

Choose the most correct answer

- 1. The lowest energy state of an atom is referred to as its
 - a) bottom state.
 - b) ground state.
 - c) fundamental state.
 - d) original state.
- 2. All s orbitals are

Quantum Theory and the Electronic Structure of Atoms

- a) shaped like four-leaf clovers.
- b) dumbbell-shaped.
- c) spherical.
- d) triangular.
- 3. [He] $2s^22p^2$ is the electron configuration of which element?
 - a) Beryllium Be
 - b) Boron B
 - c) carbon C
 - d) nitrogen N
- 4. What are the valence electrons of vanadium (V)?
 - a) 4s²
 - b) $3d^{3}$
 - c) $4s^23d^3$ d) $3d^5$
 - a) 3a²
- 5. What are the valence electrons of gallium Ga?
 - a) 4s²
 - b) 3d³
 - c) $4s^24p^1$
 - d) 3d⁵

6. The electron configuration of a neutral atom is [Ne] $3s^23p^1$. The four quantum numbers of the last electron are:

- a) (2, 1, -1, +1/2) b) (3, 3, -1, +1/2) c) (3, 0, -1, +1/2) d) (3, 1, -1, +1/2)
- 7. How many unpaired electrons does chromium (Cr) have?
 - a) 0
 - b) 2
 - c) 4
 - d) 6
- 8. How many unpaired electrons does selenium (Se) have?
 - a) 0
 - b) **2**
 - c) 4
 - d) 6

- 9. What is the maximum number of orbitals described by the quantum numbers: n = 3 l = 2
 - a) 1
 - b) 3
 - c) 5
 - d) 9

10. What is the maximum number of orbitals described by the quantum numbers: n = 4

- a) 7
- b) 14
- c) 16
- d) 48
- 11. The maximum number of electrons that can occupy an energy level described by the principal quantum number, *n*, is a) n+1
 - \vec{b} 2n
 - c) $2n^2$
 - d) *n*²

12. A possible set of quantum numbers for the last electron added to complete an atom of sodium Na in its ground state is

a) n = 3, l = 1, $m_l = 0$, $m_s = \frac{1}{2}$ b) n = 3, l = 0, $m_l = 0$, $m_s = \frac{1}{2}$ c) n = 2, l = 1, $m_l = -1$, $m_s = \frac{1}{2}$ d) n = 2, l = 0, $m_l = -1$, $m_s = \frac{1}{2}$

13. The ground-state electron configuration of a calcium Ca atom is

- a) $[Ne]3s^2$
- b) $[Ne]3s^23p^6$
- c) $[Ar]4s^{1}3d^{1}$
- d) $[Ar]4s^2$

14. Which one of the following sets of quantum numbers is not possible?

	n	1	\mathbf{m}_l	m_s
Row 1	4	3	-2	+1/2
Row 2	3	2	-3	-1/2
Row 3	3	0	0	+1/2
Row 4	4	1	1	-1/2
Row 5	2	0	0	+1/2

- a) Row 1
- b) **Row 2**
- c) Row 3
- d) Row 4

15. The number of orbitals in a d subshell is

- a) 1
- b) 3
- c) 5
- d) 7

16. Which ground-state atom has an electron configuration described by the following orbital diagram?

17. A ground-state atom of nickel has _____unpaired electrons and is _____

- a) 0, diamagnetic
- b) 6, diamagnetic
- c) 3, paramagnetic
- d) 2, paramagnetic

18. What is the frequency (s^{-1}) of electromagnetic radiation that has a wavelength of 0.53 m?

a) 5.7 x 10⁸
b) 1.8 x 10⁻⁹
c) 1.6 x 10⁸
d) 1.3 x 10⁻³³

Explanation: The frequency and wavelength of electromagnetic radiation are related by the equation $c = \lambda v$, where c is the speed of light (=3.00 x 10⁸ m/s), λ is the wavelength in m and v is the frequency is s⁻¹ or Hz. The frequency can be calculated by rearranging the above formula to get v=c/ λ = 3 × 10⁸/0.53 = 5.7× 10⁸ s⁻¹

19. The energy of a photon of light is _____ proportional to its frequency and _____ proportional to its wavelength.

- a) directly, directly
- b) inversely, inversely
- c) inversely, directly
- d) directly, inversely

