.l.~ufa
32 T R . r_ 33 € _ ¢
N.cjlm ,.H.c1.m h!m.om : . .ﬂ.*m&. Nn.+n~.
2 3 e . |
M, — e A S N
¥=y Fio-32Ta7 3oy = 2y
as, lrgl.l_JlJll_|l|I+,'e_l.,l -
258+ 3xy + 57 T T 0 dxy + m.—.u. 2 + Ty + 3y % w\.m w isthe dilanee

frow one y

G e nhimn

AL a m.ﬁqwﬂ\mm.
m\wh&@cﬁ
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Common errors
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e

“f ke

ot

g

e S

i
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s
e
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&y

Eae 4

e
e

(1) Failing to change all the sj

(A4

ens when subtracting the nimerator,

o B oy €xample, in.step (5.18).of..Example .3, both.signs. in the numeratgr ¢

middle fraction are changed to become —6x — 6.

(2) Forgetting that

(3) Forgetting that

1 1 1
— G + .
X+ * X oy

In case (2) the correct procedure is

1 3 X
v oo v

x+y
xy

!
X

In case (3) Em fraction

1
X+

is already in simplest form and cannot be split up.

Wﬁ'g‘@‘@éﬁ‘ﬂ’?ﬁm o

Example 4 -Two perfectly

tive masses are

elastic balls collide with a common velocity v. If their re
m and M, then the velocity of m after the collision is

pu\%. _w.e.._‘ ﬂa?ni_l
b A M m v 2vm
B : ¢ M+m M+m M+ m
I Simplify this expression.
¢ Solution. A M i v St
) BV ¥ g M+nm/ M+m £ Cs)
| = _—
| B WM um _ 2um . S
i M+ m T MAm M+m - ¢
W, , UM —vm - 2um M N
f ¢ oy M Fm
m “ - UM — 3um By
e T M+m -
.Wﬂ.’"” —
mexmqo_mmm / Section 5.8 _
%m..wxn_.ommom 1-35, combine the given fractions and simplify.
: .m ! 3 5 3 1
LA 2% 15 *g
Al B £ 13 a4 L
8§ tE-3 LA el




188 CHAPTERS  FACTORING AND FRACTIONS - - 5.9  COMPLEX FRacTIONS 187
2 I . 2
Each such vesse] offers a certain resistance to the flow of blood. If, digey gl - I8 .
: ° <1 2 g 1 (xr + v) <
,qu q " a:&& are the respective resistance forces of the blood vessels in parg IIJEJ\L \n\i.qq. bn\.\u.q_
e he combined resistance is given
Tn _u»itﬂrs s given by . [ e
" ¥ w I.'l.-,l‘ . m *—
e H—II.I_ (e—7J(x +7 1
e i u?..t+?+:uw.mnw
n n n X X

The remaining examples further illustrate the alternate technigue dis-

. 5 1 3 ; ?
Solution. B . 110203 cussed”in the previous example,
: H + ,W + F I_t + F A.T m nnr -
h n rn. n ar m%ﬂgﬁx@nﬂ.‘w ,
. {
- rirrs Simplify the fraction /

rars + ey + ryry

Exercises / Section 5.9

In Exercises 1-26, mmanz.@\ the complex fractions.

~+M M.TW
1 3 7 7
. 3 2. 5
N+w. _+W
1 1 ) |
-4 — / u||l
432 /g
_3 gl
6 x2
4 16 9
_|||m. _I.I
\q._ - m...llw.
I+ - ] it
x | x
B 7% 3_Io
10, U1 X P
vy X X
17 10 3c
- = = —
\Hm h K s+ 6
' .u+Wm|]m| 9
h K2 s+ 6
4z / 1 1
z+ — + 5
Hm..ll.m.u_lu. /\H.E.ml_mllm
o

B -1

= QN. =~ 3R + 3), it follows that

_+M_ LCD = (R — 3)(R + 3)
1 As before, multiplying the numerator and denominator of the complex frac-
& 6 tion by the LCD will reduce the fraction directly.
1, R ..EI&E+ R (B3R +3)
Z .l R+7 1 R:—9 I
1
4~ L_ B3R +3)
| J = +1+(R-3)(R +3)
ol i R(RR-3)+R
H \ . RFDFTR-HER T
Q_ﬁ‘N m: | m ol .mmmisw.~&+.mm s b oo
B x_ 6 R+3+ R o
¥ y? _ R*-2R -,
5 e il 3 "R+ R%
e LR T _ R(R—7 A
we M g | CRHIE— | :
W = .m. _n.,.._..‘ b MN ‘ "
:_r_cmm i : .Hb+w
T & .
a— 3a +72 XD:\_MM@F&,F&
TR it ) b Justas electrical components can be connected in parallel, biood vessels that
R Rl branch out and come together again are said to be connected in riarallal



ANSWERS TO ODD-NUMBERED EXERCISES A-29

Section 5.4 (page 166)

L +2yF 3, (3r-4y) s, (= Dxr=3) 7. («x=-dx+3) o 2a = 2p)°

1. 2(x + 6)(x + 1] 13, (x - 6y)(r + ») 15, (D + 7D - 2 17, (v = y)ix - ¥)

19, (5x - y)(x - 2y) 2L (4x + y)(x + 3y) 23 (2x - IGr + 4y) 25, (5w, — 2un)(wy ~ 4us)
27. B(L -3C)L +2C) 29, 23f = 4gP 31 xx -2y 33. nol factorable

35 (@a+b-3)a+ b+ 2) 3 n+m =2+ m-— 1) 3. Qa+2b-1)a+p - 4)

AL (fy + 2003, + 21y = 1) 4. (I=-x+v){l +x- YA = ey 4+ vY) 45, (7g - 2b)4a + p)
47, (5x = y)(8x + 3y) 4. (Ba - 28)4e - 58) S, 1= 1sec 53 1=133sec-

Section 5.5 (page 169)

L (x = y)a+ b) 3. (x+ )2+ 1) 5. (a=b)dc + 1) T (x = )5k - 1)

9. 2(x + y)a - ¢) 1L 3R = r)a -2p) B, (= yfe-3-2 15 (X + v)a = x + y)
17, (x — y)x = Yoo ) 19, (v =) + 4v - 1) AL Qv =y - o)y - ¥+ oz)

23, (x + 2y — =}x + 2y + =} 25. (3a = 2b - ¢)3q + 2p - ) 27 -3 -y = 4y}

29, (X + 2y)a - x FIv) 3L atA - 1MAg - 4)

Section 5.5 (page 174)

x a 2 . 5 X =y
1. 5 3: o 5 x T =z 9. x -4 I, »* = 3 13. e -
. 3-' -4 7 L) 5 ",
. R+2R+4 17 x-q 19, j-5 g = 23, == g5 Mtm
: X3 v+ ] my — 2ma
2L+ C X -4 a — 4h | 1 I
— e d —— i —— T e e
27. 1 29, L ac 3L - 33. T 35, P 7. T 39.- Ee
. ] M+
B - — o 5
41. 3E-3 B P-0Q 45 M+ mpE 37 21 - 6 (amperes)
Section 5.7 (page 177)
C3xy Bxiy 6 dv 5 A X+ v a+ 25
- S © 373 5 3 bc‘.t:x‘ 7. s P -y 1L =y R
' . . H2a - p) vy — 40y, ~ 6)
o=+ 3a)a - 2 . 2
B U+ -ip+ 9y n Be=1la=5) " By~ 3iEe = 1]
(3T + )5k - ¢) X =3y . l
23, = - 3s, 27.
@r+)K-7 (F + 2)r" — 2o + 437 x = 2v (R+2r(R+r-1)
2(2L - 7) 2 Qi pies I
————— ‘ o3 . — . oSw(s =2
L +4Cc=73 31 P 33 _ 35 Ty 37 g " (s H)
v -3 Wy 8w [ 2ol 4 2y -yt
& 9 B 4y D - 7=yl i Y= x T 2¥)x = v)
1 1 4r7 — 27 X 4a + 2p A+B
—_— — = —_—— 2 —_—— 7 |
= x=3 K X 19. (3x = ¥)( 2y = 3v) ok I+ v T a+ 2 ’ A
1 4 * = ed 3y i
I 3 ' 3. ———— 25 _
o 2% =yt e wog 3 (¢ = 2d)2c - o) | 2 (X4 VM2 + 3)(x + 3y)
k(2np - p) b= -
7 5 5 e T—
: nn — p) » ke o+ L°



j s Engineering Mathematics ~ Fifth edition John Bird BSc(Hons)
Chapter 7 (Partial fractions Page 54-59)
7.1 Introduction to partial fractions

