

Dr. George Karraz, Ph. D.

Artificial Intelligence Lecture XI

Clustering

Dr. George Karraz, Ph.D.

Today's Topic: Clustering

- Introduction
- Clustering algorithms
 - Partitional
 - Hierarchical

What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar objects
 - samples within a cluster should be similar.
 - samples from different clusters should be dissimilar.
- The commonest form of unsupervised learning
 - Unsupervised learning = learning from raw data, as opposed to supervised data where a classification of examples is given
 - A common and important task that finds many applications in IR and other places

A data set with clear cluster structure

How would you design an algorithm for finding the three clusters in this case?

Clustering Algorithms

Flat algorithms

- Usually start with a random (partial) partitioning
- Refine it iteratively
 - K means clustering
 - (Model based clustering)
- Hierarchical algorithms
 - Bottom-up, agglomerative
 - (Top-down, divisive)

Hard vs. soft clustering

- Hard clustering: Each samples belongs to exactly one cluster
 - More common and easier to do
- Soft clustering: A samples can belong to more than one cluster.
 - Makes more sense for applications like creating browsable hierarchies
 - You may want to put a pair of sneakers in two clusters:
 (i) sports apparel and (ii) shoes
 - You can only do that with a soft clustering approach.
- We won't do soft clustering today. See IIR 16.5, 18

Partitioning Algorithms

- Partitioning method: Construct a partition of *n* samples into a set of *K* clusters
- Given: a set of samples and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic methods: K-means and K-medoids algorithms

K-Means

- Assumes samples are real-valued vectors.
- Clusters based on *centroids* (aka the *center of gravity* or mean) of points in a cluster, *c*:

$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

 Reassignment of instances to clusters is based on distance to the current cluster centroids.

K-Means Algorithm

- Select *K* random centers $\{s_1, s_2, \dots, s_K\}$ as seeds. Until clustering converges or other stopping criterion:
 - For each s_i :
 - Assign d_i to the cluster c_j such that $dist(x_i, s_j)$ is minimal.

(Update the seeds to the centroid of each cluster) For each cluster c_j

$$s_j = \mu(c_j)$$

K Means Example (*K*=2)

Pick seeds Reassign clusters Compute centroids Reassign clusters Compute centroids Reassign clusters Converged!

K Means Examples

- Find the suitable clusters to classify the following data sets:
- $1 \{ 1, 2, 1.5, 1.2, 2.5, 3.8 \}$ $2 - \{ 1, 2, 5, 7, 10, 15, 19 \}$
- Find the R value that make the following data set separable into three clusters, then find the clusters: 1- {10, 20, 7, 2, R, 15,100}

Termination conditions

- Several possibilities, e.g.,
 - A fixed number of iterations.
 - samples partition unchanged.
 - Centroid positions don't change.

Convergence

- Why should the K-means algorithm ever reach a fixed point?
 - A state in which clusters don't change.
- K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm.
 - EM is known to converge.
 - Number of iterations could be large.
 - But in practice usually isn't

Convergence of K-Means

- Define goodness measure of cluster k as sum of squared distances from cluster centroid:
 - $G_k = \Sigma_i (s_i c_k)^2$ (sum over all s_i in cluster k)
- $G = \Sigma_k G_k$
- Reassignment monotonically decreases G since each vector is assigned to the closest centroid.

Hierarchical Clustering

 Build a tree-based hierarchical taxonomy (*dendrogram*) from a set of samples.

 One approach: recursive application of a partitional clustering algorithm.

Dendogram: Hierarchical Clustering

 Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

Hierarchical Agglomerative Clustering (HAC)

- Starts with each doc in a separate cluster
 - then repeatedly joins the <u>closest pair</u> of clusters, until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

Closest pair of clusters

- Many variants to defining closest pair of clusters
- Single-link
- Complete-link
- Centroid
- Average-link

Single Link Agglomerative Clustering

Use maximum similarity of pairs:

$$sim(c_i,c_j) = \max_{x \in c_i, y \in c_j} sim(x,y)$$

- Can result in "straggly" (long and thin) clusters due to chaining effect.
- After merging c_i and c_j , the similarity of the resulting cluster to another cluster, c_k , is:

 $sim((c_i \cup c_j), c_k) = \max(sim(c_i, c_k), sim(c_j, c_k))$

Single Link Example

Complete Link Agglomerative Clustering

Use minimum similarity of pairs:

$$sim(c_i,c_j) = \min_{x \in c_i, y \in c_j} sim(x, y)$$

- Makes "tighter," spherical clusters that are typically preferable.
- After merging c_i and c_j , the similarity of the resulting cluster to another cluster, c_k , is:

 $sim((c_i \cup c_j), c_k) = \min(sim(c_i, c_k), sim(c_j, c_k))$

Complete Link Example

Group Average Agglomerative Clustering

 Similarity of two clusters = average similarity of all pairs within merged cluster.

$$sim(c_{i}, c_{j}) = \frac{1}{|c_{i} \cup c_{j}| (|c_{i} \cup c_{j}| - 1)} \sum_{\vec{x} \in (c_{i} \cup c_{j})} \sum_{\vec{y} \in (c_{i} \cup c_{j}): \vec{y} \neq \vec{x}} sim(\vec{x}, \vec{y})$$

- Compromise between single and complete link.
- Two options:
 - Averaged across all ordered pairs in the merged cluster
 - Averaged over all pairs between the two original clusters
- No clear difference in efficacy

Computing Group Average Similarity

Always maintain sum of vectors in each cluster.

$$\vec{s}(c_j) = \sum_{\vec{x} \in c_j} \vec{x}$$

Compute similarity of clusters in constant time:

$$sim(c_i, c_j) = \frac{(\vec{s}(c_i) + \vec{s}(c_j)) \bullet (\vec{s}(c_i) + \vec{s}(c_j)) - (|c_i| + |c_j|)}{(|c_i| + |c_j|)(|c_i| + |c_j| - 1)}$$

What Is A Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the <u>intra-class</u> (that is, intra-cluster) similarity is high
 - the inter-class similarity is low
 - The measured quality of a clustering depends on both the samples representation and the similarity measure used

External Evaluation of Cluster Quality

 Simple measure: <u>purity</u>, the ratio between the dominant class in the cluster π_i and the size of cluster ω_i

$$Purity(\omega_i) = \frac{1}{n_i} \max_{j}(n_{ij}) \quad j \in C$$

- Biased because having n clusters maximizes purity
- Others are entropy of classes in clusters (or mutual information between classes and clusters)

Purity example

Cluster I Cluster II Cluster III

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5