


Learning Outcomes

By the end of the chapter student should be able: 

1- to define the center of mass of a system of particles.

2- to calculate the center of mass for two particles in different positions in one 
dimension. 

3- calculate the center of mass for many particles in one dimension. 

4- to calculate the center of mass for many particles in two and three dimension.

5- to identify Newton's second law for a system of particles.

6- to apply Newton's second law to a system of particles to calculate the acceleration 
of center of mass. 7- to define linear momentum and its unit. 8- to derive Newton's 
second law in terms of momentum.

9- to explain conservation of linear momentum. 

10- to apply conservation of momentum to solve problem. 





Q. What is the center of mass (COM)?



Q. Why do we study the center of mass (COM) of a system of 
particles?

A. We study the (COM) in order to predict the possible motion of 
the system.



When we study the motion we usually consider two kinds of 
systems

System contains one particle such 
as : ball – box - bead

System contains  more than one 
particle  such as : ballerina – car –
baseball bat

1. It’s motion is more 
complicated

2. Every part of the object 
moves differently

3. There are one point 
(COM) that moves in 
the simple parabolic 
path.

It’s motion is simple motion 
which we discussed before



Q. How do we find the center of mass (COM)?

1. System of two particles on x-axis 

or

Where  

and x1 , x2 are the position of particles 
m1 and m2 respectively from the origin



2. System of n particles along x- axis: 

3. System of n particles distributed in 3D: 

Rem: put x1 , x2 ....etc, with their signs 



(9-4)



(9-5)





9-4 Linear Momentum of a 

single particle

9-5 Linear Momentum of a 

system of particles



9-4 Linear Momentum of a single particle

• is a vector quantity same direction as velocity

• SI unit is 

Newton’s 2nd Law in terms of Momentum



9-5 Linear Momentum of a system of particles



Isolated: When the net 

external forces acting on a 

system of particles is zero

Closed: When no particles 

leave or enter the system

The system is said to be 

then 0

= 0 then



or



Rem:

Rem:        is a vector quantity and it has components, don’t forget signs when 

you deal with it’s components.  





HALLIDAY REVISED

9-1 W H AT  I S  P H YS I C S ?
Every mechanical engineer hired as an expert witness to reconstruct a

traffic accident uses physics. Every trainer who coaches a ballerina on how to
leap uses physics. Indeed, analyzing complicated motion of any sort requires sim-
plification via an understanding of physics. In this chapter we discuss how the
complicated motion of a system of objects, such as a car or a ballerina, can be
simplified if we determine a special point of the system—the center of mass of
that system.

Here is a quick example. If you toss a ball into the air without much spin on the
ball (Fig. 9-1a), its motion is simple—it follows a parabolic path, as we discussed in
Chapter 4, and the ball can be treated as a particle. If, instead, you flip a baseball bat
into the air (Fig. 9-1b), its motion is more complicated. Because every part of the bat
moves differently, along paths of many different shapes, you cannot represent the
bat as a particle. Instead, it is a system of particles each of which follows its own path
through the air. However, the bat has one special point—the center of mass—that
does move in a simple parabolic path. The other parts of the bat move around the
center of mass. (To locate the center of mass, balance the bat on an outstretched fin-
ger; the point is above your finger, on the bat’s central axis.)

You cannot make a career of flipping baseball bats into the air, but you can
make a career of advising long-jumpers or dancers on how to leap properly into
the air while either moving their arms and legs or rotating their torso. Your
starting point would be the person’s center of mass because of its simple motion.

9-2 The Center of Mass
We define the center of mass (com) of a system of particles (such as a person) in
order to predict the possible motion of the system.

C E N T E R  O F  M A S S
A N D  L I N E A R
M O M E N T U M 9

C H A P T E R

201

Fig. 9-1 (a) A ball tossed into the air
follows a parabolic path. (b) The center
of mass (black dot) of a baseball bat
flipped into the air follows a parabolic
path, but all other points of the bat fol-
low more complicated curved paths.
(a: Richard Megna/Fundamental
Photographs)

(a)

(b)The center of mass of a system of particles is the point that moves as though (1) all of the
system’s mass were concentrated there and (2) all external forces were applied there.

