Test bank chapter (7)

Choose the most correct answer

1. The lowest energy state of an atom is referred to as its
a) bottom state.
b) ground state.
c) fundamental state.
d) original state.
2. All s orbitals are
a) shaped like four-leaf clovers.
b) dumbbell-shaped.
c) spherical.
d) triangular.
3. $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$ is the electron configuration of which element?
a) Beryllium Be
b) Boron B
c) carbon C
d) nitrogen N
4. What are the valence electrons of vanadium (V)?
a) $4 s^{2}$
b) $3 \mathrm{~d}^{3}$
c) $4 s^{2} 3 d^{3}$
d) $3 d^{5}$
5. What are the valence electrons of gallium Ga ?
a) $4 \mathrm{~s}^{2}$
b) $3 d^{3}$
c) $4 s^{2} 4 p^{1}$
d) $3 d^{5}$
6. The electron configuration of a neutral atom is $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{1}$. The four quantum numbers of the last electron are:
a) $(2,1,-1,+1 / 2)$
b) $(3,3,-1,+1 / 2)$
c) $(3,0,-1,+1 / 2)$
d) $(3,1,-1,+1 / 2)$
7. How many unpaired electrons does chromium (Cr) have?
a) 0
b) 2
c) 4
d) 6
8. How many unpaired electrons does selenium (Se) have?
a) 0
b) 2
c) 4
d) 6
9. What is the maximum number of orbitals described by the quantum numbers: $n=3 \quad l=2$
a) 1
b) 3
c) 5
d) 9
10. What is the maximum number of orbitals described by the quantum numbers: $n=4$
a) 7
b) 14
c) 16
d) 48
11.The maximum number of electrons that can occupy an energy level described by the principal quantum number, n, is
a) $n+1$
b) $2 n$
c) $2 n^{2}$
d) n^{2}
11. A possible set of quantum numbers for the last electron added to complete an atom of sodium Na in its ground state is
a) $n=3, l=1, m_{l}=0, m_{s}=1 / 2$
b) $n=3, l=0, m_{l}=0, m_{s}=1 / 2$
c) $n=2, l=1, m_{l}=-1, m_{s}=1 / 2$
d) $n=2, l=0, m_{l}=-1, m_{s}=1 / 2$
12. The ground-state electron configuration of a calcium Ca atom is
a) $[\mathrm{Ne}] 3 \mathrm{~s}^{2}$
b) $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
c) $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{1}$
d) $[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
13. Which one of the following sets of quantum numbers is not possible?

	n	l	$\mathrm{~m}_{l}$	$\mathrm{~m}_{\mathrm{s}}$
Row 1	4	3	-2	$+1 / 2$
Row 2	3	2	-3	$-1 / 2$
Row 3	3	0	0	$+1 / 2$
Row 4	4	1	1	$-1 / 2$
Row 5	2	0	0	$+1 / 2$

a) Row 1
b) Row 2
c) Row 3
d) Row 4
15. The number of orbitals in a d subshell is
a) 1
b) 3
c) 5
d) 7
16. Which ground-state atom has an electron configuration described by the following orbital diagram?

a) phosphorus
b) germanium
c) selenium
d) tellurium
17. A ground-state atom of nickel has \qquad unpaired electrons and is \qquad .
a) 0 , diamagnetic
b) 6 , diamagnetic
c) 3, paramagnetic
d) 2, paramagnetic
18. What is the frequency $\left(\mathrm{s}^{-1}\right)$ of electromagnetic radiation that has a wavelength of 0.53 m ?
a) 5.7×10^{8}
b) 1.8×10^{-9}
c) 1.6×10^{8}
d) 1.3×10^{-33}

Explanation: The frequency and wavelength of electromagnetic radiation are related by the equation $\mathrm{c}=\lambda \nu$, where c is the speed of light $\left(=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$, λ is the wavelength in m and v is the frequency is s^{-1} or Hz . The frequency can be calculated by rearranging the above formula to get $v=\mathrm{c} / \lambda=3 \times 10^{8} / 0.53=5.7 \times 10^{8} \mathrm{~s}^{-1}$
19. The energy of a photon of light is \qquad proportional to its frequency and \qquad proportional to its wavelength.
a) directly, directly
b) inversely, inversely
c) inversely, directly
d) directly, inversely
20. The wavelength of a photon of energy $5.25 \times 10^{-19} \mathrm{~J}$ is \qquad m.
a) 2.64×10^{6}
b) 3.79×10^{-7}
c) 2.38×10^{23}
d) 4.21×10^{-24}

