

 $\tilde{N}_2(g)$ + $3H_2(g) \leftrightarrow 2NH_3(g)$ T a. K_c ≡ 0.460 b.) $K_c = 1.360$ $C. K_{\rm C} = 3.600$ d. $K_c = 0.036$ e. $K_c = 0.360$ f.

6) In water (H₂O) molecule, the bonds are :

- a. lonic bonds
- b. H-bonds
- c. Coordinate bonds
- d. Covalent bonds
- e. Polar covalent bonds
- 7) The general formula of cycloalkanes is :
 - a. $C_{2n}H_{2n+2}$
 - b. $C_n H_{2n}$
 - c. $C_n H_{2n+2}$
 - d. $C_n H_{2n-2}$

8) Calculate the molar concentration of a solution containing 2g NaOH in 250 mL of water ? (Na = 23, O = 16, H = 1)

- a. 0.002 M
- b. 0.02 M
- c. 0.20 M
- d. 2.00 M
- e. 2.20 M

9) Isotopes are atoms of the same element having the same numbers of :

- a. Protons and different numbers of neutrons .
- b. Protons and different numbers of electrons .
- c. Neutrons and different numbers of electrons .
- d. Neutrons and different numbers of protons .
- e. Protons and different numbers of protons .

10) 10 g salt solution contains 2.5g of a given salt . The percent composition of the resultant solution is :

11) The ionic charge of an element containing 50 protons and 52 electrons is: a 2+

- b. 2-
- c. 4+
- d. 4-
- e. 3+

12) is the number of moles of solute per kilogram of solvent .

- a. Molality
- b. Molarity
- c. Percentage
- d. Normality

13) The mass (weight) of 0.2 moles of fructose $C_6H_{12}O_6$ (C=12, O=16, H=1) is :

- a. 0.2 g
- b. 2 g
- c. 18 g
- d. 36 g
- e. 180 g
- 14) the solubility of gases :
 - a. increase with an increase in temperature
 - b. decrease with an increase in temperature
 - c. decrease with a decrease in temperature
 - d. is not affected by temperature
 - e. is slightly affected by temperature
- 15) which of the following is an example of an ionic bond :
 - a. H-Cl
 - b. CI-CI
 - c. NaCl
 - d. CO₂
 - e. CH₃CH₃

16) The final product of the hydrolysis of nitriles (benzyl cyanide) is :

- a. Compound 1 H₂0
- b, Compound 2
- c. Compound 3-
- d. Compound 4

17) This structure stands for :

- a. Cis-1-bromo-3-chlorobutane
- b. Trans-1- bromo-3-chlorobutane
 - Cis-1- bromo-3-chlorocyclobutane
 - d. Trans-1- bromo-3-chlorocyclobutane

(3)

18) Structural isomerism involves
a. Different molecular formation and a with :
b. Different molecular formulae but with the same structural formed
C. Different molecular formulae but with the same special area
d. The semi-
a. The same molecular formulae but different structural formulae
10) Stores to the same molecular formulae but different empirical (
19) Stereoisomerism involves :
a. Optical and chain isomerism
b. Geometrical and chain isomerism
c. Geometrical and positional isomerism
d. Geometrical and functional group isometicat
e. Geometrical and optical isomerism
20) The following pair of compounds exhibits
a. Chain isomerism
b. Functional group isomericm
C. Positional isomerism
d. Geometrical isomorium
e. Optical isomeriam
21) The isomer of CH CH CH CH CH CH
2.7 The isomer of $CH_3CH_2CH_2CH_2CH_1$ is : CH_2
a. Compound 1 8 th 1 1 H
D. Compound 2 CH "CC H H CH3 CH 6H
c. Compound 3 H_{c} H_{3}
d. Compound 4 (1) (2) (3) (4) (4)
22)are optically active molecules that are non-supeimposable
Mirror image of each other .
a. enantiomers
b, chain isomers
c. geometrical isomers
d. positional isomers
23) is chiral compound
a Compound 1
> b. Compound ?
D. Compound 2
a. Compound 4
$H_0 = C = NH_0 \qquad H_0 = C = NH_2 \qquad H_3 C = C = 0$
$H_3 C - C - NH_2$ $H_2 = 1$
CH_3 CH_3 (4)
$(2) \qquad (3)$
$(1) \qquad (2) \qquad (3)$

- c. 2-pentanol
- d. 2-pentane

46) The IUPAC nomenclature for CH₃CH₂OCH₂CH₂CH₃ is :

- a. Propyl ethyl ether
- b. Ethyl propyl ether
- c. 1-propoxyethane
- d. 3-ethoxypropane
- e. 1-ethoxypropane

47) matches the same name 3-hydroxypentanal . OH

- a. Compound 1
- b. Compound 2
- c. Compound 3
- d. Compound 4
- e. Compound 5

48) demonstrates coordinate covalent bond

(1)

HC

OH

- a. NH₂-NH₂
- b. NH₃-BF₄
- c. NH₃-BF₃
- d. NH₃-H₂O
- 49) The triple bond consists of :
 - a. Three σ bonds
 - b. Three π bonds
 - c. One π and two σ bonds \mathbf{V}
 - d. Two π and one σ bonds
- 50) In ethene (C_2H_4) the geometry around each carbon is :
 - a. Linear planar
 - b. Trigonal planar
 - c.Trigonal nonplana
 - d. Tetrahedral

51) This electronic configuration represents :

- a. Carbon a excited state
- b. Carbon in a ground state
- c.Nitrogen in a ground state d. Nilrogen in a excited state
 - e. Oxygen in a ground state

111	11	\uparrow	1	\uparrow]
15	25		2 P	0	

(2)