In this section we discuss how to determine where the center of mass of a system
of particles is located. We start with a system of only a few particles, and then we
consider a system of a great many particles (a solid body, such as a baseball bat).
Later in the chapter, we discuss how the center of mass of a system moves when
external forces act on the system.
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Systems of Particles
Figure 9-2a shows two particles of masses m1 and m2 separated by distance d.We have
arbitrarily chosen the origin of an x axis to coincide with the particle of mass m1. We
define the position of the center of mass (com) of this two-particle system to be

(9-1)

Suppose, as an example, that m2 ! 0. Then there is only one particle, of mass m1,
and the center of mass must lie at the position of that particle;Eq.9-1 dutifully reduces
to xcom ! 0. If m1 ! 0, there is again only one particle (of mass m2), and we have, as we
expect, xcom ! d. If m1 ! m2, the center of mass should be halfway between the two
particles; Eq. 9-1 reduces to again as we expect. Finally, Eq. 9-1 tells us that
if neither m1 nor m2 is zero, xcom can have only values that lie between zero and d; that
is, the center of mass must lie somewhere between the two particles.

Figure 9-2b shows a more generalized situation, in which the coordinate sys-
tem has been shifted leftward.The position of the center of mass is now defined

as (9-2)

Note that if we put x1 ! 0, then x2 becomes d and Eq. 9-2 reduces to Eq. 9-1, as
it must. Note also that in spite of the shift of the coordinate system, the center
of mass is still the same distance from each particle.

We can rewrite Eq. 9-2 as

(9-3)

in which M is the total mass of the system. (Here, M ! m1 " m2.) We can extend
this equation to a more general situation in which n particles are strung out along
the x axis.Then the total mass is M ! m1 " m2 " . . . " mn, and the location of the
center of mass is

(9-4)

The subscript i is an index that takes on all integer values from 1 to n.

 !
1
M

 !
n

i!1
 mi xi .

 xcom !
m1x1 " m2 x2 " m3x3 " # # # " mnxn

M

xcom !
m1x1 " m2x2

M
,

xcom !
m1x1 " m2x2

m1 " m2
.

xcom ! 1
2d,

xcom !
m2

m1 " m2
d.

Fig. 9-2 (a) Two particles of masses m1 and m2 are separated by distance d.The dot
labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The
same as (a) except that the origin is located farther from the particles.The position of the
center of mass is calculated from Eq. 9-2.The location of the center of mass with respect to
the particles is the same in both cases.

x

y

xcom

x1 d
com

m1 m2

x2

(b)

x

y

xcom

d
com

m1 m2

(a)

This is the center of mass
of the two-particle system.

Shifting the axis
does not change
the relative position
of the com.
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If the particles are distributed in three dimensions, the center of mass must
be identified by three coordinates. By extension of Eq. 9-4, they are

(9-5)

We can also define the center of mass with the language of vectors. First
recall that the position of a particle at coordinates xi, yi, and zi is given by a posi-
tion vector:

(9-6)

Here the index identifies the particle, and î, ĵ, and k̂ are unit vectors pointing,
respectively, in the positive direction of the x, y, and z axes. Similarly, the position
of the center of mass of a system of particles is given by a position vector:

(9-7)

The three scalar equations of Eq. 9-5 can now be replaced by a single vector
equation,

(9-8)

where again M is the total mass of the system. You can check that this equation
is correct by substituting Eqs. 9-6 and 9-7 into it, and then separating out the x,
y, and z components.The scalar relations of Eq. 9-5 result.

Solid Bodies
An ordinary object, such as a baseball bat, contains so many particles (atoms)
that we can best treat it as a continuous distribution of matter. The “particles”
then become differential mass elements dm, the sums of Eq. 9-5 become inte-
grals, and the coordinates of the center of mass are defined as

(9-9)

where M is now the mass of the object.
Evaluating these integrals for most common objects (such as a television set or

a moose) would be difficult, so here we consider only uniform objects. Such objects
have uniform density, or mass per unit volume; that is, the density r (Greek letter
rho) is the same for any given element of an object as for the whole object. From Eq.
1-8, we can write

(9-10)

where dV is the volume occupied by a mass element dm, and V is the total vol-
ume of the object. Substituting dm ! (M /V) dV from Eq. 9-10 into Eq. 9-9 gives

(9-11)

You can bypass one or more of these integrals if an object has a point, a line,
or a plane of symmetry. The center of mass of such an object then lies at that
point, on that line, or in that plane. For example, the center of mass of a uniform
sphere (which has a point of symmetry) is at the center of the sphere (which is
the point of symmetry). The center of mass of a uniform cone (whose axis is a
line of symmetry) lies on the axis of the cone. The center of mass of a banana

xcom !
1
V

 " x dV,  ycom !
1
V

 " y dV,  zcom !
1
V

 " z dV.