In order to resolve an algebraic éxpression into partial fractions:
(1) The denominator must factorise _
(i)  The numerator must be at least one degree less than the denominator. When the degree of numerator is
equal to or higher than thedegree of the denominator, the numerator must be divided by the denominator (see

Problem 3 and 4). ‘
Table 7.1

Type Denominator containing Expression Form of partial fraction
Linear factors (see problem 1 to 7 A B 0
: ; - -
4) (x+a)(x=b)(x+c) (x+a) (x=b) (x+c)
2 Repeated linear factors (see £z A N B + C
problem 5 to 7) .. (= -i-a')3 _ (x+a) (x+a)2 (x-mc)3
3 Quadratic factors (see problem 8 (%) Ax+B . C
and 9) (ax2+bx+c)(x+d) ' (ax2+bx+c) (x+d)
7.2 Worked Problems on partial fractions with linear factors
Problem 1. . Resolve —Tlﬁf— into the sum of three partial fractions
X +2x-3 . .

2x* -9x-35 | . ,
Problem 2. Convert into the sum of three partial fractions
e (x+1)(x-2)(x+3) o .

2

Problem 3. Resolve Z—x-i into partial fractions
X =3x+2
% =Jx® - dx—4

o T

Problem 4. Express in partial fractions

7.3 Worked Problems on partial fractions with repeated linear factors

Problem 5. Resolve ﬁﬁ—z into partial fractions
x=2

Sot e D~ 10
(x+3)(x—1)2

.2 <
Problem 7. Resolve M}_ﬁ:ﬁ into partial fractions

.Pmbiem 6. Express

as the sum of three partial fractions

(x+3) _
7.4  Worked problems on partial fraction with quadratic factors
- . ' 3+6x+4x? —2x° ,
Problem 8. Express i in partial fractions Problem 9. Resolve i 2x - into partial
(x2+2)(x+1) : X (x +3)

fractions



Partial fractions

7.1 Introduction to partial fractions

By algebraic addition,

1 3 GHD+3(:-2)
=2 x+l @—2)@+1)
4% —~3
T x—x-—2
. 4x—35
The reverse process of moving from —— - to
: W—x-2

= + = is called resolving into partial fractions.

Inorder to resolve an algebraic expression into partial
fractions:

(i) the denominator must factorise (in the above
example, x> —x —2 factorises as (x — 2)(x + 1),
and

(i) the numerator must be at least one degree less than
the denominator (in the above example (4x — 5) is
of degree 1 since the highest powered x term is x!
and (x* — x — 2) is of degree 2)

When the degree of the numerator is equal to or higher
than the degree of the denominator, the numerator

Table 7.1

must be divided by the denominator (see Problems 3
and 4).

There are basically three types of partial fraction
and the form of partial fraction used is summarised in
Table 7.1 where f (x) is assumed to be of less degree than
the relevant denominator and A, B and C are constants
to be determined.

(In the latter type in Table 7.1, ax?+bx+c is a
quadratic expression which does not factorise without
containing surds or imaginary terms.)

Resolving an algebraic expression into partial frac-
tions is used as a preliminary to integrating certain
functions (see Chapter 51).

7.2 Worked problems on partial

fractions with linear factors

Problem 1. Resolve s into partial
X

1 24+2x—3
fractions

The denominator factorises as (x — 1)(x +3) and the
numerator is of less degree than the denominator,

A - B 0 C
x+a) (x+aP (x+a)P

TR 4 N v AN o




Partial fractions

11-3
Thus o may be resolved into partial fractions.
¥ +2x -3
Let
11 —=3x 11— 3x A B

Bl k=t s =1  EF

where A and B are constants to be determined,

11-3x  Ax+3)+Bkx-1)
x—Dx+3)  (x-DE+3)
by algebraic addition.

Since the denominators are the same on each side of the
identity then the numerators are equal to each other.
Thus, 11—-3x=AKXx-+3)+Bx-1)

To determine constants A and B, values of x are chosen
to make the term in A or B equal to zero.

When x = 1, then 11 — 3(1) = A(1 +3) + B(0)
ie. 8=4A

i.e. A=2

ie. 20=—4B
ie. ~ B=-5
T M3 _ 2 -5
X+2-3 x—1)  (x+3)
2 5

“x-1) (+3)

[Check: : — >
x-=1 &+3)

= 2x+3)—-5x—-1)
T xk=DE+3)
_ 11 —3x
T x242x—3

: 22?2 —9x — 35

Convert

- into
x4+ Dix—2)(x +3)
the sum of three partial fractions

Ly 2R-9x-35
GTDe—2x13)
A B C

T T TR

Ax—2)(x+3)+Bx+ Dx+3)
+Clx+ D(x—2)

(x + D = 2)(x + 3)
by algebraic addition

Equating the numerators gives:
22 —9x —35=A(x —2)(x+3) +B(x+ 1)(x+3)
+ Clr + D(x = 2)
Let x=~—1.Then

2(—1)* — 9(—1) — 35 = A(—3)(2)+B(0)2)

+ C(0)(—3)
ie. —24 = —6A
—24
ie. 7, W~
ie s
Let x=2. Then

227 — 9(2) — 35 = A(0)(5) + B(3)(5)

+ C(3)(0)
ie. —45=15B
—45
1.€ 15

Let x=—3. Then

2(—3)* — 9(—3) — 35 = A(=5)(0) + B(=2)(0)

+ C(—2)(=D)
iLe. 10 = 10C
ie. Cc=1
s 2x% — 9x — 35
(x + Dix — 2)(x +3)
4 3 1

=EFD &-2 T @+

2

: X
Problem 5. Resolve —
x4

into partial
—3x+2

-

fractions
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BB The denominator is of the same degree as the numerator. X —2x% —4x—4 x—10
Pt . e ; Thus =x—3
= Thus dividing out gives: 4x-2 P )
=1 . _, x—10
ey =x— e
\‘g:‘n x2_3x+2ix2 +1 (x+2)(x—1)
X2 —3x+2 x—10 A B

(x+2)(x—1)E(x+2)+(x—l)
_ AKX -1)+Bx+2)
T G+ E—-1)

3x—1

For more on polynomial division, see Section 6.1,

page 48.
Equating the numerators gives:
o 241 3x—1
ence v e 2 =Bz x—10=Ax—-1)+B@x+2)
_ 3x-1 Letx= —2. Then —12=-34
- Dx-2) ie. A=4
—1 = i
Let 3x _ A " B Letx=1. Then 9=3B
G-DE-2) x=1) x-2) ie. B=-3
_AG—-2)4Bx-1) x—10 4 3
== (x _ 1)(x _ 2) Haﬂce " = s
G+2)x-1) " x+2) (x—1)
Equating numerators gives: x3 22 4y _ 4
Thus —
3~ 1=A(x—2)+Bx— 1) *+x-2
B 4 3
=x- -—
x+2) (x-1)
Letx=1. Then 2=—A
ie. A=-2 Now try the following exercise
Letx=2. Then 5=B
Tp ] _ Exerc er probilen
Hence al - ] yctions with lir )

G-Da-2 6-D a2
Resolve the following into partial fractions:

2 +1 2 5
Thus 'ﬂx ;»fzzl_cx ol e e 2 2
C x2-9 =3 &+3
‘ -2l 4y 2 2 Hx—4) R
Express ¥ rr_g  inpartal o TR G+ -3
fractions

: ¥ —3x+6 B 4
=) e—1) il -1

The numerator is of higher degree than the denomi-
3(2x% — 8x — 1)

nator. Thus dividing out gives:

4.
3 E+4Hx+DH2x—1
x —
P+x-2)3 22 4z 4 [ e T e :‘
x4 x— 2 G+4) @+ (-1
—3x2 — 2% — 4 X% +9x+8 2 6
5- SRR 1 T,
—3x* —3x 46 x24x—6 {: +(x+3)+u—2,):[

x—10



: X2 —x—14 s 2 i 3
S ox2—2x-3 (x—3)  (x+1)
3x? — 222 — 16x 420

7
(x—2)(x+2)

1 5
[3x_2+(x-2)_(x+z)]

7.3 Worked problems on partial

fractions with repeated linear
factors

B
Problem 5. Resolve C 2?,, into partial fractions
)

The denominator contains a repeated linear factor,
(x—2)

Let 2x+3E A B
x—22 (x—2)  (x—22
_Ax-—2)+B
T o@-22

Equating the numerators gives:

2x+3=A(x—2)+B
Letx =2. Then7 = A(0)+B

1e. B=7
2x+3=Ax—-2)+B
=Ax—-2A+B

Since an identity is true for all values of the unknown,
the coefficients of similar terms may be equated.