52) Hybridization of the carbon atoms indicated by (*) in the following compounds is :

a. Sp³, sp, sp² $CH_3CH_2CH_3$, $H_2C = cH_2$, $H_3C - C = CH$ b. Sp³, sp², sp c. Sp^2 , sp, sp^3 d. Sp², sp³, sp e. Sp, sp², sp³ 53) is a secondary (2°) alcohol a. Compound 1 b. Compound 2 c. Compound 3 c H3 d. Compound 4 (4) 54) In ethyne ,there are : a. Two sp orbitals and one unhybridized p orbital b. Two sp orbitals and one hybridized p orbital c. one sp orbitals and two unhybridized crbital d. Two sp orbitals and two hybridized p orbital e. Two sp orbitals and two unhybridized p orbital 55) Aldol condensation reaction occurs in basic medium for any aldehyde containing α -hydrogen through a. Nucleophilic addition reaction b. Electrophilic addition reaction c. Nucleophilic substitution reaction d. Elimination reaction e. Hydrolytic reaction 56) The missing (Product in the following reaction is : a. Compound 1 CH3CH2CH2 CH2 CH3 NaoH/I2 ? + CH13 (yellow PP+) b. Compound 2 C. Compound 3 CH3CH2CH2CH2COOH CH3CH2CH2COOH CH3CH2CH2CH2CH2CH3 (3) (2)CH3CH2CH2CH CH, d. Compound 4 (1) 57) Addition of excess methanol to acetaldehyde under acidic condition gives the following acetal dervative of: CH3 CHO + 2 CH3 OH -HO ? a. Compound 1 b. Compound 2 c. Compound 3 d. Compound 4 (4) (3)(1) (2)

59) The compound which contains a carbonyl group is :

- a. Propanal
- b. Porpanol
- c. Propane
- d. Dipropyl ether

60) Cannizzaro reaction occur between two molecule of -

- a. Aldehyde containing α-hydrogen
- b. Aldehyde containing no α-hydrogen
- c. Acid containing α-hydrogen
- d. Acid containing no α-hydrogen
- e. Alcohol containing no α-hydrogen
- 61) What is the total number of sigma bonds in the following compound?
 - a. 8
 - b. 10
 - c. 11
 - d. 15

a. 1

b. 2

62) What is the total number of π bonds in the following compound

H-C=C-CH2-NO2

c. 3

63) What is the best name for the following compound ?

- a. Cis -2-methyl-1-pentene
- b. Trans-4-ethyl-4-pentene
- c. Cis-2-ethyl-1-pentene
- d. 2-ethyl-1-pentene

H - C - H H - C - C + 2 C + 2 - C + 3 C + 3 - C + 2 - C + 3

 $CH_3 - CH = C = CH - C \equiv C - H$

أومكمه يجي بالشكلاالتابي

d. 1,2-ethanediol

(9) All of the following is positional isomers EXCEPT:

- a. 1-chloropentane, 2-chlorobutane
- b. 1-butanol , 2-butanol
- c. 1-chloropentane , 2-chloropentane
- d. Pent-1-ene , Pent-2-en

90) 2-bromo-2-methylbutane is an achiral molecule because it :

- a. Has 4 different groups
- b. Has 2 similar groups
- c. Non-superimposable and mirror image
- d. Rotate the plane polarized light to the right

91) For measured the rotation of light by optical isomers we used a :

- a. Voltmeter
- b. Ammeter
- c.Polarimeter
- d. Lux meter

				4		10			
Q	А	Q	А	Q	A	Q	А	Q	А
1	С	20	b	39	C C	58	d	77	d
2	d	21	С	40	d	59	а	78	d
3	b	22	a	41	d	60	b	79	b
4	d	23	b	4 2	x	61	С	80	а
5	е	24	С	43	С	62	b	81	а
6	е	25	4 a	\$ 44	x	63	d	82	С
7	b	26	No de	45	С	64	С	83	b
8	С	27	c	46	е	65	b	84	b
9	a	28	d	47	b	66	С	85	d
10	Le B	29	а	48	С	67	С	86	b
11	E þ	30	С	49	d	68	а	87	d
12	a	31	е	50	b	69	b	88	b
13.	d	32	d	51	а	70	С	89	а
14	6	33	С	52	b	71	С	90	b
15 \	c	34	а	53	С	72	d	91	С
16	d	35	d	54	е	73	а		
17	С	36	а	55	а	74	С		
18	d	37	С	56	b	75	С		
19	е	38	b	57	b	76	d		

organic chemistry is the chemistry of :

- a. Halide compounds
- b. Metallic compounds
- c. Carbon compounds

2) Compounds composed of only carbon and hydrogen are known as :

- a. Carbon hydrides
- b. Hydrocarbons
- c. Hydrogen carbides

3) Vital biological molecules in living systems are largely

- a. Metallic compounds
- b. Inert elements
- c. Organic compounds

4) Which of atomic orbitals overlap to form the C-H bonds in ethane ?

- a. a 1s atomic orbital of H and a 2sp³ atomic orbital of C
- b. a 1s atomic orbital of H and a 2sp atomic orbital of C
- c. a 1s atomic orbital of H and a 2s atomic orbital of C
- d. a 1s atomic orbital of H and a 2p atomic orbital of C
- 5) What are the orbitals which overlap to form the carbon-carbon bond in ethane?
 - a. Two carbon 2sp² atomic orbitals
 - b. Two 2sp³ atomic orbitals
 - c. Two carbon two 2sp³ molecular orbitals
 - d. Two 2px atom corbitals
- 6) What atomic orbitals of carbon are used for the formation of the sigma bond component of the C-C triple bond ?
 - p atomic orbitals
 - b. 2sp atomic orbitals
 - c. 2sp atomic orbitals
 - d. 2sp³ atomic orbitals

7) What are the relative lengths of the C-H bonds, in ethane, ethene, and ethyne?

- a. CH(ethane) = CH(ethene) > CH(ethyne)
- b. CH(ethane) < CH(ethene) = CH(ethyne)</p>
- c. CH(ethane) = CH(ethene) = CH(ethyne)
- d. CH(ethane) > CH(ethene) > CH(ethyne)
- e. CH(ethane) < CH(ethene) < CH(ethyne)</p>

8) What would be the predicted shape for the carbon atoms in ethane, C_2H_4 ?