20. The wavelength of a photon of energy 5.25×10^{-19} J is _____m.

a) 2.64 x 10⁶
b) 3.79 x 10⁻⁷
c) 2.38 x 10²³
d) 4.21 x 10⁻²⁴

Explanation: The wavelength and energy are related by the formula $E = hc/\lambda$, where h (6.626 x 10⁻³⁴ Js) is Planck's constant, c is the speed of light (3.00 x 10⁸ m/s) and λ is the wavelength in meters. The wavelength can then be calculated by rearranging the above formula as follows: $\lambda = hc/E = 6.63 \times 10^{-34} \times 3 \times 10^8 / 5.25 \times 10^{-19} = 3.79 \times 10^{-7} m$

- 21. What is the frequency (s^{-1}) of a photon of energy 4.38 x 10^{-18} J?
 - a) 438 b) 1.45 x 10⁻¹⁶ c) **6.61 x 10¹⁵** d) 2.30 x 10⁷

Explanation: The frequency v of this photon can be calculated by rearranging the equation E = h v where E is the energy, h = Planck's constant and v = frequency in s⁻¹. $v = E/h = 4.38 \times 10^{-18}/ 6.63 \times 10^{-34} = 6.61 \times 10^{15}$

22. An electron is a Bohr hydrogen atom has energy of -1.362 x 10⁻¹⁹J. The value of n for this electron is

a) 1

b) 2

c) 3

d) 4

Explanation: The energy of an electron in a particular energy state in the hydrogen atom can be calculated by using the formula $E = -R_H/n^2 = (-2.18 \times 10^{-18} \text{ J})/n^2$, where n is the principal quantum number for the energy state. The value of n can be found by rearranging the above formula as follows:

$$n = \sqrt{\frac{-2.18 \times 10^{-18} \text{ J}}{-1.362 \times 10^{-19} \text{ J}}} = 4$$

19. The n = 2 to n = 6 transition in the Bohr hydrogen atom corresponds to the_____of a photon with a wavelength of____nm.

- a) emission, 411
- b) absorption, 411
- c) absorption, 657
- d) emission, 389

Explanation: There are 2 parts to this question. Since the electron is moving from a smaller value of n (n_i) to a larger value of n (n_f), it must be absorbing energy. The wavelength responsible for this transition can be calculated by using the formula: $E = R_H (1/n_i^2 - 1/n_f^2) \& E = hc/\lambda$, R_H is (Rydberg constant) = 2.18 x 10⁻¹⁸J

20. How many quantum numbers are necessary to designate a particular electron in an atom_____?

a) 3

b) **4**

c) 2

d) 1

21. The _____ quantum number defines the shape of an orbital.

a) spin

- b) magnetic
- c) principal
- d) angular

22. There are _____ orbitals in the third shell

a) 25

b) 4

c) 9

d) 16

Explanation: The number of orbitals in a shell is easily calculated by the formula # of orbitals = n^2 where n = principal quantum number, which is 3 in this case.

23. The angular quantum number is 2 in _____ orbitals.

a) s

b) p

c) **d**

d) f

24. The n = 1 shell contains_____p orbitals. All the other shells contain_____p orbitals.

- a) 3,6
- b) **0,3**
- c) 6, 2
- d) 3, 3

Explanation: If n = 1, then the only possible value of ℓ is 0 which means that n = 1 can contain only s orbitals. When n > 1, the value of $\ell = 1$ is possible making the existence of 3 p orbitals possible.

25. The principal quantum number of the first d subshell is _____.

- a) 1
- b) 2
- c) **3**
- d) 4

26. The total number of orbitals in a shell is given by _____.

- a) L²
- b) n²
- c) 2n
- d) 2n+1

28. Each p-subshell can accommodate a maximum of ______electrons.

- a) 6
- b) 2
- c) 10d) 3
- u) 5

Explanation: There are 3 different p orbitals: p_x , p_y and p_z . Each of these can contain 2 electrons leading to the maximum number of electrons as 6.

29. Each p-subshell can accommodate a maximum of _____electrons.

- a) **6**
- b) 2
- c) 10
- d) 3

Explanation: There are 3 different p orbitals: p_x , p_y and p_z . Each of these can contain 2 electrons leading to the maximum number of electrons as 6.