Hence, equating the coefficients of x gives: 2=A
[Also, as a check, equating the constant terms gives:
3=—2A+B.WhenA=2andB=7,

RHS = -2(2) + 7=3=LHS]

2x + 3 2 7
Hence = +
-2 -2 (x-27
2 —2x—1
Problem 6. Express 2 b as the sum of

(x+3)x — 1)
three partial fractions

Partial fractions 57

The denominator is a combination of a linear factor and
a repeated linear factor.

Lot 5x2 —2x— 19
G+ 3)x - 1)
A B c
=&t Te-nTic1p

_ A -1 +B(x+ 3)x — 1)+ C(x + 3)
B (xd e~ 1P
by algebraic addition

Equating the numerators gives:

572 -2x—19=Ax—1D*+BEx+3)&x-1)
+Cx+3) (D)

Letx=—3. Then

5(=3)% — 2(=3) — 19 = A(—4)* + B(0)(—4) + C(0)

i.e. 32 = 16A
ie. Ar=2
Let x=1. Then

5(1)2 — 2(1) — 19 = A(0)? + B(4)(0) + C(4)
ie. —16 =4C
ie. C=-4
Without expanding the RHS of equation (1) it can
be seen that equating the coefficients of x* gives:

5=A+B,andsince A=2,B=3
[Check: Identity (1) may be expressed as:

502 —2x—=19=A(* - 2x+ 1)
B Ze=NECet B
je. 52— 2x—19=Ax*~2Ax+4 A+Bx?
+2Bx — 3B + Cx + 3C

Equating the x term coefficients gives:
—2=-2A+2B+C

WhenA=2,B=3and C=—4then -2A4+2B+C=
—22)+23)—4=—-2=LHS
Equating the constant term gives:
—19=A -3B +3C
RHS=2-33)+3(-4)=2-9-12
= —19 = LHS]
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5x2—-2x—19
Hence T ——
E+3IHEx-1)
2 3 4
= -+ = 3
@+3)  (x-1) (x—_q)
,, ~
2 5
Problem 7. Resolve £ AR into partial
(x+3)3
fractions
Let
3 416x+15 A .. B ___¢C
(x+3)3 T (x+3) (432 " (x+37

_A@+3P+Bx+3)+C
h (x+3)
Equating the numerators gives:

Letx=—3. Then
3(=3)* + 16(~3) + 15 = A(0) + B(0)+C
ie. —6=2C

Identity (1) may be expanded as:

ie. 3x2+16x+155Ax2+6A.x+9A

Equating the coefficients of x2 lerms gives:
3=A
Equating the coefficients of x terms gives:
16=6A+B
Since A=3, B=-2
[Check: equating the constant terms gives:
I5=9A+3B+C
WhenA =3, B=—2 and C=—¢,
9A +3B+C=9(3) + 3(=2)+ (—6)
=27-6—-6= 15 = LHS]

e 3x% + 16x + 15
(@ +3)3
3 2 6

TG+ Giar x+37

3x2+16x+15EA(x+3)2+B(x+3)+C (1)

3x2+16x-i—ISEA(x2+6x+9)+B(x+3)+C

+Bx+3B+C

Now try the following exercise

Exercise 27 Further problems on partial
fractions with repeated linear

factors
’ 4x -3 [ 4 7 ]
L @12 @+ (x+1)
SR P i ) 1
X2 (x+3) R T

5x% — 30x + 44
(x—2)3
i = 10 s 4
x—2)  Hx—TpR (x—2)p

18--21x — 12
(x —5)(x +2)2

[ 2 o 53 45 4 ]
(x=5) (x+2) " (x+2)2

744 Worked problems on partial

fractions with quadratic factors

o A i

Problem 8.  Express 2D+ 1)

In partial

fractions

The denominator is a combination of a quadratic factor,
(x* +2), which does not factorise without introducing
imaginary surd terms, and a linear factor, (x ++ 1). Let

712 4+5r+13 _ Ax+B C
CHe+D) 242 T GE D
_ (Ax+B)x + 1) + C(x? +2)
- (2 +2)(x+1)

Equating numerators gives:
7x* 4+ 5x 4 13 = (Ax + B)(x + D+CE?+2) (1)
Letx=—1. Then

7=1)* +5(~1) + 13 = (Ax + B)(0) + C(1 +2)



Partial fractions

ie. 15 =3C
ie. C=5

Identity (1) may be expanded as:
7x* 4 5x + 13 = Ax* + Ax + Bx + B + Cx? +2C

Equating the coefficients of x? terms gives:
7=A+C,andsinceC =5, A =2

Equating the coefficients of x terms gives:
5=A+B,andsince A =2, B=3

[Check: equating the constant terms gives:

13=B+2C
WhenB=3andC=5,B4+2C=3+410=13=LHS]

Tx* + 5x+13  2x+3 5

Hence e+ D242 T G+ 1)

34 6x+4x2 — 223

= into
X2{x% +3)

roblem Y. Resolve

partial fractions

Terms such as x*> may be treated as (x -+ 0)?, i.e. they
are repeated linear factors

34+ 6x + 4x% — 2x°
x2(x% + 3)

A+ B a Cx+D
x  x2 (x243)

Let

_ Ax(x® + 3) + B(x? + 3) + (Cx + D)x?
a x2(x2 +3)

Equating the numerators gives:
3 + 6x + 4x% — 2¢° = Ax(x® + 3)
+B(x? + 3) + (Cx + D)
= Ax’ + 3Ax + Bx* + 3B
+Cx® 4 Dx?

Letx = 0. Then 3 = 3B
1. B=1
Equating the coefficients of x® terms gives:

2=A+C 1)

Equati

ng the coefficients of x? terms gives:

4=B+D

SinceB=1,D=3
Equating the coefficients of x terms gives:

6 =3A

ie. A=2

From equation (1), since A=2,C=—4

Hence

3 4 6x + 4x? — 223
x2(x2 + 3)

¥ —x—13 [ 2x+3 1
x2+7)x—2) !_(124—7) (x—2)
6x—35 [’ 1 : 9=
(x —4)(x* +3) Lx—4) (x243)
15484502 —dx® . 82—y
22(x2 4+ 5) x x2 (@x2+5)

x3 4402 4 20x — 7
(x — 1)2(x* 4 8)

4 A 2 +1—2x
x—1 @x-=17% &2+8

When solving the differential equation
20 6d9 106=20—¢* by Laplace
—_——H— — =2 —¢ ;

di? dt : K

transforms, for given boundary conditions.
the following expression for £{¢] results:

e
457 — —s° + 425 — 40

s(s — 2)(s% — 65 4+ 10)

Show that the expression can be resolved into
partial fractions to give:

2 1 553

D e

s 2s—2) 2 —o05+10)

L8} =

Lio)=
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CHAPR
|43
PTER
Quadratic Equations
'bjectives Upon completion of this chapter, you should be able to- M
1. Solve a given quadratic equation by: m
a. Factoring. 2
b. Completing the square.
Using the quadratic formula. wu
2.

Solve stated problems leading to quadratic equations.

6.1

Solution by Factoring and Pure Quadratic Equations

4
All the equations introduced in the earlier chapters were of first n_om:wmm
(involving only the first power of the unknown). Many equations arising in .
technical problems are of second or higher degree. For example, if an oEmQ
is tossed upward from the ground with initial velocity vy, then the distance
above the ground as a function of time is given by s = vyt — 1672, where sis
measured in feet and ¢ in seconds. This is an example of an equation of
mwnoag degree. The equation x? — 3x + 4 = 0 is also of second degree, while =
33— 2t + 6x — 1 = 0is of third degree. In this chapter we shall study only
quadratic equations, which are equations of second degree.

rL
St

e

BT

hw.”