- a. Linear
- b. Trigonal planar
- c. Tetrahedral
- d. Trigonal bipyramidal
- 9) Based on your knowledge of cis- and trans-cycloalkanes, what would the alkene shown below be ?
 - a. Trans
 - b. Cis
 - c. This alkene is neither cis- or trans
 - d. This molecule is not analkene

10) What would be the predicted shape for the carbon atoms in ethyne,

C₂H₂?

- a. Linear
- b. Trigonal planar
- c. Tetrahedral
- d. Trigonal bipyramidal

11) The bond angles in a saturated hydrocarbon of methane is typically :

- a. 120°
- b. 90º
- c. 109.5°
- d. 1809
- What are the relationships between double and single bonds ?
 a. Double bonds are longer, and therefore, stronger than single bonds
 b. Double bonds are longer, and therefore, weaker than single bonds
 c. Double bonds are shorter, and therefore stronger than single bonds
 d. Double bonds are shorter, and therefore, weaker than single bonds

13) The compound CH₃CH₂CH₂Br is known as 1-bromopropane or :

- a. Propyl bromide
- b. 3-bromopropane
- c. Propyl bromine
- d. Butyl bromide

14)	Alcohols have higher to us
1	nolecular weight because of
	a. Hydrogen bonding
	b. Diaxial interactions
	c. Steric strain
	d. Hyperconjugation
15)	Which of the following has the set
	a. CH ₃ -O-CH ₃
•	b. CH ₃ -CH ₂ -OH
	c. CH_3 - CH_2 - CH_3
16)	The Williamson ether synthesis produces others by positing on i
	a. Alcohol with a metal
	b. Alkoxide with a metal
	c. Alkoxide with an alkyl halide
17)	The alcohols that contains two alkyl groups attached to the carbon
b	onded to the -OH group i ,
	a. Primary alcohol
	b. Secondary alcohol
	c. Tertiary alcohol
	d. Quaternary alcohol
18)	
	a. 1-Hexanol
	b. 2-Hexanol
	C. Z-Hexanal
	a. 5.6. Heyapediol
10)	Aldehydes can be formed from the respective alcohols by :
19)	- Hydration
No. of Contraction	b Dehydration
	Hvdrolvsis
١	d. Oxidation
A.	e. Reduction

1.

- Aldehydes and ketones con be formed by the of alcohols .
- a. Combustion
- b. Oxidations
- c. Reduction
- d. Isomerization
- e. All of the above

21) The common name of ethanoic acid is :

- a. Propionic acid
- b. Formic acid
- .c. Ethanic acid
- d. Acetic acid
- The IUPAC name of the product from the reaction of ethanol and 22)

butyric acid is :

- a. Butyl ethanoate
- b. Ethyl butanoate
- c. Methy pentanoate
- d. Ethyl butyrate

Which of the following is correct order of oxidation for an alkane ? 23)

- a. Alkane \rightarrow alcohol \rightarrow carboxylic acid \rightarrow aldehyde
- b. Alkane \rightarrow aldehyde \rightarrow alcohol \rightarrow carboxylic acid
- c. Alkane \rightarrow carboxylic acid \rightarrow aldehyde \rightarrow alcohol
- d. Alkane \rightarrow alcohol \rightarrow aldehyde \rightarrow carboxylic acid
- e. Alkane \rightarrow aldehyde \rightarrow carboxylic acid \rightarrow alcohol
- What are the products of the reaction between methanol and ethanoic
 - acid

24)

- a. Ethyl methanoate and water
- b、CH₃COOCH₃ and hydrogen
- c. Methyl ethanoate and water
- d. OH₃COOCH₃ and hydrogen
- Esterification is a
- 25) a. Condensation reaction
 - b. Irreversible reaction
 - C. Addition reaction
 - d. Neutralization reaction

26. The general formula of alkanes is:

- a. C_nH_{2n+2}
- b. C_nH_{2n}
- c. C_nH_{2n-2}
- d. $C_n H_{2n+1}$

27. Which of the following is true about alcohol oxidation:

- a. primary alcohols are oxidized to adehydes
- b. secondary alcohols are oxidized to aldehydes
- c. tertiary alcohols are oxidized to aldehydes
- d. tertiary alcohols are oxidized to carboxylic acids

28. Combination of one s orbital and three p orbitals of carbon gives four equivalents :

- a. SP³, atomic orbitals
- b. SP² atomic orbitals
- c. SP, atomic orbitals
- d. SP⁴ atomic orbitals
- 29. The triple bond consists of:
 - **a.** three σ bonds
 - **b.** three π bonds
 - **c.** one π and two σ bonds
 - d. two π and one σ bonds

30. In ethene (C_2H_4), the geometry around each carbon is:

- a. linear planar
- b. trigonal planar
- c. trigonal nonplanar
- d. tetrahedral
- 31. The compound which contains a hydroxyl group is:
 - a. propanol
 - **b.** propane
 - c. propyne
 - d. propene
- 32. Glycols are compounds containing:
 - a. two COOH groups on the same carbon
 - b. two OH groups on the same carbon
 - c. two OH groups on adjacent carbons

d. two COOH groups on adjacent carbons

33. Cis-trans isomers are the result of

a restricted rotation about double bonds

b. restricted rotation about triple bonds

- c. free rotation about single bonds
- d. no rotation about single bonds

A.CH3CH2F is called

- a. ethyl fluoride
- b. methyl fluoride
- c. ethyl chloride
- d. methyl chloride

35. Alkenols is

- a. unsaturated alcohols
- b. saturated alcohols
- c. unsaturated acids
- d. saturated acids

36. Ethers are

- a. H-bond donors
- b. H-bond acceptors
- c. both H-bond donors and acceptors
- d. neither H-bond donors nor acceptors

