Chapter 15

Dr. Dalal Alezi dalezi@kau.edu.sa

06/12/2018

pH Range

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Acidic **Basic** Increase the acidity **Increase the basisty** Neutral $[H^+] > [OH^-]$ $[H^+] = [OH^-]$ $[OH^{-}]>[H^{+}]$ pH = pOH = 7pH >7 pH < 7

What is the H⁺ concentration and pH of (0.005 M) HCl solution ?

[H⁺]=0.005

 $pH=-log[H^+]$

 $= -\log(0.005) = 2.3$

In the calculator:

(-) + log button + value (= 0.005) + equal button

What is the pH of (2. 3x10⁻⁵ M) NaOH solution?

 $[OH^{-}]= 2.3 \times 10^{-5}$

$$pOH = -\log[HO^{-}] = -\log(2.3 \times 10^{-5}) = 4.6$$

 $pH + pOH = 14$
 $pH = 14 - pOH = 14 - 4.6 = 9.3$

OR

$$K_{w} = [OH^{-}][H^{+}] = 1x10^{-14}$$
$$[H^{+}] = \frac{1x10^{-14}}{[HO^{-}]} = \frac{1x10^{-14}}{2.3x10^{-5}} = 4.3x10^{-10}$$
$$pH = -\log[H^{+}] = -\log(4.3x10^{-10}) = 9.3$$

What is the [H⁺] of a solution has pH= 3.3 ?

 $pH = -\log[H^+]$ $[H^+] = 10^{-pH}$

 $[H^+] = 10^{-3.3} = 0.0005 = 5x10^{-4}M$

In the calculator:

Press SHEFT + log button + (-ve) value (= 3.3) + equal button

When [H⁺] = 1.0 × 10⁻⁷ M in water at 25°C, then _____

- A. pH = 1.
- B. $[OH^{-}] = 1.0 \times 10^{7} M.$
- C. $pH = 10^{-7}$
- D. $[OH^{-}] = 1.0 \times 10^{-7} M$

When [H⁺] = 4.0 × 10⁻⁹ M in water at 25°C, then _____

- A. pH = 9.40.
- B. pH = 8.40.
- C. pH = 7.00.
- D. pH = −8.40.

A solution with a pOH of 4.3 has a [H⁺] of _____

- A. 6.8×10^{-9} M.
- B. 2.0×10^{-10} M.
- C. 3.2×10^{-4} M.
- D. 4.3 M.

A solution with an [OH⁻] concentration of 1.20 × 10⁻⁷ M has a pOH and pH of _____

- A. 6.92 and 7.08
- B. 7.08 and 6.92
- C. 1.00 and 13.00
- D. 5.94 and 8.06