
Creating Classes and Objects

7-2

/* For several lines */

• Every Java program consists of at least one class that you define.

• Java is case sensitive—uppercase.

• javac Welcome1.java
• javadoc Welcome1.java
• Class Welcome1 is public and should be declared in file named Welcome1.java

Starting point

Scope

7-3

Class Definition

A class is an encapsulated collection of data and methods to operate on the data. A

class definition, data and methods, serves as a blueprint that is used in the creation of

new objects of that class.

A class definition typically consists of:

Access modifier: Specifies the availability of the class from other classes

Class keyword: Indicates to Java that the following code block defines a class

Instance fields: Contain variables and constants that are used by objects of the class

Constructors: Are methods having the same name as the class, which are used to

control the initial state of any class object that is created

Instance methods: Define the functions that can act upon data in this class

Class fields: Contain variables and constants that belong to the class and are shared

by all objects of that class

Class methods: Are methods that are used to control the values of class fields

The order of the fields, constructors, and methods does not matter in Java. Ordering

the parts of a Java program consistently will, however, make your code easier to use,

debug, and share. The order listed in the slide is generally accepted.

static

static

7-4

Rental Class: Example

public class Rental {

//Class variable

 static int lateFee;

// Instance variables

 int rentalId;

 String rentalDate;

 float rentalAmountDue;

 …

 // Instance methods

 float getAmountDue (int rentId) {

 …

 }

 …

}

Declaration

Instance

variable

Instance

method

Access modifier

7-5

Using Java Classes

Packages

Methods Objects

Object

references
Attributes

Contained in a class

Java uses packages to group

classes that are logically related.

Packages consist of all the classes

in a subdirectory. They are also

used to control access from

programs outside of the package.

7-6

title: “Gone with…”

rating: “PG”

title: “Last Action…”

rating: “PG-13”

Comparing Classes and Objects

• An object is an
instance of a
class.

• Objects have
their own
memory.

• Class
definitions
must be loaded
to create
instances.

public void displayDetails()

private String title;

private String rating;

public void setRating()

Movie

mov1 mov2

7-7

Creating Objects

• Objects are typically created by using the new

operator:

• For example, to create two Movie objects:

Movie mov1 = new Movie("Gone ...");

Movie mov2 = new Movie("Last ...");

ClassName objectRef = new ClassName();

title: “Gone with…”

rating: “PG”

title: “Last Action…”

rating: “PG-13”

This statement creates an instance variable of the Movie type named mov1.

It then creates a new instance of Movie by using the new operator and assigns

the object reference to the mov1 instance variable.

It is important to remember that the new operator returns a reference to the

new object that points to the location of that object in memory.

7-8

Using the new Operator

The new operator performs the following actions:

• Allocates and initializes memory for the new

object

• Calls a special initialization method in the class,

called a constructor

• Returns a reference to the new object

Movie mov1 = new Movie("Gone with…");

mov1

(When instantiated)

title: “Gone with…”

rating: “PG”

7-9

Separating Variable Declaration from Object Creation

The declaration of an object reference and the creation of an
object are completely independent. In the previous examples,
these two parts were combined in a single statement:

Movie mov1 = new Movie();

However, you can achieve the same effect with two separate
statements, as follows:

Movie mov1; // Declare an object reference,

 // capable of referring to a Movie.

mov1 = new Movie(); // Create Movie object, and return the

 // reference to the mov1 variable.

Using the new Operator

7-10

Comparing Primitives and Objects

Primitive variables

hold a value.

int i;

int j = 3; Movie mov1 = new Movie();

Object variables

hold references.

title: null

rating: null

mov1

Movie mov1;

mov1

0

3

i

j

null

7-11

Using the null Reference

• A special null value may be assigned to an

object reference, but not to a primitive.

• You can compare object references to null.

• You can remove the association to an object by
setting the object reference to null.

Movie mov1; //Declare object reference

…

if (mov1 == null) //Ref not initialized?

 mov1 = new Movie(); //Create a Movie object

…

mov1 = null; //Forget the Movie object

7-12

Using the null Reference

Discarding an Object:

When you have finished using an object, you can set its object

reference to null. This indicates that the variable no longer

refers to the object.