37. The IUPAC nomenclature for CH3OCH2CH2CH2is:

- a. propyl methyl ether
- b. 1-propoxymethane
- c. ethyl propyl ether
- d. 1-methoxypropane

0	٨	0	N	0	Α	Q	A
	<u>A</u>	11	c	21	d	31	a
	<u>ь</u>	12	c	22	b	32	c
2	<u>с</u>	13	a	23	d	33	a
3	(A14	a	24	с	34	a
	C D	5 15	b	25	a	35	a
6	N	16	с	26	а	36	b
71	The	17	b	27	а	37	d
100	b	18	d	28	a		
- 2 V	è b	19	d	29	d		
10	3	20	b	30	b		

11. the number of electrons, protons and neutrons respectively in $_{34}^{78}$ Se²-

- a- 34, 34, 44
- b- 36,34,44
- c- 36,34,78
- d- 32,34,44

12. Across agiven period (from left to right) in the periodic table :

- a) Electropositivity increase and electronegativity decrease
- b) Electropositivity decrease and electronegativity increase
- c) Both Electropositivity and electronegativity increase
- d) Atomic radius increase

13. The molecular mass of a given molecule is 180 and the empirical formula of it CH_2O خردر Calculate the molecular formula (atomic mass of C=12 H=1 O=16)

a- $C_4H_8O_4$ b- $C_6H_{12}O_6$ c- $C_2H_4O_2$ d- $C_6H_{10}O_6$

14. The names of these compounds : K_2O_{2} , FeCl₂, NF₃ respectively are :

- a- Potassium oxide, iron(II) chloride, nitrogen fluoride
- b- Potassium oxide, lead(II) chloride , nitrogen tri-fluoride
- c- Potassium oxide, iron(II) chloride , nitrogen tri-fluoride
- d- Di-Potassium mono-oxide, iron (II)fluoride, nitro fluoride

15. If a neutral atom loses one or more electrons it becomes

a- Anion b- cation c- molecules d- compound

16. Substance that yields hydrogen ions when dissolved in water

- a- Basic b- solvent c- acid d- element
- 17. To achieve octet rule, nitrogen atom (7N) :
 - a- Gain 2 electrons
 - b- Gain 3 electrons
 - c- Lose 5 electrons
 - d- Share 7 electrons

18. Types of bonds in Na₂CO₃ are :

- a- hydrogen bonds.
- b- covalent bonds.
- c- ionic and covalent bonds .
- d- coordinate covalent bonds.
- 19. Demonstrates coordinate covalent bonding:
 - a- NH_2 NH_2 b- NH_3 H_2O
- 20. Covalent bond is characterized by the following EXCEPT :
 - a- It can be single, double or triple bonds
 - b- It is formed between nonmetals with a large difference in electronegativity

C- NH₃- BF₃

- c- Bond is formed by sharing of electrons
- d- They are not conductors

21. The bond between water molecules is :

a- Hydrogen bond b- covalent bond c- ionic bond d- electrostatic bond

22.The bond between NaCl molecules is :

- a- Hydrogen bond b- covalent bond c- ionic bond d- electrostatic bond
- 23. The bond between ammonia and boron tri-fluoride is :
 - a- Van der waals b- coordinate covalent bond c- ionic bond d- H-bond

24. The type of bond between water atoms :

a- Ionic b- polar covalent c- Hydrogen bond d- electrostatic

25. An example of ionic bond :

a- CaCl₂ b- CO₂ c- F_2 d- C₆H₁₂O₆

26. Force of attraction and repulsion between molecules is :

- a- Intermolecular interaction
- b- Ionic attraction
- c- Intramolecular interaction
- d- Covalent bonding

27. The weakest intermolecular interactions caused by the formation of temporary

- dipoles
- a- Van der waals b- covalent bond c
 - d c- ionic bond d- hydrogen bond

d- 1+

- 28. Indicates the type and number of atoms in a molecule
 - a- Empirical formula b- molecular formula c- structural formula
- 29. The maximum number of electrons in third energy level(n=3) :
 - a-2 b-8 c-32 d-18
- 30. The ionic charge of 12Mg atom is :
 - a- 2- b- 2+ c- 3+
- 31. the bonds X and Y in these picture respectively is :

- a- Intramolecular H-bond and intermolecular H-bond
- b- Intermolecular H-bond and intramolecular H-bond
- c- lonic bond, covalent bond
- d- Both are intermolecular H-bonds
- 32. Single displacement reactions are :
 - a- Oxidation-reduction reactions and precipitation reaction
 - b- Precipitation and neutralization reactions
 - c- Oxidation- reduction reactions
 - d- Combustion reactions

33. The metals Ca and Ba can displace H₂ from

- a- Water only
- b- Acids only
- c- Steam and acids and water
- d- Can not displace H₂
- 34. One of the following choices are metals can displace H_2 from steam :
 - a- Aluminum and lead
 - b- Tin and nickel
 - c- Aluminum and zinc
 - d- Silver and gold

35. The least reactive metals such as silver and gold :

- a- Displace H₂ from all sources
- b- Displace H₂ from acids
- c- Displace sodium atom from its compound in solution
- d- Cannot displace H₂ from any sources
- 36. This reaction : $2AgNO_{3(aq)} + Cu_{(s)} \rightarrow Cu(NO_3)_{2(aq)} + 2Ag_{(s)}$ is single displacement and:
 - a- Synthetic reaction
 - b- Oxidation-reduction reaction
 - c- Acid base reaction
 - d- Decomposition reaction

37. The product of the following reaction $2AI + 3Cu(NO_3)_2 \rightarrow are$:

- a- 2AI(NO₃)₂ + 3Cu
- b- 2Al(NO₃)₃ + 2Cu
- c- 3AI(NO₃)₃ + 2Cu
- d- 2AI(NO₃)₃ + 3Cu
- 38. In butane combustion reaction to balance O_2 we put front of it :
 - a-3 b-26 c-13 d-16

