Chemistry department
General chemistry 402101-4
MODEL (Final Exam)

Name of student:
Student number:
Serial no.:
Score:

Choose your correct answer of the following: (Put your answer in the table above)

1- The mass of 1 mol of HNO_{3} is: $\left(\mathrm{A}_{\mathrm{w}}: \mathbf{N}(14), \mathrm{O}(16), \mathrm{H}(1)\right)$
a) 63
b) 31
c) 0.0158
d) 0.0322

2- Which of these has the most percent of nitrogen: ($\left.A_{w}: N(14), O(16), H(1), C(12)\right)$
a) NH_{3}
b) $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
c) $\mathrm{N}_{2} \mathrm{H}_{4}$
d) HNO_{3}

3- An empirical formula of a compound is $\mathrm{C}_{2} \mathrm{H}_{5}$ and its molecular mass is 60 , so the molecular formula is:
a) $\mathrm{C}_{6} \mathrm{H}_{15}$
b) $\mathrm{C}_{2} \mathrm{H}_{5}$
c) $\mathrm{C}_{8} \mathrm{H}_{20}$
d) $\mathrm{C}_{4} \mathrm{H}_{10}$

4- The number of atoms of $\mathbf{2}$ moles of Cu is:
a) 3.02×10^{23}
b) 12.02×10^{23}
c) 0.75×10^{-23}
d) 12.02

5- Which of the following equations is balanced:
a) $\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
b) $\mathrm{KNO}_{3} \longrightarrow \mathrm{KNO}_{2}+\mathrm{O}_{2}$
c) $\mathrm{NH}_{4} \mathrm{NO}_{3} \longrightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{NH}_{4} \mathrm{NO}_{2} \longrightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

6- The mass of MgO formed by burning 8.1 g of Mg is:
$\mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{MgO}$
a) 0.2 g
b) 0.333 g
c) 8.1 g
d) 13.4 g

7- A chemical system is at equilibrium when:
a) Concentration of products = concentration of reactants
b) the rate of forward reaction = the rate of reverse reaction
c) Rate of forward reaction = rate of reverse reaction = zero
d) $a+b$

8- The equilibrium is related to:

a) Reversible reactions
b) irreversible reactions
c) One direction reactions
d) $a+c$

9- K_{c} of reaction below is represented as follows:
$2 \mathrm{HgO}(\mathrm{s})=2 \mathrm{Hg}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$
a) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{O}_{2}\right]$
b) $\mathrm{K}_{\mathrm{c}}=[\mathrm{HgO}]^{2} /[\mathrm{Hg}]^{2}\left[\mathrm{O}_{2}\right]$
c) $\mathrm{K}_{\mathrm{c}}=1 /\left[\mathrm{O}_{2}\right]$
d) $\mathrm{K}_{\mathrm{c}}=[\mathrm{Hg}]^{2}\left[\mathrm{O}_{2}\right] /[\mathrm{HgO}]$

10- $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad=\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
at $1000 \mathrm{~K}, \mathrm{~K}_{\mathrm{c}}=1$ when:
a) $[\mathrm{CO}]=\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{CO}_{2}\right]=\left[\mathrm{H}_{2}\right]$
b) $[\mathrm{CO}] \times\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{CO}_{2}\right] \times\left[\mathrm{H}_{2}\right]$
c) $[\mathrm{CO}]=\left[\mathrm{H}_{2} \mathrm{O}\right]$ and $\left[\mathrm{CO}_{2}\right]=\left[\mathrm{H}_{2}\right]$
d) $[\mathrm{CO}] \times\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{CO}_{2}\right] \times\left[\mathrm{H}_{2}\right]=1$

11- $\mathrm{PCl}_{5}(\mathrm{~g})=\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
The relation between K_{c} and K_{b} of this reaction is:
a) $K_{p}=K_{c}(R T)^{-2}$
b) $K_{p}=K_{c}(R T)^{2}$
c) $K_{p}=K_{c}(R T)$
d) $K_{c}=K_{p}(R T)$
$12-\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})=2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=4.55 \times 10^{-3}$
If $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.16 \mathrm{M}$ at equilibrium, so $\left[\mathrm{NO}_{2}\right]$ is:
a) 73×10^{-4}
b) 0.27
c) 7.3×10^{-4}
d) 0.027

13- $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=0.52$
$2 \mathrm{NH}_{3}(\mathrm{~g})=\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=$? ? ?
a) 1.12
b) 0.52
c) 1.92
d) 5.2
$14-2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g})$ If $\underline{K}_{c}>\mathbf{Q}$, so the reaction:
a) is at equilibrium.
b) will shift to form more products.
c) will shift to form more reactants.
d) we need to know Kp first.

