Kingdom of Saudi Arabia Ministry of Higher Education At-Jouf University The College of Engineering Science

First Semester 1437/1436 Final Examination

Time:2:00Hr Paper Code: Math-201

Sub: Calculus-3

MM-60

Attempt all questions and each question carry equal marks 15.

Question One (4+4+7=15 marks)

- (a) Evaluate the double integral $\iint_R y^2 x dA$ over the rectangle $R = \{(x,y): -3 \le x \le 2, \ 0 \le y \le 1\}.$
- (b) Find the volume of the solid bounded by the plane z=0 and the parabolid $z=1-x^2-y^2$.
- (c) Evaluate $\iint_R (x+2y)dA$, where R is the region bounded by the parabolas $y=2x^2$ and $y=1+x^2$.

Question Two (4+4+7=15 marks)

- (a) Evaluate the triple integral $\iiint_B xyz^2 dV$, where B is the rectangular box given by $B = \{(x, y, z): 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$.
- box given by $B = \{(x, y, z): 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$. (b) (i) The point $(2, \frac{\pi}{4}, \frac{\pi}{3})$ is given in spherical coordinates. Plot the point and find its rectangular coordinates.
 - (ii) The point $(0, 2\sqrt{3}, -2)$ is given in rectangular coordinates. Find spherical coordinates for this point.
- (c) Use a triple integral to find the volume of the solid within the cylinder $x^2 + y^2 = 9$ and between the planes z = 1 and x + z = 5.

Question Three (4+4+7=15 marks)

- (a) Find the mass of rectangular lamina with vertices (0,0), (1,0) and (0,2) if the density function $\rho(x,y)=1+3x+y$.
- (b) Find the divergence and the curl of the vector field $F(x,y,z) = xzi + xyzj y^2k.$
- (c) Use spherical coordinates to find the volume of the solid G bounded above by the sphere $x^2 + y^2 + z^2 = 16$ and below the cone $z = \sqrt{x^2 + y^2}$.

(0,0)

A-2' 2WC

Question Four (4+4+7=15 marks)

(a) Evaluate \int_{c} 3xydy using the parameterization.

$$x = t, y = 2t \ (0 \le t \le 1).$$

- (b) Evaluate $\int_c (3x^2 + y^2)dx + 2xydy$ along the circular arc c given by x = cost, $y = sint \left(0 \le t \le \frac{\pi}{2}\right)$.
- (c) Evaluate the line integral $\int_c (\frac{1}{2}xy + \frac{1}{2}z^3)ds$ from (1,0,0) to $(-1,0,\frac{\pi}{2})$ along the helix c that is represented by the parametric equations.

$$x = cost$$
, $y = sint$, $z = t$ $\left(0 \le t \le \frac{\pi}{2}\right)$.