39. This reaction : $N_2O_4 \rightarrow 2NO_2$ is :

- a- Oxidation /reduction
- b- Decomposition
- c- Neutralization
- d- Precipitation

40. To complete this reaction Li + $H_2O \rightarrow \dots + H_2$ put in space :

- a- Li₂O b- LiOH c- Li(OH)₂ d- LiOH₂
- 41. In this equation $ZnCl_2 + Cu \rightarrow CuCl_2 + Zn$ the(Zn) in reactant :
 - a- Reduced b- oxidized c- non metal d- reducing agent
- 42. What is the all balanced equation for this reaction : KOH + $H_2SO_4 \rightarrow$
 - a- KOH + $H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$
 - b- 2KOH + $H_2SO_4 \rightarrow K_2SO_4 + 3H_2O$
 - c- 2KOH + $H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$
 - d- $3KOH + H_2SO_4 \rightarrow K_3SO_4 + 6H_2O$

43. A special type of double displacement reactions that involve acid and base:

- a- Oxidation /reduction
- b- Decomposition
- c- Neutralization
- d- Precipitation

44. When X loses electrons X is oxidized and so X is :

a- Oxidizing agent b- reducing agent c- X deceases in O.N d- acid

45. Aqueous reactions between soluble compounds to produces insoluble compound

- a- Oxidation / reduction reaction
- b- Decomposition reaction
- c- Neutralization reaction
- d- Precipitation reaction

46. The symbol (S) in reactions says the compound is solid and (aq) says

- a- compound is liquid
- b- compound in gaseous state
- c- compound is taking place in water solution
- d- compound is precipitate
- 47. $C_3H_8 + ... \xrightarrow{x} ... O_2 \rightarrow CO_2 + H_2O$ to balance this reaction displace x with :
 - a- 6 b- 8 c- 4 d- 5

48. All of the following are true about the activity series of the metals EXCEPT:

- a- The four nonmetals below H_2 cannot displace it from any source .
- b- Metals is arranged with strongest reducing agent at the top
- c- Metals is arranged with the least active ones at the bottom
- d- Metals is arranged with the most active metal at the top

49. Combustion reaction is characterized by the following EXCEPT

- a- It is called burning reaction
- b- Its products are always carbon dioxide and water
- c- It is a reaction between carbohydrate and oxygen gas
- d- It is used to heat homes and run automobiles

50. The sum of oxidation numbers (O.N) values for the atoms in a polyatomic ion equals :

b- numbers of atoms d- ion charge c- +1 always a- Zero

51. The oxidation number for oxygen equal -1:

- a- In all compounds
- b- In peroxides
- c- When it combination with sulfur
- d- In combination with non metals

52. The oxidation number of Sulfur in sulfur trioxide is :

d- +1 c- +2 b- +4 a- +6

53. The O.N of nitrogen in nitric acid is :

a- +3 b- +5 c- +1 d- +6

- 54. The O.N of carbon in hydrogen carbonate ion (bicarbonate) equal :
 - a- +3 b- +5 c- +4 d- +6
- 55. Recognizing oxidizing and reducing agent in this reaction : $2H_2 + O_2 \rightarrow 2H_2O$
 - a- H_2 is oxidizing agent and O_2 reducing agent
 - b- Both H_2 and O_2 is reducing agent and the water is the oxidizing agent
 - c- H₂ is reducing agent and O₂ oxidizing agent
 - d- Water is oxidizing agent and O_2 the reducing agent
- 56. The reaction which involve loss of electrons is
 - a- Oxidation reaction
 - b- Decomposition reaction
 - c- Neutralization reaction
 - d- Precipitation reaction

57. The product of this reaction : NaCl + $Br_2 \rightarrow ?$

- a- NaBr₂ + Cl_2
- b- NaBr + Cl₂
- c- NaBr₃ + Cl_2
- d- No reaction
- 58. All of the following are true about oxidation number except :
 - a- For group 1A (1): O.N = +1 in all compounds
 - b- For hydrogen O.N = +1 in combination with metals
 - c- For an atom in its elemental form O.N = 0
 - d- The sum of O.N values for atoms in a compound equals zero

59. All of the following about solutions is the	
a- In aqueous solution water is a solution	ue <u>EXCEPT</u>
b- A solution is a homogeneous mixture	
c- Saturated solution contains less and	
d- Solvent and solute making solution	nt of solute than unsaturated solution
60. Dental filling is an example of:	2 - S
a- Solid / solid solution	
b- Solid / liquid solution	
c- Liquid / solid solution	
d- Gas / gas solution	N
61. Factors affecting solubility are nature of s	solute / solvent and temporature and
a- Number of atoms b- oxidation num	ber c- pressure
62. The molecular mass of Fe_2O_3 (Awt of Fe=	=56 O=16) is
a- 160 g b- 152 g/mol c-	160 g/mol d- 72g/ mol
63. Calculate the mass of 100 moles of Al_2O_3	(Al= 27
a- 102 g b- 10200 g d	- 1020 g d- 200 g
64. Calculate the molar concentration of a sol	ution containing 10 g NaCl dissolved in
200 ml water ? (Na= 23 Cl=35.5)	
a- 8.5 M b- 0.08 M c- 0.85	M d- 5.8 M
65 is the number of moles of solute	e per liter of solution
a- Molality	
b- Normality	
c- Molarity	
d- Percentage	
66. The PH of a solution with [OH ⁻] = 10^{-9} M	
a-9 b-4 c-10 ⁻⁵	d- 5

10

67. Acidic solution are those having :

a- PH = 7

- b- PH > 7
- c- PH< 7
- d- PH ≤ 7

68. The oxidation number of sulfur and oxygen in SO₂

a- Sulfur is +4 and oxygen is -2

b- Sulfur is -4 and oxygen is -2

c- Sulfur is -4 and oxygen is +2

d- Sulfur is +2 and oxygen is -2

69. The POH of solution is :

- a- The negative logarithm of the hydroxide ion concentration [OH]
- b- The negative logarithm of the hydrogen ion concentration [H⁺]
- c- The positive logarithm of the hydroxide ion concentration [OH]

