Chapter 15

Dr. Dalal Alezi
dalezi@kau.edu.sa

06/12/2018

pH Range

What is the H^{+}concentration and pH of $(0.005 \mathrm{M}) \mathrm{HCl}$ solution ?

In the calculator:

$\left[\mathrm{H}^{+}\right]=0.005$ $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
 $=-\log (0.005)=2.3$

What is the pH of $\left(2.3 \times 10^{-5} \mathrm{M}\right) \mathrm{NaOH}$ solution?

$\left[\mathrm{OH}^{-}\right]=2.3 \times 10^{-5}$

$p O H=-\log \left[\mathrm{HO}^{-}\right]=-\log \left(2.3 \times 10^{-5}\right)=4.6$
$p H+p O H=14$
$p H=14-p O H=14-4.6=9.3$

OR
$K_{w}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]=1 \times 10^{-14}$
$\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{\left[\mathrm{HO}^{-}\right]}=\frac{1 \times 10^{-14}}{2.3 \times 10^{-5}}=4.3 \times 10^{-10}$
$p H=-\log \left[H^{+}\right]=-\log \left(4.3 \times 10^{-10}\right)=9.3$

What is the $\left[\mathrm{H}^{+}\right]$of a solution has $\mathrm{pH}=3.3$?

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right] \\
& {\left[H^{+}\right]=10^{-p H}} \\
& {\left[H^{+}\right]=10^{-3.3}=0.0005=5 \times 10^{-4} M}
\end{aligned}
$$

In the calculator:
Press SHEFT + log button $+(-$ ve $)$ value (= 3.3) + equal button

When $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$ in water at $25^{\circ} \mathrm{C}$, then \qquad
A. $\mathrm{pH}=1$.
B. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{7} \mathrm{M}$.
C. $\mathrm{pH}=10^{-7}$
D. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$

When $\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-9} \mathrm{M}$ in water at $25^{\circ} \mathrm{C}$, then \qquad
A. $\mathrm{pH}=9.40$.
B. $\mathrm{pH}=8.40$.
C. $\mathrm{pH}=7.00$.
D. $\mathrm{pH}=-8.40$.

A solution with a pOH of 4.3 has a $\left[\mathrm{H}^{+}\right]$of
A. $6.8 \times 10^{-9} \mathrm{M}$.
B. $2.0 \times 10^{-10} \mathrm{M}$.
C. $3.2 \times 10^{-4} \mathrm{M}$.
D. 4.3 M .

A solution with an $\left[\mathrm{OH}^{-}\right]$concentration of $1.20 \times 10^{-7} \mathrm{M}$ has a pOH and pH of \qquad
A. 6.92 and 7.08
B. 7.08 and 6.92
C. 1.00 and 13.00
D. 5.94 and 8.06