4

;

A quadratic equation has the form

ax!+bx+c=0, a#+0

(6.1)

The equation ax? + bx + ¢
quadratic equation.

0 is called the standard form of the

6.1 SOLUTION BY FACTORING AND PURE QUADRATIC EQUATIONS ,—mm

In this section we shall confine ourselves to those cases in which the left
side of equation (6.1) is factorable. The method of solution depends on the
following property of real numbers:

=0if, and only if, a = Qor b =

Consider, for example, the equation
x2=8-—2x
For the equation to fit the standard form (6.1), all the terms have to be

collected on the left side and written in descending powers of x. Adding
—8 + 2x to both sides, we get

Step 1. x242x — 8= 6.2)
If we now factor the left side, the equation becomes

Step 2. (x+ 4)(x—-2)= (6.3)
Next, we set each factor equal to 0:

Step 3. x+4=0 x-2=0

Finally, we solve each of the resulting linear equations:

Step 4. x=2

The solution is therefore given by two values, x = —4 and x = 2.

As a check, let us substitute both values into the original equation
x2 =8 — 2x:

(2 =8-2-4 22=8-272
[6=8+8 4 =84
16 = 16 4 =4

Since both values check, we see that the equation has two distinct aooﬁm
Finally, note that the roots are unique:

o+ Hx-2)=
if, and only if, x + 4 = 0orx — 2 = 0. Butx + 4 = 0 if, and only if, x = —4;
and x — 2 = 0if, and only if, x = 2

To illustrate the solution of ::w equation x? + 2x — 0 in (6.2)

graphically, consider the function

.. =

x2+2x—8

whose graph appears in Figure 6.1. The soluticn of x> + 2x — 8 = 0 consists
of the x-intercepts (where y = 0).
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Figure 6.1
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Solution by factoring:

1. Write the equation in standard form by collecting all the terms o
the left side.
2, Factor the expression on the left side.
3. Set each of the factors equal to zero.
Solve the resulting two linear equations. . A

|

- B3 b

xample T Solve the equation 2x2 + 15 = 13x.

Solution.

Check:

2x* + 15 = 13x
2x2— 13x + 15
2x = Dx - 3)
2x—3=0
2x =13
3
2

Left Side

2 3)

2050 + 15 = 65

39
+GIMI

[
o O

5

13(5)

It

U T

given equation ’
collecting terms on left side '

factoring left side

setting factors equal to 0 -

solving the resulting linear =~
equations 5t

2

39 ,
2 q
65 i

1

2
~

201

6.1 SOLUTION BY FACTORING AND PURE QUADRATIC EQUATIONS

p—

Pure quadratic
© equations

.mxm_ﬂﬁ_m 2 Solve the equation x* + 7x = 0.

Soluticn. In this equation ¢ = 0. As a result, the terms on the left have a
common factor x.

xXX+7x=0 given equation

x(x+7)=0 common factor x

x=0 x+7=0 setting each factor equal to zero
xr=0 x=-7

(See Figure 6.2.) The solution can be checked as in Example 1.

Figure 6.2

An equation for which b = 0 is called a pure quadratic equation and may
be solved by a different method. For example, to solve the equation

—4=9
we first solve for x? to obtain
A= 4

HmrmnmﬁrwB:mmm_doﬁoﬁg%wanm,émw:aEEHHH.(\mn Hm,érmme
means plus or minus. So the equation has two roots, x = 2 and x = —2.
Alternatively,

X—d=x-Dx+2)=0

leads to the same solution. However, factoring does not work for the equa-
tion in the next example.



+ QUADRATIC EQUATIONS
o Dl 6.2 SOLUTION HBY CUNMPLE Ifva (HE SUUuARS © P
- o 2% _
X _ g = i i i d the
mo 3  Solve th L 25 =0. René Descartes (1596—1650) introduced the exponential notation, an |
olve the equalion x A =l .ﬂ.:nu Englishman Robert Recorde (1510-1558) used the symbol = for equalit:
m...w:%»..ﬂm because, as he put it, “‘noe 2. thynges can be moare equalle.”

Solution. Adding 5 to both sides of the equation, we get

x2—-5+5=0+5 U
3 =3 . Exercises / Section 6.1
x = V5 In Exercises 1-12, solve the given pure quadratic equations.
1.x2-1=0 2.x2-25=10 3.x2-36=0
. . ) 4, x2—121=0 5.x2-9=0 i 6. x2—-16=20
Remark: The left side of the equation x2 + 4x + 4 = ( is a perfect-square 5 _ 2 _ 9, 9% a3
trinomial leading to identical factors: 7.8 -10=0 8.x*-12=0 §ERT AT
: 10. 42 —1=0 11. 36x2 - 25=0 12, 49x2 - 16 = 0
ouble x+ 20 +2)=0 : . : .
. . In Exercises 13—44, solve the given quadratic equations by the method of factoring.
€root  The solution x = —2 and x = —2 is called a repeating root or a double root, 2
AT B.2+x—2=0 4, x2+7x+10=0 15. x2+2x - 24 =0
1 1 3 R oo gd) e
wﬂﬂw; (1) WH@WM:m the negative root when solving x> — a? = (. The roots are 16 22 +4x—21=0 17, 2x2 = 5x— 3 =0 18. X2 —Tx - 15=0
s ; ; e, 2 = 2 = 2 —6 =
(2) Attempting to solve by factoring when the right side is not zero. For 19 3t v a=0 2l e Ly A= 1 2L 4" +5x—-6=0
example, if 2.5+ 16x + 12=10 23, 5x2+8x—-21=0 24, 4x + 29x — 24 = 0
2 = 2 o Biee Hi
x=3)x+2)=6 25. 4x° + 4x 15 Nm.. 6xc+Tx=395 27. 30x Tx + 15
28. 12x2=Tx + 10 29, 8x? = 2x + 45 30, 40x® = 67x — 28

we may not conclude that x — 3 = 6 and x + 2 = 6. Instead, we need to

write the equation in the form ax? + bx + ¢ = 0 I+ 4 =11 32 M4x? +53x +45=0 33. 18x + 17x = 15
e x— 6=6 34, 3x* = 10x + 13 35. 11x? = T6x + 7 36. 4x? = 49x — 90
e x—12=0 3, T+ Br =15 38. 45x2 + 52x + 15 =0 39. 18x% = 93x — 110
o= A+ =1 40. 21x* + 10x = 91 41, 9x* + 24x + 16 =0 42, 25x* - 10x+ 1 =0
43, 16x2 -~ Bx + 1 =0 44, 4x* — 20x + 25 =0
=63 45. The path of an object tossed at an angle of 45° to the ground is y = x — 32x¥vy?, where vy is the initial velocity
Historical note. As mentioned in Chapter 1, the first systematic study in feet per second and y is the distance in feet above the ground. How far from the starting point (x = 0} will

the object land? .

of second-degree equations was undertaken by al-Khowarizmi in Baghdad. . " 5 ; . . .
He gave an exhaustive exposition of various cases using ingenious geometric 46. The weekly profit P of a company is P = x* — 30x?, x = 1, where x is the week in the year. During what weck

. & H 9 (s 3

arguments, in the manner of the ancient Greeks. Consequently, al-Khowar- is the profit equal fo zero? (Hint: Factor out x°.)

izmi’s N_WWUHN was HWOﬁOHmDm’—“ Emmﬂm words and Qﬂmgwﬁmm instead of m%BUO.wm. 47, The load on a beam of length L is such that the deflection is mme_mﬂ _uu- d=3x*—4Lx* + H\mkm‘ where x is the
Further progress in algebra was slow until algebraic notation was intro- distance from one end. Determine where the deflection is zero. (Hint: Factor out x2.)

duced. This far-reaching innovation was due to the French lawyer Francis- 48. The formula for the output of a battery is P = VI — RI%. For what values of I is the output equal to zero?
cus Vieta (1540-1603), who recognized the advantage of using letters to ‘
denote both known and unknown quantities. et . . N
Other now-familiar symbols were introduced only gradually. In medie- '«  Solution by Completing the Square
val times the letters p and m were widely used to denote addition and
subtraction, and the Latin word cosa for the unknown. The signs + and — ;
first appeared in print in a book published in 1489 by Johann Widman, a )
lecturer in Leipzig. The English mathematician William Oughtred (1574- i
= . 1660) popularized the symbol x for multiplication, and Johan Rahn of Switz-
Francisesériand first used the sign + for division in 1659. The French philosopher

In the last section we restricted our attention to factorable quadratic equa.
tions. In this section we shall take up a general method for solving any given
quadratic equation. The procedure is referred to as completing the square.