70. The molality of solution containing 20g of NaOH dissolved in 100 g in water

d- 2 M c- 0.05 m b- 5 m a- 0.5 m

71. The normality of 2 molar of H₃PO₄?

d- 0.6 N 🔨 c- 2 N b-6N a- 8N

72. The normality of a solution containing 10 g NaOH dissolved in 150 ml solution

- a- 2.66 N
- b- 1.66 N
- c- 0.66 N
- d- 0.16 N

73. Solution have 0.5 M of Hcl in 500 ml of solution the mass of HCl is

- a- 0.925
- b- 91.5
- c- 9.125

. Determine the molarity of 2 N of H₂ SO₄

a- 4 N	b- 1M c-	2M d	J- 8M
75. The combusti	on reaction needs	fuel , Oxyge	en and
a- Carbohydra	ite b- acid	c- spark	d- water
76. The mass of 0	.1 mole glucose	C ₆ H ₁₂ O ₆ (C=	=12 , H=1 , O=16)
a- 81 g	b- 18 g	c- 180 g	d- 1800 g
77. The maximum	n quantity of solut	te dissolved i	in certain quantity of solvent
a- Isotopes	b – unsaturated	solution	c-solubility d-molarity
78. A solution is r	made by mixing 25	50 g of hexar	ne and 50 g of octanol . What is the mass
percent of the	octanol ?		
a- 83.3 % w/w	v		
b- 16.7 % w/v			
c− 16.7 % w/w	1		
d- 20 % w/w		8	restuant is known as :
79. The number o	f moles of solute	per kilogram	n of solvent is known as
a- Molarity	b- normality	c- molalit	ity
80. What is the m	olarity of solution	has 1.25 m	ioles of Korris Class
water		4.25	N4
a- 0.44 M	b- 2.5 M	c- 1.25	f malos of solute dissolved in 250 g of
81. In a 4.0 m aqu	eous solution . th	e number of	T Moles of solute and
water:			d- 2 mole
a- 16 mole	b- 1 mole	c- 0.1 mc	to clic discolved in 500 g of water
82. What is the m	olality of solution	has 10 g of	Naci is dissolved in 200 b
(NaCl=58.5 g/r	mole)		
a- 0.90 m			
b- 0.34 m			
c- 0.089 m	d- 0.34 M		

^{93.} What is the concentration of a solution containing 40 g of potassium nitrate

In 0.2 L of solution

- a- 20 % w/w
- b- 24% w/v
- c- 20 % w/v
- d- 2%w/v

84. Determine the percent by mass of a 20 g salt dissolved with 180 g water ?

- a- 20 % w/w b- 11.1 % w/w c- 10 % w/w d- 12.5 % w/w
- 85. Most important buffer system in blood plasma is
 - a- Acetic acid / sodium acetate
 - b- Carbonic acid / hydrogen carbonate
 - c- Ammonia / ammonium chloride

86. The PH value of the blood

a- 8 b- 6.4 c- 7.4

87. an example for acidic buffer is:

- a- Hydrochloric acid / sodium chloride
- b- Carbonic acid
- c- Ammonia / ammonium chloride
- d- Acetic acid / potassium acetate

88. To increase the concentration of ammonium ions to making alkaline buffer we

adding:

- a- water
- b- Sodium acetate
- c- Ammonium chloride
- d- Acetic acid

when we adding alkali to acidic buffer the OH⁻ ions react with

a- Acid salt

- b- H⁺ions
- c- NH4⁺ions
- 90. Equilibrium can be disturbed by changing temperature, partial pressure and
 - c PH value a- Concentration b- number of moles
- 91. Mixture that minimizes PH change on addition of small amounts of acid or base
 - a- Molality
 - b- Solute
 - c- Buffer solution
 - d- Saturated solution
- 92. A two litter vessel contains 1.6 moles NH_3 , 0.8 moles N_2 and 1.2 moles of H_2 what is
 - the equilibrium constant for this reaction $N_2 + 3H_2 \rightarrow 2NH_3$
 - d- 0.232 c- 10.36 b-7.40
- 93. Calculate the PH buffer solution whose $[HA] = 0.1 \text{ mol.dm}^{-3}$ and $[A^{-}] = 0.1 \text{ mol.dm}^{-3}$

 - $^{-}$ and the Ka = 2 x 10 $^{-4}$
 - c 5.6 b- 3.7 a- 6

94. At a chemical equilibrium

- a- The weight of the forward and reverse reactions are equal
- b- The masses of the forward and reverse reactions are equal
- c- The rate of the forward is higher than reverse
- d- The rate of the forward and reverse reactions are equal
- 95. The equilibrium constant for the reaction :

$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

a-
$$K = [SO_2]^2 \cdot [O_2] / [SO_3]^2$$

b-
$$K = [SO_3] / [SO_2] . [O_2]$$

c- $K = [SO_3]^2 / [SO_2]^2 . [O_2]$

96. All of the following is false about buffer solution except:

- a- It is mixture of strong acid and its salt or strong base with its salt
- b- It is mixture of weak acid or weak base with its salts
- c- It is mixture of strong acid and base only
- d- It is mixture of strong acid and strong base