When there are no more live references to an object, the object

will be marked for garbage collection.

The Java Virtual Machine (JVM) automatically decrements the

number of active references to an object whenever an object is

dereferenced, goes out of scope, or the stored reference is

replaced by another reference.

7-13

Assigning References

Assigning one reference to another results in two

references to the same object:

Movie mov1 = new Movie("Gone...");

mov1

Movie mov2 = mov1;

mov2

title: “Gone with…”

rating: “PG”

7-14

primitive types (gets special treatment) Types:
Primitive

type
Size

boolean —

char 16-bit

byte 8-bit

short 16-bit

int 32-bit

long 64-bit

float 32-bit

double 64-bit

void —

don’t change from
one machine

architecture to
another as they do
in most languages.

Primitive data types

7-15

primitive types (gets special treatment) Types:
Primitive

type

Size

boolean —

char 16-bit

byte 8-bit

short 16-bit

int 32-bit

long 64-bit

float 32-bit

double 64-bit

void —

All numeric types are signed,
 so don’t go looking for unsigned types.

The boolean type
take the literal values true or false.

Primitive data types

7-16

primitive types (gets special treatment) Types:
Primitive

type

Size

boolean —

char 16-bit

byte 8-bit

short 16-bit

int 32-bit

long 64-bit

float 32-bit

double 64-bit

void —

Wrapper
type

Boolean

Character

Byte

Short

Integer

Long

Float

Double

Void

The primitive
data types also
have classes for

them.

Character C = new Character('x');

Primitive data types

7-17

Variables can be given a default value. If no default value is given,

then the instance and class integer variables are set to 0.

7-18

7-19

Default constructors

A default constructor is one without arguments that is used to create a “basic object.”

If you create a class that has no constructors, the compiler will automatically create a default
constructor.

class Bird {
 int i;
}

public class DC {

 public static void main(String[] args) {

 Bird nc = new Bird(); // Default!

 }

}

7-20

If you define any constructors (with or without arguments), the compiler will not synthesize
one for you.

class Hat {
 Hat (int i) {}
 Hat (double d) {}
}

Default constructors

A default constructor is one without arguments that is used to create a “basic object.”

If you create a class that has no constructors, the compiler will automatically create a default
constructor.

new Hat ();

7-21

Defining and Overloading Constructors

public class Movie {

 private String title;

 private String rating = "PG";

 public Movie() {

 title = "Last Action …";

 }

 public Movie(String newTitle) {

 title = newTitle;

 }

}

Movie mov1 = new Movie();

Movie mov2 = new Movie("Gone …");

Movie mov3 = new Movie("The Good …");

The Movie class
now provides two
constructors.

Because each constructor must have the same name anyway, this

simply means that each constructor must have different numbers or

types of arguments.

7-22

Sharing Code Between Constructors

public class Movie {

 private String title;

 private String rating;

 public Movie() {

 this("G");

 }

 public Movie(String newRating) {

 rating = newRating;

 } }

A constructor can
call another
constructor by using
this().

Movie mov2 = new Movie();

What happens
here?

A constructor can call another constructor of the same class by using the this() syntax.

Syntax Rules

When one constructor calls another by using the this() syntax, there are a few rules of syntax

that you need to be aware of:

1. The call to this() must be the first statement in the constructor.

2. The arguments to this() must match those of the target constructor.

7-23

public class Flower {
 int petalCount = 0; String s = new String("null");
 Flower (int petals) { petalCount = petals;
 System.out.println("Constructor w/ int arg only, petalCount= " + petalCount);
 }
 Flower (String ss) {
 s = ss; System.out.println("Constructor w/ String arg only, s=" + ss);
 }
 Flower(String s, int petals) {
 this(petals);
//!this(s);//Can't call two!// the constructor call must be the first thing you do
 this.s = s; // Another use of "this"
 System.out.println("String & int args");
 }
 Flower() {
 this("hi", 47); System.out.println("default constructor (no args)");
 }
 void print() {
//! this(11); // Not inside non-constructor!
 System.out.println("petalCount = " + petalCount + " s = "+ s);
 }
 public static void main(String[] args) {
 Flower x = new Flower(); x.print(); } }

7-24

Initializing Variables

• Class variables can be initialized at declaration.