Completing the square depends on the fact that any quadratic equatior.
can be written in the form

x+ b2 =a (6.4




2=l
To understand this, recall that the square of a binomial is given by
(x + b)Y =

x? + 2bx + b2
ﬂm.«;ﬁmﬁﬁ\
ct-square  Looking at the right side, observe that a trinomial in x with a coefficient of x2
trinomial  equal 1o 1 is a perfect square if the square of one-half the coefficient of x is
equal to the third term. For example,
x2+6x+9 ot
is a perfect square, since (4 » 6)2 = 9. Similarly,
x2 — W + N
AT
is a perfect square, since
N
16 (2 2
so that
3 9 3\2 uvM 3 32
2 = A — . - = 2 — i A i
o Bar Lol I =P staal-B D
The method of completing the square consists of rewriting one side of
the equation so that it forms a perfect square.
Consider the next example.
Exampleded
mple T Solve the equation x> — 6x + 8 = 0 by completing the square.

Solution. The first step is to transpose the 8 (or add —8 to both sides) in
order to retain only the x? and x terms on the left side. Thus

x*—6x= -8

The critical step is to complete the square on the left side by adding to both
sides the square of one-half the coefficient of x, or [ * (—6)]2 = 9. We then
get

x—6x +9=-8g+89

:

The left side is now a perfect ‘square, so that the equation can be written
(x—3P2=1 (x=3P=x"+2-3x) + (-3)

The resulting pure quadratic form can be solved by taking the square root of
both sides, yielding the two linear equations

VE= I = +VI

+1

x—3

Wl AR MR Al IS e § 8 b B € amn s e e

Solving, we get dad
x=3=x1

which gives x = 4 and x =
Check:
x=4 (47 -6(4) +8=0
x=2: 2P-6Q +8=0

Let us now summarize the procedure for completing the square.

Solution by completing the square:

1. Write the equation in the form ax? + bx = —c.

2. Multiply each side by 1/a.

3. Complete the square on the left side by adding the square of one-
half the coefficient of x to both sides.

4, Write the left side as a square; simplify the right side.

5. Take the square root of both sides.

6. Solve the resulting two linear equations.

Examp Do 32

mo_ﬁw the equation 2x2 + 6x — 3 = 0 by completing the square.

Seiution. Following the procedure for completing the square, we get

2x2+6x—3=0 given equation
Step 1. 2x? + 6x =3 transposing —3
3 i a
Step 2. x4+ 3x =% dividing by 2

Note that the square of one-half the coefficient of x is

Br-3

This number has to be added to both sides to complete the square. It follows
that

= g 3 9
Step 3. H+ux+mum+m.

and

N 6 9 15 factoring the left side and
mﬁmmu&. ﬁk.TlV”NuTN"I

4 simplifying the right side
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Taking the square root of both sides, we get
Step § + 8. e .
PO XTIEENTTET3
Solving for x,
3 VIS
Mﬂwﬁ. 6. xX= - M ha 24 ENI
or
_ -3x+V15
X = |[|Mi|
The roots can also be written separately as
-3+ V15 -3 - VIS5
x = 5 and x = g

Akﬁozm& highly desirable, checking the solution is difficult at this point,
since we do not discuss the multiplication of radical expressions of S_m
complexity until Chapter 10.)

Complex Roots

In Chapter I we mentioned that numbers fall into two categories, real and

complex. Complex numbers will be studied in detail in Chapter 11. In this

chapter we need only to understand the basic concepts and notations.
Consider the pure quadratic equation

P+ 4=

Solving for x, we get x +vV/ 4. Since we cannot find a (real) number
whose square root is —4, V—4 is called a pure imaginary number.

For the past two hundred years the letter i (for “‘imaginary”’) has been
used to denote the i imaginary number V—1. When i imaginary numbers were

first introduced in electrical circuit theory, the convention of using i for -

instantaneous current had already become well established. Consequently,
using the letter j to denote V'—1 became standard in physics and ﬂmnr:o_omw.
and we shall observe this convention here.

Returning now to V' —4, observe that

V=4 = V1) = VAV =

Thus V' —4 = 2j, where j = V/—1. Imaginary numbers are always written in
this form.

1
Vo1 =2,

Basic imaginary unit:

=V-1 or jI= -1
V—a, a>0, iswritten Vaj

i
a4
g
i

SN

L=

S Y e

6.2 SOLUTION BY COMPLETING THE SQUARE LU7

2oF

If a and b are real numbers, then a + bj is called a complex number; a is

called the real part of the complex number, and b is called the imaginary

part. Thus a pure imaginary number is a complex number whose real part is
zero; a real number is a complex number whose imaginary part is zero.

Complex number: A complex number has the form a + bj, where a
and b are real numbers and j = V' ~1.

Some quadratic equations lead to complex roots, as shown in the re-
maining examples.

Example 3 Solve the equation x* + 4x + 16 =

0 by completing the square.

Solution. x2+4x+ 16=0 given equation

x* + 4x = —16 transposing

. I .32 .
x2+4x+ 4 =—-16+4 adding ﬁm . Av to both sides
x+2?2=-12 factoring the left side
x+2=+V-12 taking the square root of each side
Recall that V- 12 = SL )+4+3=2V3V-T=2V¥. Itfollows that x =
-2+ 2V3).

Example 4 Solve the equation 2x2 — 3x + 4 =

M.HN

0 by completing the square.

Solution.
3x+4 =0 , ' given equation
Wk +2 =0 dividing by 2
W X = =2 transposing the 2
w W i @ J.:.w_x| { M‘._un I STl
5 X + L= -2+ 16 adding E (-~ 3! ._ ta both sides
332 32 9 23
—— =t == - — factoring the left side
? 7) 6716 16
e /7 r )
X~ m = b l— m = * At = * =4 taking the square root of each side
4 - 6 - 4 4
.3 N V23 |
S e I



Remark. We shall see in the next section that a nonfactorable quadratjc

equation can be solved directly by a formula. Once you learn this formula,

you may feel that completing the square is a waste of time. However, com-

pleting the square is an algebraic teehnique that arises in contexts other
than solving equations. In fact, Solving quadratic equations is merely 3

convenient way to introduce this technique. It is therefore very important °
for you to practice solving equations by completing the square in the next

exercise set.

Exercises / Section 6.2

Solve each equation by completing the square.

1.
4.
7.
10.
i3.
16.
19.

¥ —-6x+8=0
+2x—15=0
?+I7x+10=0
x—4x—-6=0
'~ 6x+1=0
2x?~3x—-5=0
Ix2 —dx -5=0
2 —=2x~1=0
W —dx+5=90
T +3x+2=0
6x2—5x—2=0
82 —Tx+2=0

x2—bx+2=290
2 —3bx+5=0

2.x2-6x+5=0 xl+d4x-12=0
5.x2+x—-12=0 6. x2+3x—28=10
8. x2—-9x+20=0 9. x2+5x+2=0
1. x2+6x+6=0 2. 2 +3x+1=0
14, 2x2 + 5x +2 =0 15. X2 +3x -3 =0
17.3x2 + 2x— 1 =0 18. 3x2 - 2x—-3=0
20, 2x2 +5x =2 =0 21,4 —x—-3=10
2. 6x2+x+2=0 24,52+ 9% +1=0
6.3 —2x+1=0 27. 4x* = 5x + 3 =0
2. 72+ 2x—1=0 3. 8x2+3x+1=0
32. Ix2—-19x—6=0 33.6x2+5x—50=0
5.5 —x+1=0 36. 5x2+ 2x -3 =0
B.x—x+c=0 ¥oaxl+5x—1=0

6.3 The Quadratic Formula

Completing the square can be used to obtain a general formula for solving
any quadratic equation. We start with the standard form:

ax’+ bx + ¢ =0
ax® + bx = —¢ transposing
b c
x? + 7 X = o F dividing by a
b b\? ¢ byF 2
xr+ P + Amv Skt + AMV adding ﬁ . wv to each side

065

W.G,d\. 6.3 THE QUADRATIC FORMULA LAY
A b VN ¢ b factoring the left side and
Xkl =g tYas simplifying the right side
_ dqc + b?
T 4a®  4a?
b - dac
T 442
b _ . [b—4dac taking the square root
XF o 4a* of each side
b? — 4ac
o e R
2a
b Vbt — dac
X= -t
2a 2a
—b = Vb? — dac
x = 2a (6.6)

Formula (6.6), known as the quadratic formula, should be carefully memo-
rized.