15- Which one of the following statements is incorrect?
a) adding products shifts the equilibrium to the left
b) adding reactants shifts the equilibrium to the left
c) exothermic reactions shifts the equilibrium to the left with increasing temperature
d) endothermic reactions shifts the equilibrium to the right with increasing temperature

16- The branch of chemistry which deals with the heat changes caused by chemical reactions is called:
a) Equilibrium
b) thermochemistry
c) stoichiometry
d) none of these
$17-\mathrm{CH}_{4}(\mathrm{~g})+3 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
This reaction:
a) Exothermic and $\Delta \mathrm{H}=-\mathrm{ve}$
b) Exothermic and $\Delta \mathrm{H}=+\mathrm{ve}$
c) endothermic and $\Delta \mathrm{H}=-\mathrm{ve}$
d) endothermic and $\Delta \mathrm{H}=+\mathrm{ve}$

18- Which of the following $\Delta H^{\circ} \neq$ zero:
a) $\mathrm{N}_{2}(\mathrm{~g})$
b) C (graphite)
c) $\mathrm{O}_{2}(\mathrm{~g})$
d) $\mathrm{H}_{2} \mathrm{O}$ (I)

19- NaHCO_{3} decomposes according to the following equation:
$2 \mathrm{NaHCO}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}=? ?$
$\begin{array}{llllll}\Delta H^{\circ} & -947.7 & -1131 & -393.5 & -285.9 & \mathrm{~kJ} / \mathrm{mol}\end{array}$
a) +3706
b) +85
c) -85
d) -3706

20- Which of the following reactions represents a correct thermochemical equation:
a) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
b) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3} \quad \Delta \mathrm{H}=92.6 \mathrm{~kJ}$
c) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=92.6 \mathrm{~kJ}$
d) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=92.6 \mathrm{~kJ}$

21- Which of the following metals will heat first on basis of specific heat (the values in the brackets)?
a) $\mathrm{Al}(0.9)$
b) $\mathrm{Cu}(0.385)$
c) $\mathrm{Fe}(0.44)$
d) $\mathrm{Hg}(0.139)$

22- The unit of heat capacity is:
a) $\mathrm{J} /{ }^{\circ} \mathrm{C}$
b) $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
c) J. g. ${ }^{\circ} \mathrm{C}$
d) J / g

23- A piece of silver of mass 362 g has a heat capacity of 85.7 . The specific heat of silver is:
a) 4.22
b) 2.4
c) 0.236
d) 31.023

24-Consider the reactions:

$$
\begin{array}{ll}
3 \mathrm{O}_{2}+\mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} & \Delta \mathrm{H}=-1591 \mathrm{~kJ} \\
\mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} & \Delta \mathrm{H}=-174.8 \mathrm{~kJ}
\end{array}
$$

What is $\Delta \mathrm{H}$ of the following reaction: $\mathrm{C}_{2} \mathrm{H}_{4}+\mathbf{3 O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathbf{2 C O}$
a) 9.1
b) -174.9
c) -1416.2
d) +1416.2

25- The heat of reaction is called enthalpy when:
a) Pressure $=$ zero
b) $\mathrm{T}=0^{\circ} \mathrm{C}$
c) $\mathrm{T}=0 \mathrm{~K}$
d) pressure is constant

26-ocean is an example of:
a) open system
b) closed system
c) isolated system
d) none of these

27- An acid is a compound that gives H^{+}ions in water and a base is a compound that gives OH^{-}ions in water. This concept was given by:
a) Arrhenius
b) Lewis
c) Bronsted
d) Lowery

28- According to Bronsted concept, an acid is a substance that:
a) accepts proton
b) releases a proton
c) accepts electron pairs
d) releases electron pairs

29- In the reaction between NH_{3} and $\mathrm{HCl}: \mathrm{HCl}+\mathrm{NH}_{3} \longrightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}$ The conjugate acid of NH_{3} is:
a) HCl
b) $\mathrm{NH}_{4}{ }^{+}$
c) Cl^{-}
d) none of these

30- An unknown gas effuses 1.66 times more rapidly than CO_{2}. What is the molar mass of the unknown gas.
a) $28 \mathrm{~g} / \mathrm{mol}$
b) $8 \mathrm{~g} / \mathrm{mol}$
c) $16 \mathrm{~g} / \mathrm{mol}$
d) $32 \mathrm{~g} / \mathrm{mol}$

31- All of the following acids are strong except:
a) $\mathrm{CH}_{3} \mathrm{COOH}$
b) HNO_{3}
c) HCl
d) $\mathrm{H}_{2} \mathrm{SO}_{4}$

32- The auto-ionization of water can be represented by:
a) $\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$
b) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
c) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
d) $\mathrm{H}_{2} \mathrm{O}+\mathrm{HA}$
\longleftrightarrow $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

33- Which of the following is Lewis base:
a) AlCl_{3}
b) BH_{3}
c) NH_{3}
d) all of them

34- Which of the following is correct:
a) $\mathrm{pH}-\mathrm{pOH}=14$
b) $\mathrm{pH}+\mathrm{pOH}=7$
c) $\mathrm{pH}-\mathrm{pOH}=0$
d) $\mathrm{pH}+\mathrm{pOH}=14$

35- The pH of 0.001 M HCl is:
a) 0.001
b) 10^{-3}
c) 3
d) -3

36-All of the following compounds are aliphatic except:
a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
b)

c) $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
d) CH_{4}

37-Which of the following correctly identifies Boyle's law?
a) $\mathrm{PV}=\mathrm{k} 1$
b) $\mathrm{V}=\mathrm{k} 2 \mathrm{~T}$
c) $P / V=k 3$
d) $V=k 4 n$

38- Alkenes are among of:
a) aromatic compounds
b) saturated aliphatic compounds
c) unsaturated aliphatic compounds
d) inorganic compounds

39- $\mathrm{C}_{9} \mathrm{H}_{20}$ is:
a) alkane
b) alkene
c) alkyne
d) aromatic compound

40- $\mathrm{C}_{3} \mathrm{H}_{4}$ is:
a) ethane
b) propene
c) ethyne
d) Propyne

