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Today’s Topic: Clustering

 Introduction

 Clustering algorithms

 Partitional

 Hierarchical



What is clustering?

 Clustering: the process of grouping a set of 
objects into classes of similar objects

 samples within a cluster should be similar.

 samples from different clusters should be 
dissimilar.

 The commonest form of unsupervised 
learning

 Unsupervised learning = learning from raw 
data, as opposed to supervised data where a 
classification of examples is given

 A common and important task that finds many 
applications in IR and other places



A data set with clear cluster structure

 How would 

you design 

an algorithm 

for finding 

the three 

clusters in 

this case?



Clustering Algorithms

 Flat algorithms

 Usually start with a random (partial) 

partitioning

 Refine it iteratively

 K means clustering

 (Model based clustering)

 Hierarchical algorithms

 Bottom-up, agglomerative

 (Top-down, divisive)



Hard vs. soft clustering

 Hard clustering: Each samples belongs to exactly 

one cluster

 More common and easier to do

 Soft clustering: A samples can belong to more than 

one cluster.

 Makes more sense for applications like creating 

browsable hierarchies

 You may want to put a pair of sneakers in two clusters: 

(i) sports apparel and (ii) shoes

 You can only do that with a soft clustering approach.

 We won’t do soft clustering today. See IIR 16.5,  18



Partitioning Algorithms

 Partitioning method: Construct a partition 

of n samples into a set of K clusters

 Given: a set of samples and the number K

 Find: a partition of K clusters that 

optimizes the chosen partitioning criterion

 Globally optimal: exhaustively enumerate 

all partitions

 Effective heuristic methods: K-means and 

K-medoids algorithms



K-Means

 Assumes samples are real-valued vectors.

 Clusters based on centroids (aka the center of 

gravity or mean) of points in a cluster, c:

 Reassignment of instances to clusters is based 

on distance to the current cluster centroids.
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K-Means Algorithm

Select K random centers {s1, s2,… sK} as seeds.

Until clustering converges or other stopping 

criterion:

For each si:

Assign di to the cluster cj such that dist(xi, sj) is 

minimal.

(Update the seeds to the centroid of each cluster)

For each cluster cj

sj = (cj) 



K Means Example
(K=2)

Pick seeds

Reassign clusters

Compute centroids

x

x

Reassign clusters

x

x xx Compute centroids

Reassign clusters

Converged!



K Means Examples

• Find the suitable clusters to classify the following  

data sets:

1- { 1, 2, 1.5, 1.2, 2.5, 3.8}

2- {1 , 2, 5, 7, 10, 15, 19}

• Find the R value that make the following data set 

separable into three clusters, then find the clusters:

1- {10, 20, 7, 2, R, 15,100}



Termination conditions

 Several possibilities, e.g.,

 A fixed number of iterations.

 samples partition unchanged.

 Centroid positions don’t change.

Does this mean that the 

samples in a cluster are 

unchanged?



Convergence

 Why should the K-means algorithm ever 

reach a fixed point?

 A state in which clusters don’t change.

 K-means is a special case of a general 

procedure known as the Expectation 

Maximization (EM) algorithm.

 EM is known to converge.

 Number of iterations could be large.
 But in practice usually isn’t



Convergence of K-Means

 Define goodness measure of cluster k as 

sum of squared distances from cluster 

centroid:

 Gk = Σi (si – ck)
2  (sum over all si in 

cluster k)

 G = Σk Gk

 Reassignment monotonically decreases G 

since each vector is assigned to the 

closest centroid.

Lower case



Hierarchical Clustering

 Build a tree-based hierarchical taxonomy 

(dendrogram) from a set of samples.

 One approach: recursive application of a 

partitional clustering algorithm.

animal

vertebrate

fish reptile amphib. mammal      worm insect crustacean

invertebrate



• Clustering obtained 
by cutting the 
dendrogram at a 
desired level: each 
connected
component forms a 
cluster.

Dendogram: Hierarchical Clustering



Hierarchical Agglomerative 

Clustering (HAC)

 Starts with each doc in a separate 

cluster

 then repeatedly joins the closest pair

of clusters, until there is only one 

cluster.

 The history of merging forms a binary 

tree or hierarchy.



Closest pair of clusters

 Many variants to defining closest pair of clusters

 Single-link

 Complete-link

 Centroid

 Average-link



Single Link Agglomerative 

Clustering

 Use maximum similarity of pairs:

 Can result in “straggly” (long and thin) 

clusters due to chaining effect.

 After merging ci and cj, the similarity of the 

resulting cluster to another cluster, ck, is:
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Single Link Example



Complete Link Agglomerative 

Clustering

 Use minimum similarity of pairs:

 Makes “tighter,” spherical clusters that are 

typically preferable.

 After merging ci and cj, the similarity of the 

resulting cluster to another cluster, ck, is:
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Complete Link Example



Group Average Agglomerative 

Clustering

 Similarity of two clusters = average similarity of 
all pairs within merged cluster.

 Compromise between single and complete link.

 Two options:

 Averaged across all ordered pairs in the merged 
cluster 

 Averaged over all pairs between the two original 
clusters

 No clear difference in efficacy
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Computing Group Average 

Similarity

 Always maintain sum of vectors in each cluster.

 Compute similarity of clusters in constant time:
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What Is A Good Clustering?

 Internal criterion: A good clustering will 

produce high quality clusters in which:

 the intra-class (that is, intra-cluster) 

similarity is high

 the inter-class similarity is low

 The measured quality of a clustering 

depends on both the samples 

representation and the similarity measure 

used



External Evaluation of Cluster Quality

 Simple measure: purity, the ratio 
between the dominant class in the 
cluster πi and the size of cluster ωi

 Biased because having n clusters 
maximizes purity

 Others are entropy of classes in clusters 
(or mutual information between classes 
and clusters)
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Cluster I Cluster II Cluster III

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Purity example
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