Explanation: The wavelength and energy are related by the formula $\mathrm{E}=\mathrm{hc} / \lambda$, where $\mathrm{h}\left(6.626 \times 10^{-34} \mathrm{Js}\right)$ is Planck's constant, c is the speed of light ($3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$) and λ is the wavelength in meters. The wavelength can then be calculated by rearranging the above formula as follows: $\lambda=\mathrm{hc} / \mathrm{E}=6.63 \times 10^{-34} \times 3 \times 10^{8} / 5.25 \times 10^{-19}=3.79 \times 10^{-7} \mathrm{~m}$
21. What is the frequency $\left(\mathrm{s}^{-1}\right)$ of a photon of energy $4.38 \times 10^{-18} \mathrm{~J}$?
a) 438
b) 1.45×10^{-16}
c) 6.61×10^{15}
d) 2.30×10^{7}

Explanation: The frequency v of this photon can be calculated by rearranging the equation $\mathrm{E}=\mathrm{h} v$ where E is the energy, $\mathrm{h}=$ Planck's constant and $v=$ frequency in $\mathrm{s}^{-1} . v=\mathrm{E} / \mathrm{h}=4.38 \times 10^{-18} / 6.63 \times 10^{-34}=6.61 \times 10^{15}$
22. An electron is a Bohr hydrogen atom has energy of $-1.362 \times 10^{-19} \mathrm{~J}$. The value of n for this electron is \qquad .
a) 1
b) 2
c) 3
d) 4

Explanation: The energy of an electron in a particular energy state in the hydrogen atom can be calculated by using the formula $E=-R_{H} / n^{2}=\left(-2.18 \times 10^{-18} \mathrm{~J}\right) / \mathrm{n}^{2}$, where n is the principal quantum number for the energy state. The value of n can be found by rearranging the above formula as follows:

$$
n=\sqrt{\frac{-2.18 \times 10^{-18} \mathrm{~J}}{-1.362 \times 10^{-19} \mathrm{~J}}}=4
$$

19. The $\mathrm{n}=2$ to $\mathrm{n}=6$ transition in the Bohr hydrogen atom corresponds to the \qquad of a photon with a wavelength of \qquad nm.
a) emission, 411
b) absorption, 411
c) absorption, 657
d) emission, 389

Explanation: There are 2 parts to this question. Since the electron is moving from a smaller value of $n\left(n_{i}\right)$ to a larger value of $\mathrm{n}\left(\mathrm{n}_{\mathrm{f}}\right)$, it must be absorbing energy. The wavelength responsible for this transition can be calculated by using the formula: $E=R_{H}\left(1 / n_{i}^{2}-1 / n_{f}^{2}\right) \& E=h c / \lambda, R_{H}$ is $($ Rydberg constant $)=2.18 \times 10^{-18} \mathrm{~J}$
20. How many quantum numbers are necessary to designate a particular electron in an atom \qquad ?
a) 3
b) 4
c) 2
d) 1
21. The \qquad quantum number defines the shape of an orbital.
a) spin
b) magnetic
c) principal
d) angular
22. There are \qquad orbitals in the third shell
a) 25
b) 4
c) 9
d) 16

Explanation: The number of orbitals in a shell is easily calculated by the formula $\#$ of orbitals $=n^{2}$ where $n=$ principal quantum number, which is 3 in this case.
23. The angular quantum number is 2 in \qquad orbitals.
a) s
b) p
c) d
d) f
24. The $\mathrm{n}=1$ shell contains \qquad p orbitals. All the other shells contain \qquad p orbitals.
a) 3,6
b) $\mathbf{0 , 3}$
c) 6,2
d) 3,3

Explanation: If $\mathrm{n}=1$, then the only possible value of ℓ is 0 which means that $\mathrm{n}=1$ can contain only s orbitals. When $\mathrm{n}>$ 1 , the value of $\ell=1$ is possible making the existence of 3 p orbitals possible.
25. The principal quantum number of the first d subshell is \qquad .
a) 1
b) 2
c) 3
d) 4
26. The total number of orbitals in a shell is given by \qquad .
a) L^{2}
b) \mathbf{n}^{2}
c) 2 n
d) $2 \mathrm{n}+1$
28. Each p-subshell can accommodate a maximum of \qquad electrons.
a) 6
b) 2
c) 10
d) 3