30. The 3p subshell in the ground state of atomic xenon contains ______electrons.

- a) 2
- b) 6
- c) 36
- d) 10

Explanation: Since Xe is a noble gas, its subshells will be completely filled regardless of their principal quantum number. Thus, the 3p subshell will contain 6 electrons.

31. $[Ar]4s^23d^{10}4p^3$ is the electron configuration of a(n)_____atom.

- a) As
- b) V
- c) P
- d) Sb

Explanation: The easiest way to answer this question is to count the total number of electrons and find which element that number corresponds to. The total number of electrons is = 18 (for the Ar) + 2 + 10 + 3 = 33 which corresponds to As.

32. The principal quantum number for the outermost electrons in a Br atom in the ground state is ______.

- a) 2
- b) 3
- c) 4d) 5

Explanation: The electronic configuration of bromine is $[Ar]3d^{10}4s^24p^5$ shows that the outermost electrons are in the s and p orbitals in the 4th energy level making the principal quantum number = 4.

33. All of the <u>have a valence shell electron configuration ns¹</u>.

- a) noble gases
- b) halogens
- c) chalcogens
- d) alkali metals

34. Which one of the following is correct?

- a) $v + \lambda = c$
- b) $v/\lambda = c$
- c) $\lambda = cv$
- d) $\mathbf{v} \, \boldsymbol{\lambda} = \mathbf{c}$

35. In the Bohr model of the atom, _____.

- a) electrons travel in circular paths called orbitals
- b) electrons can have any energy
- c) electron energies are quantized
- d) electron paths are controlled by probability

36. Which one of the following is not a valid value for the magnetic quantum number of an electron in a 5d subshell?

- a) 2
- b) **3**
- c) 0
- d) 1

Explanation: For an electron in the 5d subshell the value of $\ell = 2$ and the magnetic quantum number m_{ℓ} can have values from $-1, \ldots, 0, \ldots +1$, meaning $m\ell$ could not have a value = 3.

37. Which of the subshells below do not exist due to the constraints upon the angular quantum number?

- a) 2s
- b) **2d**
- c) 2p
- d) none of the above

Explanation: The values of the azimuthal quantum number "l" are decided by the values of the principal quantum number "n". The values of 1 will only be from 0...n - 1. Thus, for n = 2, only the values of 0 and 1 will be possible for ℓ , which means that only the 2s and 2p orbitals will be possible.

38. An electron cannot have the quantum numbers n =_____, $\ell =$ _____, $m_{\ell} =$ _____.

- a) 2, 0, 0
- b) 2, 1, -1
- c) 3, 1, -1
- d) 1, 1, 1

Explanation: The values of 1, 1, 1 would be impossible since if n = 1, the only value of ℓ would be = 0.

39. Which quantum number determines the energy of an electron in a hydrogen atom?

a) n

- b) n and ℓ
- c) m_ℓ
- d) {

39. Which electron configuration represents a violation of the Pauli exclusion principle?

Explanation: According to the Pauli Exclusion Principle no two electrons in an atom cannot have the same 4 quantum numbers. The2 electrons in the 2s orbital have the same value for their m_s which is not allowed. (d)

40. Which of the following is a valid set of four quantum numbers? (n, ℓ , m_ℓ , m_s)

- a) **2, 0, 0,** + ¹/₂
- b) 2, 2, 1, $-\frac{1}{2}$
- c) 1, 0, 1, $+\frac{1}{2}$
- d) 2, 1, +2, + $\frac{1}{2}$

Explanation: Here is why only option (a) is the correct answer: In option (b), $\ell = 2$ which is not allowed, in (c) $m\ell \neq 1$ since l = 0 and in (d) $m \ell > l$ which are all not allowed.

41. Which of the following is not a valid set of four quantum numbers? (n, ℓ , m_ℓ , m_s)

- a) 2, 0, 0, $+\frac{1}{2}$ b) 2, 1, 0, $-\frac{1}{2}$
- c) 1, 1, 0, $+\frac{1}{2}$
- d) 1, 0, 0, $+\frac{1}{2}$

Explanation: Since n can never be equal to ℓ , option c is the only set that is not valid