• Initialization takes place when the class is loaded.

• Use a static initializer block for complex initialization.

• All class variables are initialized implicitly to default

values depending on data type.

public class Movie {

 private static double minPrice = 1.29;

 private String title, rating;

 private int length = 0;

Do not initialize class variables in a constructor; constructors are for

initializing instance variables, not class variables.

7-25

Complex Initialization of Class Variables:

Complex initialization of class variables is performed in a static
initialization block, or static initializer.

A static initializer is not named, has no return value, and begins with
the static keyword, followed by a block of code inside braces.

It is similar to a constructor except that it executes only once and does
not depend on any instance of the class.

 public class Movie {
 private static double minPrice;
 static {

 Date todaysDate = new Date();
 minPrice = getMinPrice (todaysDate);
 }

}

Initializing Class Variables

7-26

class Spoon {
 static int i;
 static {
 i = 47;
 }
 // . . .

This code, like other static
initializations, is executed only
once: the first time you make an
object of that class or the first time
you access a static member of that
class (even if you never make an
object of that class).

7-27

class Tag {

 Tag (int marker) {

 System.out.println ("Tag(" + marker + ")"); }

}

class Card{

 Tag t1 = new Tag(1);

 Card() {

 System.out.println ("Card ()");

 t3 = new Tag(33);

 }

 Tag t2 = new Tag(2);

 void f() { System.out.println ("f()”) ; }

 Tag t3 = new Tag(3);

}

public class BM {

 public static void main(String[] args) {

 Card t = new Card();

 t.f(); } }

Result

Tag(1)

Tag(2)

Tag(3)

Card ()

Tag(33)

f()

7-28

class BBB {

 BBB (int marker) { System.out.println ("BBB(" + marker + ")"); }

 void f (int marker) { System.out.println ("f(" + marker + ")"); }

}

class aaa {

 static BBB b1 = new BBB(1);

 aaa() { System.out.println("aaa()"); b2.f(1); }

 void f2(int marker) { System.out.println("f2(" + marker + ")"); }

 static BBB b2 = new BBB(2);

}

class ccc{

 BBB b3 = new BBB(3); static BBB b4 = new BBB(4);

 ccc () { System.out.println("ccc()"); b4.f(2); }

 void f3(int marker) { System.out.println("f3(" + marker + ")"); }

 static BBB b5 = new BBB(5);

}

public class BM {

 public static void main(String[] args) {

 System.out.println("Creating new ccc() in main");

 new ccc(); System.out.println("Creating new ccc() in main");

 new ccc(); t2.f2(1); t3.f3(1);

 }

 static aaa t2 = new aaa();

 static ccc t3 = new ccc(); }

Result

BBB(1)

BBB(2)

aaa()

f(1)

BBB(4)

BBB(5)

BBB(3)

ccc()

f(2)

Creating new ccc() in main

BBB(3)

ccc()

f(2)

Creating new ccc() in main

BBB(3)

ccc()

f(2)

f2(1)

f3(1)

7-29

Passing Primitives into Methods

When a primitive or object reference value is passed

into a method, a copy of the value is generated:

public void aMethod(int arg) {

 if (arg < 0 || arg > 100)

 arg = 0;

 System.out.println("arg: " + arg);

}

int num = 150;

anObj.aMethod(num);

System.out.println("num: " + num);

arg

150

num

150

This example prints out the following messages:
 arg: 0

 num: 150

7-30

title: “Gone with…”
rating: “PG”

Passing Object References into Methods

When an object reference is passed into a method,

the object is not copied but the pointer to the object

is copied:

public void aMethod(Movie ref2) {

 ref2.setRating("R");

}

mov1

ref2

Movie mov1 =

new Movie("Gone…");

mov1.setRating("PG");

anObj.aMethod(mov1);