Quadratic formula: The roots of the @:m&m:o equation
ax*+bx+c=0, a+0

are given by

_=b &= b ~dac
- 2a

X

By :mmnm the ncma.am:n formula, the moE:o_:m of a quadratic equation
can be written directly, but they usually have to be simplified. The first three
examples illustrate the technique.

—Examples 4

Solve the equation 6x? = 2x + 1 by means of the quadratic formula.

Solution. The equation is first written in the standard form
6x1—2x—1=0

By equation (6.5), a = 6, b = —2, and ¢ = —1. So by the quadratic formula
(6.6), the solution is
={~3) & V(2P —AB)~1)

26

H“

2+ V28
12
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AU

7o simplify the radical, note that V28 = V4 « 7 = 2\/7. Thus
Z YT

12
201 =V

12
i =7

6

mx»s:_v@ 42

X =

X =

iolve the equation 5x* + 2x + 4 = 0 by the quadratic formula

P

i

yolution. From the standard form (6.5), we see thata =5, b = 2, and ¢ = 4.

0 by the quadratic formula

2= VT a5
25
=22 V4-80
B 10
_ =2 =76
10
ince V=76 = V(-1)@)(19) = 2V19j, we get
=2+ 2V19;
e = 10
_ =@ g)
- L
Exampde 43
solve the equation 432 — 12x + 9 = Q.
solution. Since a =4, b = —12, and ¢ = 9, we get
 ={—12) £ V(=12 — 44
X = S
_12xVi4d4 - 144
8
120
]
3%0
= B
Jence x = 4, §. (Whenever the radical is 0, we get a double root.)

St

wz‘,/ 6.3 THE QUADRAT FUBMULA P
These examples show that the radical in the quadratic formula
—b = Vb? — dac
k —
2a
determines whether the roots are real or complex. The expression b2 — 4ac
under the radical sign is called the discriminant. We have seen that a given
equation has two distinct real roots if 5> — 4ac > 0 (Example 1) and complex
roots if b? — dac < 0 (Example 2). If b? — 4ac = 0, then the equation has a
double root (Example 3).
Example 4 Cmn.m calculator to solve the equation
CALCULATOR 3.17x2 — 1.98x — 6.83 = 0
COMMENT
Solution. Since a = 3.17, b = —1.98, and ¢ = —6.83, we get
_ 1.98 = V/(1.98)* — 4(3.17)(—6.83)
A= 26.17)
The simplest way to carry out this calculation is to find the value of the
radical and store it in the memory. Now add 1.98 to the positive value of the
radical and divide the sum by (2 X 3.17) = 6.34 to get
x = 1.81
to two decimal places. Next, transfer the content of the memory to the
register, change the sign to minus, and proceed as before. The second root is
x=—1.19
again to two decimal places.
The sequences are
198 )[04 K217 X 6.83 [ =]
[sTol+] 198 [=][=]2 [£]3.17[=]
Display: 1.8130051
[MR[=/=][+] L8 [=][=]2[+]3.17[=]
Display: —1.1883994
The quadratic formula can also be used to solve equations containing
two different variables, say x and y. If the equation is to be solved for x in
terms of y, then y has to be treated as if it were just another constant.
Conversely, to solve for y, x is treated as a constant.
Example B  Solve the equation

2 3% by D - 3y — 252 =0 por %X <n termsef G

~F .
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Solution. We first write the equation in standard form. Noting the commg

factor x, we get
+(3+y)x+2-3y-2)=0
From this equation we see that
a=1, b=-3+y, and c=2-— 3y — 2y?
By the quadratic formula

—(=3 +y) = V(=3 + y)T — 42 - 3y — 2y)

X =

2
V9 — 6y + y2 — 8 + 12y + 8y?
2

V92 + 6y + 1
2

I+

Ji=¥

I+

3-y

The radical can be simplified by noting that
9y2 + 6y + 1 = 3y + 1)?

and
VBy + 17 =3y + 1

It follows that

3—-yx@By+1)
2

I—y+3y+1

2
These fractions simplify to

x=2+y and x=1-2y

e
¥

Fractional equations may also lead to quadratic equations, as illustrated in

the next example.

xﬁ:,ww@m A &

Solve the equation

1 ! 1

X H+~Hmm

Solution. Recall that the simplest way to solve a fractional equation is to
clear the fractions by multiplying both sides by the LLCD—in this case

T VT

lJ

LRES
20x(x + 1). Then

s 20x(x + 1) m - H|4_.I~v

6.3 THE QUADRATIC FORMULA £ 0a -

1
20c(x + 1) 20

20x+ 1) —20x = x(x + 1)
5 20x + 20 — 20x = x2 + x
¥ 20=x2+x
0=x+x—20
x+S)x—4)=0
. x=4, -5

==

Exercises / Section 6.3

In Exercises 1-34, solve each equation by the quadratic formula.

L.2+x-6=0 2.
3.x2—-9%x +20=0 4.
5.2 =5x—2 5.
7. 6x2 —x =2 8.
9, 2x2=3x + 1 _ 10.
1. 32+ 2 =2 12.
1Bl -2x+2=0 . 14,
5. 2+2x+4=0 16.
1732 +3x+1=0 18.
19.4x2+2x+ 1 =0 20.
21, 4x2 + 3x =3 . 22,
23.5x2+1=0 2.
25. 2x2 4+ 3x =0 26.
27. 2% —3ex + 1 =0 28.
29, bx2+3x+ 1 =0 . . 30.
3. 4x2 - 12x+9=0 32.
33.4x* —20x + 25 =0 34,

¥=3x—-4=0
+8x+15=0
Ix2=13x+ 10
SxX—Tx=6
x4+ 2x =1
3x+ 2
+3x+3=90
xX+3x+5=0
IxT+5x+2

=
.
Il

I

0
dx* +3x—2=20
5x24+3x=3
I+4=0
Ix2—-5x=0
¥+ 3x—2a=0
cx*+bx—4=10
O+ 12x+4=0
9 + 42r + 49 =0

I

In Exercises 35-40, solve the given equations using a calculator. (Find the roots to two decimal places.)

35. 2.00x? + 3.12x — 3.19 =0 36.
37. 1.79x? — 10.0x — 1.91 = 0 38.
39, 10.103x — 1.701x — 3.28 = 0 44,

4122 — 130x — 12,1 =0
7.179x% + 2.862x — 1.998 = 0
1.738x2 — 10.162x — 11.773 =

In Exercises 41-48, solve the given equations for x in terms of y.

AL X2~ 2x+ 1 —y? =0 42.

xX2—2xy+y2—9=0
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hU.HMI&»@.+\J~M|H"O
5. x* =2y +3x +y* =3y +2=0
47. x* - 3x+2—-y—3yt=0

h&.H~+AHu~+L.v-}©”O
46. x? — 2xy + 2x +y2 — 2y — 3
48. 2’ - —xy+2+3y-2?

I
o

In Exercises 49-36, solve each equation for x.

1 1 1
49, = ——
x x+1 20 s l__t _1
X +
5 rrmsi=a ) e
x+2 x 12 mn.m+ pmum
1 x + 3
s3. iyt _3 | |
x x—4 8 7 e -1
; x +
55, L4 —2 X
x H.EAHH 56 ml 3 _
T x H+~I~

Applications of Quadratic Equations

€

such case was alread i
! . y mentioned at th inni
will consider a similar example. © DEEINILTE OF Ak Shepes. KoWwe

x _m .. .

dista i

m?mnnww “ Ms Mnmnwwm.__..mwwwmww ﬂw.wrm_,@:ﬁm as a function of time # (in seconds) is
. (The instant at which the rock is h

corresponds to ¢t = 0 sec.) When will the rock strike the mnwcwmwaa g

%
,Mmzﬁa?whacoSWEQEOm

m length of the side when increased.

old area, we get (in squarc inches,

2ol

o
s St e SN

Soluti : F :
ution. Since s is the distance above the ground, the problem is to find the °

value of ¢ for which s = 0. Thus
—502 + 24t + 5

5t2 — 24t - 5

(5t + D(t ~ 5) -

(1
o QU - Rl ==

5
T

Lnj —

Example 2

If the length of a s isi
. quare is increased b i ) :
large. Find the original length of the mum\mw..o iy SRS BoCUmE - Llmestin

6.4 APPLICATIONS Ur LUunurines- =

AV

the original side. Then x + 6.0 in. is the
Since the niew area is equal to 4 times the

omitting final zeros)

Q+@~Hax~

£+ 12x + 36 = 4x?

