Property of image that forms by a mirror (by reflection)				
Mirror type	f	So	Image Properties	
Plane mirror	no	$s_o > 0$	Erect, virtual, same size, same far, reverse right and left.	
Concave mirror	+	$s_o > f$	Real, inverted. (Negative M) ($h_i = negative$).	
		$s_o < f$	Virtual, erect, larger. ($s_i = negative$).	
		$s_o = f$	No image will be formed.	
Convex mirror	-	$s_o > 0$	Virtual, erect, smaller. (Positive M).	

$$\frac{1}{f} = \frac{1}{s_o} + \frac{1}{s_i}$$

$$f = \text{focal length of mirror}$$

$$s_o = \text{distance of object from mirror}$$

$$s_i = \text{distance of image from mirror}$$

$$M = \frac{b_i}{b_o} = \frac{-s_i}{s_o}$$

$$M = \text{magnification}$$

$$h_i = \text{image height}$$

$$h_o = \text{object height}$$

$$s_i = \text{image distance}$$

$$s_o = \text{object distance}$$

- The distance to a **virtual** image (s_i) is always **negative**.
- The focal length (f) of a convex mirror is always negative.
- An inverted image (real) has a negative magnification.
- An erect image (virtual) has a positive magnification.

Property of image that forms by a Lens (by refraction)				
Lens type	f	So	Image Properties	
Converging lens Convex lens	+	$s_o > f$	Real, inverted. (Negative M) ($h_i = negative$).	
		$s_o < f$	Virtual, erect, larger. ($s_i = negative$)	
Diverging lens Concave lens	-	$s_o > 0$	Virtual, erect, smaller. (<i>Positive M</i>).	

$$\frac{1}{f} = \frac{1}{s_0} + \frac{1}{s_i} \int_{s_i}^{f = \text{ focal length}} \int_{s_i}^{f = \text{ image height}} \int_{s_i}^{f = \text{ image height}} \int_{s_i}^{f = \text{ image height}} \int_{s_i}^{f = \text{ image distance from lens center}} \int_{s_i}^{f = \text{ image height}} \int_{s_i}^{f = \text{ image height}} \int_{s_i}^{f = \text{ image height}} \int_{s_i}^{f = \text{ image distance from lens center}} \int_{s_i}^{f = \text{ image height}} \int_{s_i}^{f = \text{ image$$

- The distance to a **virtual** image (s_i) is always **negative**.
- The focal length (f) of a diverging lens is always negative.
- Diverging (Concave) lens are thicker on the edges than at the center.
- Converging (Convex) lens are thicker in the center than on the edges.