$ !
dm
dV

!
M
V

,

xcom !
1
M

 " x dm,    ycom !
1
M

 " y dm,    zcom !
1
M

 " z dm,

rcom
: !

1
M

 !
n

i!1
 miri

:,

rcom
: ! xcomî " ycomĵ " zcomk̂.

ri
: ! xi î " yi ĵ " zi k̂.

xcom !
1
M

 !
n

i!1
 mixi,    ycom !

1
M

 !
n

i!1
 miyi,    zcom !

1
M

 !
n

i!1
 mizi.
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Sample Problem

com of plate with missing piece

Figure 9-3a shows a uniform metal plate P of radius 2R from
which a disk of radius R has been stamped out (removed) in
an assembly line. The disk is shown in Fig. 9-3b. Using the xy
coordinate system shown, locate the center of mass comP of
the remaining plate.

KEY I DEAS

(1) Let us roughly locate the center of plate P by using sym-
metry. We note that the plate is symmetric about the x axis
(we get the portion below that axis by rotating the upper
portion about the axis). Thus, comP must be on the x axis.
The plate (with the disk removed) is not symmetric about
the y axis. However, because there is somewhat more mass
on the right of the y axis, comP must be somewhat to the
right of that axis. Thus, the location of comP should be
roughly as indicated in Fig. 9-3a. Our job here is to find the
actual value of that location.

(2) Plate P is an extended solid body, so in principle we
can use Eqs. 9-11 to find the actual coordinates of the center
of mass of plate P. Here we are simply looking for the xy co-
ordinates of the center of mass because the plate is thin and
uniform. If it had any appreciable thickness, we would just
say that the center of mass is midway across the thickness.
Still, even neglecting the width, using Eqs. 9-11 would be
challenging because we would need a function for the shape
of the plate with its hole, and then we would need to inte-
grate the function in two dimensions.

(3) Here is a much easier way: In working with centers
of mass, we can assume that the mass of a uniform object (as
we have here) is concentrated in a particle at the object’s
center of mass.Thus we can treat the object as a particle and
avoid any two-dimensional integration.

Calculations: First, put the stamped-out disk (call it disk
S) back into place (Fig. 9-3c) to form the original composite
plate (call it plate C). Because of its circular symmetry, the
center of mass comS for disk S is at the center of S, at x !
%R (as shown). Similarly, the center of mass comC for com-
posite plate C is at the center of C, at the origin (as shown).
We then have the following:

(which has a plane of symmetry that splits it into two equal parts) lies somewhere in
the plane of simmetry.

The center of mass of an object need not lie within the object. There is no
dough at the com of a doughnut, and no iron at the com of a horseshoe.

Center Location 
Plate of Mass of com Mass

P comP xP ! ? mP

S comS xS ! %R mS

C comC xC ! 0 mC ! mS " mP

Assume that mass mS of disk S is concentrated in a parti-
cle at xS ! %R, and mass mP is concentrated in a particle
at xP (Fig. 9-3d). Next treat these two particles as a two-
particle system, using Eq. 9-2 to find their center of mass
xS"P. We get

(9-12)

Next note that the combination of disk S and plate P is
composite plate C. Thus, the position xS"P of comS"P must
coincide with the position xC of comC, which is at the origin; so
xS"P ! xC ! 0. Substituting this into Eq. 9-12 and solving for
xP, we get

(9-13)

We can relate these masses to the face areas of S and P by
noting that

mass ! density & volume
! density & thickness & area.

Then

Because the plate is uniform, the densities and thicknesses
are equal; we are left with

Substituting this and xS ! %R into Eq. 9-13, we have

(Answer)xP ! 1
3R.