97.Calculate the PH of solution containing 0.0500 mol.dm⁻³ methanoic acid and 0.100

mol.dm⁻³ sodium methanoate . Ka= 1.6×10^{-4}

a- 6.30 b- 4.10 c- 3.25

حل استان ن ۸۱ لمار که مخبر 57. d 48-9 28-6 1- C 14-C 58-b 49-6 29-d 15-6 2 - C 50-d 59-C 30. b 16-0 51-b 60 - C 31-a 3-0 61-0 52-a 17-b 32- C 503 4 _ Si 62-C 18-0 33-C +6 -2 34-0 5-b 19-C 63-b 53-b 35-d 20-b 6-0 64 - C 36-b HN03 +1 +5 -2 21-a 37-d $M = \frac{mass}{M_{\rm wf} = V_{\rm in}}$ 7-b 22 - d 38-0 S-b M = 10 585 × 0,2 -23-b $2C_4H_{10} + 130_2 - 300_2 + 10H_2C_2$ 9-0 = 0,85M 24-6 39-b (2NO2) desi-25. a 10-01 65-9 40 - b 26-0 11 - b 66-d 41-9 [ozuis+2]~b 27_ a PoH=-log(10-3) 12-6 : 9 42-C PH = 14 - 9 = 5 13 - b 51 54-C 43-C HC03 Muter = 12+2+16 -44-6 +1 + -2 $n = \frac{M_{\rm w} + MF}{M_{\rm w} + FF} = \frac{180}{30} = 6$ 45-d للزم الجنوع = ۱-46-6 55-0 5 (CH2O) = CEH12 CE 47-d 56 - 9

Answer All Questions

A] Encircle the best answer from the following in the provided answer sheet:

1- All of the following are true about solubility EXCEPT:

- a. solubility of solids increases with temperature
- b. solubility of liquids increase with pressure
- c. solubility of gas decreases with temperature
- d. solubility of gas increases with pressure

2-Dental filling is an example of:

- **a.** liquid in gas solution
- **b.** liquid in liquid solution
- **c.** solid in liquid solution
- d. liquid in solid solution

3-The mass (weight) of 0.2 moles of fructose $C_6H_{12}O_6$ (C = 12, O = 16, H = 1) is:

- a. 0.2 g.
- b. 2 g.
- c. <mark>36 g</mark>
- d. 180 g.

4-A chemical equilibrium is attained when:

 $aA + bB \longrightarrow cC + dD$

- a. the rates of the forward and reverse reactions are equal
- b. the rate of the forward reaction is higher than reverse reactions
- c. the concentrations of reactants and products are constant.
- d. both a and c

5- Determine isotopes from the following:

a .	$\frac{15}{7}$ X	$\frac{15}{8} \frac{1}{X}$	
b.	14 X	¹² / ₆ X	
c.	¹⁴ 7 X	¹³ / ₆ X	Page 1 of 9
d.	¹⁴ / ₆ X	$\frac{15}{7}$ X	

6-The pH of a solution with $[OH^-] = 10^{-5} M$ is:

- a. 10⁻⁵
- b. 10⁺⁵
- c. 5.0
- d. 9.0

7-All of the following are buffer systems EXCEPT:

- a. acetic acid/sodium acetate
- b. benzoic acid / sodium benzoate
- c. hydrochloric acid / sodium chloride
- d. ammonium hydroxide /ammonium chloride

8-The chemical formula for ammonium chloride, aluminium hydroxide and sodium sulfite are

- a. NH₃Cl, Al(OH)₃ and Na₂SO₃
- b. NH₄Cl, Al(OH)₃ and Na₂SO₃
- c. NH₄Cl, Al(OH)₂ and Na₂SO₄
- d. NH₄Cl, Al(OH)₃ and Na₂SO₄

9-All of the following are false about periodic table **EXCEPT**:

- a. elements are arranged in groups according to mass number
- b. elements are arranged in groups according to atomic number
- c. elements are arranged in periods according to mass number
- d. elements are arranged in periods according to atomic number

10-The percent composition of a solution which contains 20 g salt and 0.100 kg solvent is

- a. 16.66 % w/v
- $b. \hspace{0.2cm} 20 \hspace{0.1cm} \% \hspace{0.1cm} w/w$

c. 16.66 % w/w

d. 20 % w/v

11-All of the following are true about alkaline buffer <u>EXCEPT:</u>

- a. it is composed of weak base and one of its salts
- b. it is composed of ammonium hydroxide and ammonium chloride
- c. the role of ammonium hydroxide to provide high concentration of NH_4^+ .
- d. it is used to minimize pH changes.

12-The electron arrangement X 2,8,5 refer to

- a. <mark>P atom</mark>
- b. S atom
- c. Si atom
- d. C atom

13-In halogen group, fluorine is more electronegative than chlorine due to

- a. the largest distance between nucleus and outermost electrons
- b. the smallest distance between nucleus and outermost electrons
- c. the largest distance between nucleus and electrons of the first energy level
- d. the smallest distance between nucleus and electrons of the first energy level

14-The chemical formula for sodium carbonate, potassium nitrate and potassium thiocyanate are

- a. Na₂CO₃ , KNO₂ and KSCN
- b. Na₂CO₃, KNO₃ and KSCN
- c. NaHCO₃ , K₂NO₃ and KCN
- d. Na₂CO₂, KNO₃ and KCN

15- This redox reaction is characterized by the following <u>EXCEPT</u>:

 $Cu(s) + 2 AgNO_3 (aq) \longrightarrow Cu(NO_3)_2 (aq) + 2 Ag(s)$

- a. oxidation number of Cu increased
- b. oxidation number of Ag decreased
- c. Ag is reducing agent
- d. Cu is oxidized

16-The products of the following reaction are

```
2KCl (aq) + Br<sub>2</sub> (aq)
```

a. $2KBr(aq) + Cl_2(aq)$

- b. KBr (aq) + Cl_2 (aq)
- c. $2KBr(aq) + 2Cl_2(aq)$
- d. no products

17-The following reaction represents

CaCO₃ $\stackrel{\text{heat}}{\longrightarrow}$ CaO + CO₂

- a. decomposition reaction
- b. double displacement and precipitation reaction
- c. single displacement reaction
- d. synthetic reaction

18- The formula weight of C₆H₁₂O₆ is:

- a. <mark>30</mark>
- b. 180
- c. 16
- d. 96

19-All of the following are false about oxidation number (O.N.) EXCEPT:

- a. for an atom in its elemental form, O.N.=+1
- b. for group 7A(17):O.N. = -1 in combination with metals or nonmetals
- c. for oxygen: O.N. = -2 in peroxides
- d. for hydrogen: O.N. = +1 in combination with metals

20-Combustion reaction is characterized by the following EXCEPT:

- a. it is called burning reaction
- b. it is used to heat homes and run automobiles
- c. it is a reaction between hydrocarbon and oxygen gas.
- d. its products are always SO₂ and H₂O

21-One of these metals cannot displace H₂ from any source.