—3x2+ 12x +36=0

- 4x—-12=0

(x — 6)(x +2) 0
x=6,—2

—7 has no meaning here, the

expanding the left side
subtracting 4x?
dividing by —3
factoring the left side

I

Since the root x = original side is 6.0 in. long

(using two significant figures).

PSS

mx»B.ENh £

Two resistors connected
the resistance of one resistor is 6 {1 more than :;wﬁ of

resistance of each.

in parallel have a combined resistance of 4 Q, and
the other. Find the

Solution. Let
R = resistance of first resistor

Then
R + 6 = resistance of second resistor
Since the resistors are connected in parallel (Figure 6.3), we have
Lo Bood
R R+6 4
x_
.mm

If Ryis the combined resistance, then

i _1 .1
"R, R

Ry

19

Figure 6.3

of a fractional equation that reduces to a quadratic

This is an example .
equation after clearing fractions. Multiplying both sides of the equation by
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2\ 6

the LCD = 4R(R + 6), we get

4R +6) + 4R = R(R + 6)
4R + 24 + 4R = R* + 6R

8R + 24 = R? + 6R
RP-—2R—-24=0
(R=6R+4)=0
R=-4,6

mm:.nm the negative root has no meaning here, we conclude that R = 6 Q. The
resistance of the other resistor is therefore 12 Q).

ﬂt\ﬁr

Exar P HY

A tank can be filled by two inlet valves in 2 hr. One inlet valve requires 74 hy -

longer to fill the tank than the other. How long does it take for each valve
alone to fill the tank?

Solution. Let x equal the time taken for the faster valve to fill the tank. ‘

Thenx + 73 = x + 2 is the time required for the slower valve to fill the tank.
204 recall from Section 2.3 that an equation can be readily obtained
from this information by finding expressions for the fractional part of the

tank that can be filled in one time unit, in this case 1 hr: So
1. 1 _1
X % 15 )
il ]

To clear fractions, note that the LCD equals 2x(x + 3£). We now get

NAR+MV+NkaT+_im.V

2 2
15
2x + G+MHHH~++M[H
Multiplying both sides by 2, we then have
8x + 30 = 2x? + 15x
2x2+Tx—30=0
Qx~56x+6)=190
5
x = I..P 3

Again, the negative root has no meaning, so we conclude that the times are
2% hr and 10 hr, respectively.

& o B
Ex D:Jug = -
An executive drives to a conference early in the day. Due to heavy morning
traffic, her average speed for the first 120 mi is 10 mi/hr less than for the
second 120 mi and requires 1 hr more time. Find the two average speeds.

6.4 APPLICATIONS OF UUAUKALIL EUUATIvING -

AF
Solution. Recall from Section 2.3 that the basic relationship is distance =
rate X time.

If we let x equal the slower rate, then x + 10 equals the faster rate. Since
the distance is the same in both cases, it follows that 120/x is the time
required to cover the first 120 mi, and 120/(x + 10) the time required to cover
the second 120 mi. The difference in the two times is 1 hr. Hence

|
b S

120 120 _ 1
x x + 10
Clearing fractions,
120(x + 10) — 120x = x(x + 10)
120x + 1,200 — 120x = x* + 10x
x4+ 10x — 1,200 =0
(x — 30)x + 40) =0
x =30, —40

Taking the positive root again, we conclude that 30 mi/hr is the slower rate
and x + 10 = 40 mi/hr the faster rate.

Exercises / Section 6.4
1. The current i (in amperes) in a certain circuit at any time 1 (in seconds) is given by i = 9.51* — 4.71. At what
time is the current equal to zero?
3. The sum of two electric currents is 35 A and their product 294 A%. Find the twe currents.
3. A certain resistance is 2.00 Q more than another. Their product is 84.0 (0%. Find the two resistances.

4. If an object is hurled vertically downward with velocity vy, then the distance s that the object falls at any
time is s = vyt + $gt’. Find an expression for ¢.

5. Recall that the relationship of the focal length £ of a lens to the object distance g and the image distance p is

1_1.1
f p aq
If f= 2.0 cm and p is 3.0 cm longer than g, find p.

6. A metal shop has an order for a rectangular metal plate of area 84 in.2. Find its dimensions if the length
exceeds the width by 5.0 in.

7. A parallelogram has an area of 149.0 in.%, and the base exceeds the height by 10.00 in. Find the base and
height.
8. The difference between a positive integer and its reciprocal is 2§. Find the number.

o

A rectangular casting 0.500 in. thick is to be made from 44.0 in. of forming (Figure 6.4 on page 218). 1{42.5
in.? are poured into the form, find the dimensions of the casting.

10. Suppose the casting in Exercise 9 is 3.00 in. thick and its length is 2.00 in. more than its width. If the volume

is 72.0 in., find its dimensions.

11. To cover the floor of a new storage area, 100 square tiles of a certain size are needed. If square tiles 2 in.

longer on each side are used, only 64 tiles are needed. What is the size of the smaller tile?

-
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" 0.500 in. 23. An engineer wants to buy $240 worth of stock

24, An investor purchases a number of shares of stock for $600. If the investor had paid $2 less Per ghar,
I the a:m:cmw of shares would have been increased by 10. How many shares of the cheaper stock cang .
-k buY
Figure 6.4 =

%EP

Review Exercises / Chapter 6
A rectangular metal plate is twice as long as it is wide, When heated

s each side is increased by 2 mm and, In Exercises 1-8, solve the €quations by H.moﬁo:.nw.
ﬁmy_wmm is B_:_:.v_m.ma vwrmmlm. Find H.HM original g“.ﬂﬂw:mmo:m,_ : - | Clr Lx-3x—10=g 2.0 - 7r g =g

Ifboth inlets of a tank are open, then the tank can be edin 2 hr. One of the in els alone requires 54 hr;r 2 3
¢than the other to fill the tank. How long does each one take? : e 33 —Tx-6=9¢ 4 2+ a5~ 2759

I4 - ; ; £ = 2 =

_“__Héo machines are used to print labels for a large mailing; the job normally takes 2 hr, One day the nﬁr\m. G5+ +t2=0 6. 4x Lied 15 =g !
~machine breaks down and the slower machine, which takes 3 hr longer than the faster machine to dg the 7.6x2=[1x—5 8. 10x? + 3¢ = 13

i} i ? i 4 g .

m.%mn. has to be used. How long will it take to camplete: the job .:E.F// In Exercises 9-16, solve the equations by completing the square,

Two card sorters used &.E::mnmo:m:\ can sort a set of cards in 24 min. If only one machine js used, thep " _ 3

.m_muion one requires 20 min more than the faster one. How long does each one take? e %X -2x-g=g 10. 265+ 3y~ 5=
- . - . . . . N = N " —_—

A technician has to order a frame meeting the following specifications: It has the shape of a rightttriy 1. x* + 5x + 3 = ¢ 12: Bt 2f = 0
with a hypotenuse 26.0 cm long, while the sum of the lengths of the other two sides is 34.0 cm. Find 1B, 2~ 5x+ 4= o503 5= 0
fimensions. 1.4 - x+3= 16. 2 + 5 + 2 = ¢
Incity traffic, a car travels 15 mi/hr faster than a bicycle. The car can travel 50 mj in 3 hr less time

t : i " i
c_.n,.Wo_n Find the rate of each M\@ In Exercises 17-24, solve the €quations by applying the quadratic formula,
HE ; - = 2 e
A heavy machine is delivered by truck to a factory 200 mij away. The empty truck makes the return trip 17. x bx+8=0 18. 622 + 7x 3=0
ﬁ.::. faster and gets back in | hr less time. Find the rate each way. nﬂ.ﬂ&&_w. 3T —3x + |