Explanation: There are 3 different p orbitals: p_{x}, p_{y} and p_{z}. Each of these can contain 2 electrons leading to the maximum number of electrons as 6 .
29. Each p-subshell can accommodate a maximum of \qquad electrons.
a) 6
b) 2
c) 10
d) 3

Explanation: There are 3 different p orbitals: p_{x}, p_{y} and p_{z}. Each of these can contain 2 electrons leading to the maximum number of electrons as 6 .
30. The $3 p$ subshell in the ground state of atomic xenon contains \qquad electrons.
a) 2
b) 6
c) 36
d) 10

Explanation: Since Xe is a noble gas, its subshells will be completely filled regardless of their principal quantum number. Thus, the 3 p subshell will contain 6 electrons.
31. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{3}$ is the electron configuration of $a(n)$ \qquad atom.
a) As
b) V
c) P
d) Sb

Explanation: The easiest way to answer this question is to count the total number of electrons and find which element that number corresponds to. The total number of electrons is $=18$ (for the Ar) $+2+10+3=33$ which corresponds to As.
32. The principal quantum number for the outermost electrons in a Br atom in the ground state is \qquad _.
a) 2
b) 3
c) 4
d) 5

Explanation: The electronic configuration of bromine is $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$ shows that the outermost electrons are in the s and p orbitals in the $4^{\text {th }}$ energy level making the principal quantum number $=4$.
33. All of the \qquad have a valence shell electron configuration $n s^{1}$.
a) noble gases
b) halogens
c) chalcogens
d) alkali metals
34. Which one of the following is correct?
a) $v+\lambda=c$
b) $\quad v / \lambda=c$
c) $\lambda=\mathrm{c} v$
d) $\quad v \lambda=c$
35. In the Bohr model of the atom, \qquad .
a) electrons travel in circular paths called orbitals
b) electrons can have any energy
c) electron energies are quantized
d) electron paths are controlled by probability
36. Which one of the following is not a valid value for the magnetic quantum number of an electron in a 5 d subshell?
a) 2
b) 3
c) 0
d) 1

Explanation: For an electron in the 5 d subshell the value of $\ell=2$ and the magnetic quantum number m_{ℓ} can have values from $-1, \ldots 0, \ldots+1$, meaning $m \ell$ could not have a value $=3$.
37. Which of the subshells below do not exist due to the constraints upon the angular quantum number?
a) 2 s
b) 2 d
c) $2 p$
d) none of the above

Explanation: The values of the azimuthal quantum number " l " are decided by the values of the principal quantum number " n ". The values of 1 will only be from $0 \ldots n-1$. Thus, for $n=2$, only the values of 0 and 1 will be possible for ℓ, which means that only the 2 s and 2 p orbitals will be possible.
38. An electron cannot have the quantum numbers $\mathrm{n}=$ \qquad , $\ell=$ \qquad , $\mathrm{m}_{\ell}=$ \qquad .
a) $2,0,0$
b) $2,1,-1$
c) $3,1,-1$
d) $1,1,1$

Explanation: The values of $1,1,1$ would be impossible since if $\mathrm{n}=1$, the only value of ℓ would be $=0$.
39. Which quantum number determines the energy of an electron in a hydrogen atom?
a) n
b) n and ℓ
c) m_{ℓ}
d) ℓ
39. Which electron configuration represents a violation of the Pauli exclusion principle?
(a).

(b).

(c).

Explanation: According to the Pauli Exclusion Principle no two electrons in an atom cannot have the same 4 quantum numbers. The 2 electrons in the 2 s orbital have the same value for their m_{s} which is not allowed. (d)
40. Which of the following is a valid set of four quantum numbers? $\left(\mathrm{n}, \ell, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}\right)$
a) $2,0,0,+1 / 2$
b) $2,2,1,-1 / 2$
c) $1,0,1,+1 / 2$
d) $2,1,+2,+1 / 2$

Explanation: Here is why only option (a) is the correct answer: In option (b), $\ell=2$ which is not allowed, in (c) $\mathrm{m} \ell \neq 1$ since $\mathrm{l}=0$ and in (d) $\mathrm{m} \ell>1$ which are all not allowed.
41. Which of the following is not a valid set of four quantum numbers? $\left(\mathrm{n}, \ell, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}\right)$
a) $2,0,0,+1 / 2$
b) $2,1,0,-1 / 2$
c) $1,1,0,+1 / 2$
d) $1,0,0,+1 / 2$

Explanation: Since n can never be equal to ℓ, option c is the only set that is not valid