- a. Na
- b. Mg
- c. <mark>Hg</mark>
- d. Al

22-In periodic table, the element which is located in period 3 and group 3A is a. 15P

b. 11Na

- c. 13Al
- d. 5B

23-Energy levels have a maximum number of electrons equal to

- a. *n*²
- b. 2*n*
- **c.** $2n^3$
- d. $2n^2$

24 - To achieve Octet rule, magnesium atom (12Mg):

- a. gains 2 electron
- b. loses 2 electron
- c. gains 6 electrons
- d. shares 2 electron

25-All of the following are true about ionic bond <u>EXCEPT</u>:

- a. it is formed between atoms of nonmetals and metals with a large difference in electronegativity
- b. it is formed by transfer of electrons
- c. it is produced between charged ions.
- d. it is good conductor and has low melting point.
- 26- The oxidation number (O.N.) of nitrogen in HNO3 is
 - a. +**3**
 - b. -3
 - c. + 5
 - d. -5

27-What is the volume of 1.25 M NaOH solution which can be prepared using 60 g NaOH (Na = 23, O =16 , H =1).

- a. V = 0.12 L
- b. V = 1.2 L
- c. V = 12 L
- d. V = 0.2 L

28-Calculate the pH of a solution containing 0.0100 mol dm⁻³ benzoic acid

and 0.0400 mol dm⁻³ sodium benzoate (Ka = $6.3 \times 10^{-5} \text{ mol dm}^{-3}$).

a. pH = 8.4

b. pH = 8.0

- c. pH = 4.8
- d. pH = 9.2

29- At 25°C, Kw =

- a. $[H_3O^{1+}][OH^{1-}] = 1.0 \times 10^{+14}$
- b. $[H_3O^{1+}][OH^{1-}] = 1.0 \times 10^{-14}$
- c. $[OH^{1-}][OH^{1-}] = 1.0 \times 10^{-14}$
- d. $[H^{1+}][H^{1+}] = 1.0 \ge 10^{+14}$

30-All of the following are true about solution EXCEPT:

- a. solution can be classified as saturated or unsaturated.
- b. solution is a homogeneous mixture of 2 or more substances .
- c. an aqueous solution has water as a solvent
- d. the solubility of a solution is the minimum quantity of solute that can be dissolved in a certain quantity of solvent

B] Answer the following questions

1) Find molality of 12g HCN in 250ml methanol (d= 0.792 g/ml)

(H = 1, C = 12, N = 14)

<u>Answer:</u>

MWt of HCN = 27

n (moles) = mass/ MWt = 12/27 = 0.444 moles

Molality (m) = moles of solute/ kilogram of solvent

d (density) = mass / volume

0.792 = mass/250 ml

Mass = 0.792 x 250 = <u>198 g / 1000 = 0.198 kg</u>

Molality (m) = 0.444/0.198 = 2.242 m

.....

2) Mention the equation which indicates role of carbonic acid/

hydrogencarbonate ion buffer in case of blood acidosis.

Any increases in [H⁺] ions in the blood are removed by the conjugate base. The equilibrium shifts left removing most of the H⁺ ions. $H_2CO_{3(aq)} \xleftarrow{} H^{+}_{(aq)} + HCO_{3^{-}(aq)}$ (in the blood) \downarrow $H_2O + CO_2$ (By respiration expel more carbon dioxide)

3) Write the reaction between calcium chloride and sodium phosphate indicating its type

 $3CaCl_{2(aq)} + 2Na_3PO_{4(aq)} a 6NaCl_{(aq)} + Ca_3(PO_4)_2$

Type: double-displacement reaction

4) Compare between molecular and empirical formulae giving examples

Molecular formula: *it* shows the exact number of atoms of each element in the smallest unit of a substance e.g C₆H₁₂O₆

Empirical formula: *it* shows the simplest whole-number ratio of the atoms in a substance e.g CH₂O

<u>.....</u>

5) Define hydrogen bond giving an example for intramolecular type (draw the structure) Definition: it is the attraction between H in a molecule to an unshared pair

Definition: it is the attraction between H in a molecule to an unshared pair of **e**- of another molecule

example: methyl salicylate (muscle pain remedy) is a weak antibacterial agent due to the phenolic hydroxyl group of methyl is masked by intramolecular hydrogen bonding.

H3CC Methyl salicylate p-Hydroxybenzoate

Best wishes End of Exam

Answer sheet

<u> Model - 2</u>

<mark>Q</mark>	A	<mark>Q</mark>	A	Q	A
<mark>1</mark>	В	<mark>11</mark>	С	<mark>21</mark>	С
<mark>2</mark>	D	<mark>12</mark>	Α	<mark>22</mark>	С
<mark>3</mark>	С	<mark>13</mark>	В	<mark>23</mark>	D
<mark>4</mark>	D	<mark>14</mark>	В	<mark>24</mark>	В

<mark>5</mark>	В	<mark>15</mark>	С	<mark>25</mark>	D
<mark>6</mark>	D	<mark>16</mark>	D	<mark>26</mark>	С
<mark>7</mark>	С	<mark>17</mark>	Α	<mark>27</mark>	В
<mark>8</mark>	В	<mark>18</mark>	Α	<mark>28</mark>	С
<mark>9</mark>	D	<mark>19</mark>	В	<mark>29</mark>	В
<mark>10</mark>	С	<mark>20</mark>	D	<mark>30</mark>	D