\ rectangular enclosure is to be fenced along four sides and divided into two parts by a fence paralle| Sm 2L 2x? — 4y — 3
1" the sides. (Sce Figure 6.5.) If 170 ft of fence are available and the total area js u.mﬁc ft?, what ££& 23, 6x2 — gy — 3
imensions? (There are two possible solutions.) Al 25

it

0 20. ¥ —8x+ 6=
22; mkmlaa+u.hc
U 5+ x+1=9
In Exercises 25-30, solve the equations using any method
25. 1.72x% + 1.89x — 264 =0
ox* —dx+ 4 - y2 -

i
o o

26. w.wmkm,To.Amhlo.ANHo
ma..«mlu.nw+a+aulw..wno

1 1 9 1 1
29, - + = — L =
X x+1°20 W ey =
31. Two currents differ by 2.0 A, while their product is 288 A2, Find the two currents,
85— 1y 32.-A rectangular enclosure is to be fenced along four sides and divided into three parts by two fences it
, Af¢ parallel to one side, It 80 f1 of fence are available and the total area is 200 fi?, what are the dimensigs s o
Figurs 6.5 .?n:nwamcﬂmm
L2 33. Working together, two men can unload a boxcarin 4 hr, Working alone, ope man requires 6 hir more frn
Lool shed is adjacent to a building, which serves as the back wall of the tool shed. The total _wnmS\bw feother. How long does it take for each man to do the job alone?
er three walls is 39 ft, and the area of the floor is 180 12, Find the dimensians. 34, Th

¢ cost of tiling a kitchen is $5/f2. If the length of the kitchen exceeds the
€ Gost of carpeting an office at $10/1C* was $1,500. If the length exceeds the width by 5 ft, what are *ftiling comes to $960, what are the dimensions of the kitchen?
nensions of the office? B Rp
o

width by 4 ft and the totg) ot

y arly one morning a shop assistant delivers a motor to a garage 70 mi from downtown, Because of mu:m,
18BIe’s car gets 5 mi/gal less in the city than on the highway. Driving 300 mi in the city requires 2 gal nr "™traffic, his average speed on the return Hdn_mpms_\:wﬂownﬂrmmon En

delivery run, and he retuyns fn
wﬂrm=a3<.=m5nmmEm&ﬂm:n.m on the highway. Determine the gas mileage in the city. s\m\ﬁ > min less time. Find his average speed each way,
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A-30 APPENDIX D
Section 5.9 (page 188)
1,5' 3. —81- T ":4 % G+ %—j—g 13, :::: 5. -2
17. Bil 19. EL—EE%T 21. i—:f; 23, ::4] 4 (:’j;);;;?) ) E:Q_:%
29. p—pf? 31 R—-———T'T;: f};i

Section 5.10 (page 193)

L3 3 -2 5 10 1 P9 -8 1L nosolution 13 -2 15 |2
3 .
. mosolution 19 3 21 0 B W0 25 -5 37, 9 g0 d= g
t IR rq R|R,
= ——— =) = . = = 3 .
3L Ri=3—% 3. g e BB R 3. o

' Review Exercises for Chapter 5 (page 195) .
Lo 8s%' — 125%% + 20594 3. 4i" = 12iyis = 9 5. 450 = 257 T 27 + od = 1547
9. xlv— 9yrd 11, 0% + 4ow + 4? = RIE IV 13, 4x(a - k) 15. pg3pg? + 1)
17. (28 - YN2B + y) 19. 16(L - 20y - 2C) 21, Gh + )94t - Jhg + g*)
« Aa+2b = Wt + dab + a2 + 4 5 Yy - h
. ta = Dia + Wa* + ¢ + 1) OF K= THa = INa” ~ 4 = Ia® + g + 1)
227, vy = 4)uy + 3) 29. 3u; — va)e, - rs) 31 «C, - SGNG + 3C) 33, not factorable
35, (v - Y= =y +1) 3. (s = 1)s = 21 = 1) 39, (a + b)x - ¥)

_ g+ r 2N+ d)
4l 20+ vy — a)2 + v + ) 43, v = 3y 43, - . — X+ oy
: § + Yr a-d
X+ oy w? u 2ow — il
51 - . = 3 L 57. i —
X Dy 2 A T S ! & la = hita = hug + 24h) = (L = 2w)v + w)
| ; ] I 12 )
61. By © 5 b 6% 3 W <. m osesohion % ¢
w— 2 i—2 n s
St = r) s
77, 1 79 u=—u0_ 8l. r=45sec. =5 see 83 ¢=12cm 85, ———
=g ay+ s
Chapter 6

Section 6.1 {page 203)

L L-1 3 6-6 5 3 -3 7. \NT0. =
! I 3 7 53 315
- - —3 -3 2L, = -2 33 3. . =2, 2 -z, -
15, 4, -6 17. 3. s I 3 g 3, -3 : 53 27 -
95 1 35 | 53 1110
29 -2 31, - 5 =Ez A5 - T 7. =~ 2, = y
o g i 71 3 35 B I 4 5g ¥ 5.3
4 4 I 1 Unz _ 1
41, ‘—5,—§ 43 Z.z 45 3‘2-& 47 \'—L'S'L.D

!

w
I+
S
(%]
Ly
~

I
23| —
Ll
2
oy
(B
I+
\é
~
bl

|
Bt
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ANSWERS To ODD-NUMBERED EXERCISES A'31

l 5 V23 | 1
B. 1=V s, ZEF s/ 2. s(=1=2v3 3, 84 N5
10 5 1 V19 | i
s _— " = -+ - - —_ (=5 + 73
R 0=T70 7 3 306=VET"g 3 35 (=5 = Via + 33)
Section 6.3 {page 213)
o1 2 32NV =1 % V7
1. -3,2 3. 4,5 5. 3\./2_ 7. —5,5 \/_9. ‘_‘4—-— ¢ 1) 8 3 ,_,13 liJ
-3 = V3 =1 = V3 -5+ V73 A%
15, ~1=V3 g7, —— n —— 2, . Boo=j 0 g —73 0
3¢+ VBT -3+ Ve =2 33 55 i
- _ - -7
e =~ W, = . 3.5 ;3 55 35070, -2.26
37. 5.77, —-0.18 39. 0.66, —0.49 . x=1+y x =1 ¥ 43, x=2y -1 ¢ = 2y + 1
6
4s. T=y—-—Lx=y-2 47. x——-l-_',',::-——?.-f-_v 49, -5.4 5L -—5.4 53. ;.8
7+ V33
55, —=—

2

Section 6.4 (page 217)

L r=0sec, = 0.49 sec 3. 8220,10220 5. 6.0cm 7. 18.19 in. for base
b

9. 5.00in. x 170 in. 11. 8in. x §in. 13. 23: hr. 8 hr 15. 60 min. 40 min

17. 25 mi/hr, 10 mi/he 19. 30ft x40t or ? ft x 45 f1 2L 10ft x 15 fr 23. 8 shares

Review Exercises for Chapter ¢ {page 2139)

3 2] 5 -5=vV13 5 N7
1. -2.5 3, —3.2 5. -j'.'-i' 7. '6-.1 9. -2.4 11. ‘*‘T——- 13. e
I V& 3 = V10 4=V
15. §X 5/ 1. 2.4 19, :—\’-/:j 21. 3——2— 23. . 25, 0.81, —1.90

27..r=2+y,x=2-—y 29, —
35. 20 mi/hr, 35 mi/hr

4 31, 16.0 A, 18.0 A 33. 6hr, 12 hr

Cumulative Review Exercises for Chapters 4-¢ {page 220)
V13 V39 4V3 4VT13 V39

-\/"
1. 122°190 2. sing = _ZE cos f =

,tan @ = B.csc9=—3-—.sec6= T3 ,cozB=T
3T V3 ,
3, 5 4, T 5. 1.688 6. 56°59° 7. 26°3; 8. (v, - Vedis = 1)
I x+y igom | 35t — 2 + | L
—(r2 2 — L - :
G, 3 L+ LCc+ ) 10, 0+ 3) 11. 2 * 3] 12, _-.5‘2_-»‘7—- 13 L34

7316, x=1,3 17 Y=1=j 18 -0975 0427 °

RIR: Ry
R:R; + RiR; + RIR,

14, x=4, -2 18, x=§

19. 0433 4 20. 1.55in. 21. 22. 3.4in.by 5.4 in.
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