 !
'R2

'(2R)2 % 'R2 !
1
3

.

 
mS

mP
!

areaS

areaP
!

areaS

areaC % areaS

mS

mP
!

densityS

densityP
&

thicknessS

thicknessP
&

areaS

areaP
.

xP ! %xS 
mS

mP
.

xS"P !
mSxS " mPxP

mS " mP
.

Additional examples, video, and practice available at WileyPLUS
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The com of the composite
plate is the same as the
com of the two pieces.

Plate P

2R

R

y

x

y

y

x

comP

comC

comS

Disk S

Composite plate
       C = S + P

(a)

(b)

(c)

(d) x
comPcomCcomS

Disk particle Plate particle

Assume the plate's
mass is concentrated
as a particle at the
plate's center of mass.

Here too, assume the
mass is concentrated
as a particle at the
center of mass.

Here too.

Here are those
three particles.

Fig. 9-3 (a) Plate P is a metal plate of
radius 2R,with a circular hole of radius R.
The center of mass of P is at point comP.
(b) Disk S. (c) Disk S has been put back
into place to form a composite plate C.
The center of mass comS of disk S and the
center of mass comC of plate C are shown.
(d) The center of mass comS"P of the com-
bination of S and P coincides with comC,
which is at x ! 0.

A
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9-3 Newton’s Second Law for a System of Particles
Now that we know how to locate the center of mass of a system of particles, we
discuss how external forces can move a center of mass. Let us start with a simple
system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the
two-ball system will continue to have some forward motion after impact. You
would be surprised, for example, if both balls came back toward you or if both
moved to the right or to the left.

What continues to move forward, its steady motion completely unaffected by
the collision, is the center of mass of the two-ball system. If you focus on this
point—which is always halfway between these bodies because they have identi-

CHECKPOINT 1

The figure shows a uniform square plate from which four identical squares at the cor-
ners will be removed. (a) Where is the center of mass of the plate originally? Where is it
after the removal of (b) square 1; (c) squares 1 and 2; (d) squares 1 and 3; (e) squares 1,
2, and 3; (f) all four squares? Answer in terms of quadrants, axes, or points (without cal-
culation, of course).

y

x

1 2

4 3

Sample Problem

origin and the x axis coincides with one of the triangle’s
sides (Fig. 9-4). The three particles then have the following
coordinates:

Particle Mass (kg) x (cm) y (cm)

1 1.2 0 0
2 2.5 140 0
3 3.4 70 120

The total mass M of the system is 7.1 kg.
From Eq. 9-5, the coordinates of the center of mass are

(Answer)

and

(Answer)
In Fig. 9-4, the center of mass is located by the position vec-
tor , which has components xcom and ycom.r:com

! 58 cm.

!
(1.2 kg)(0) " (2.5 kg)(0) " (3.4 kg)(120 cm)

7.1 kg

 ycom !
1
M

 !
3

i!1
 miyi !

m1y1 " m2y2 " m3y3

M

 ! 83 cm

 !
(1.2 kg)(0) " (2.5 kg)(140 cm) " (3.4 kg)(70 cm)

7.1 kg

 xcom !
1
M

 !
3

i!1
 mixi !

m1x1 " m2x2 " m3x3

M

Additional examples, video, and practice available at WileyPLUS

com of three particles

Three particles of masses m1 ! 1.2 kg, m2 ! 2.5 kg, and
m3 ! 3.4 kg form an equilateral triangle of edge length
a ! 140 cm.Where is the center of mass of this system?

KEY I DEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the

Fig. 9-4 Three particles form an equilateral triangle of edge
length a.The center of mass is located by the position vector .r:com

y 

x 0 
50 100 150 

50 

100 

150 

ycom 

xcom m1 

m2 

m3 

rcom 

a a 

0 

This is the position
vector rcom for the
com (it points from
the origin to the com).
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cal masses—you can easily convince yourself by trial at a billiard table that this is
so. No matter whether the collision is glancing, head-on, or somewhere in
between, the center of mass continues to move forward, as if the collision had
never occurred. Let us look into this center-of-mass motion in more detail.

To do so, we replace the pair of billiard balls with an assemblage of n particles
of (possibly) different masses. We are interested not in the individual motions of
these particles but only in the motion of the center of mass of the assemblage.
Although the center of mass is just a point, it moves like a particle whose mass is
equal to the total mass of the system; we can assign a position, a velocity, and an ac-
celeration to it. We state (and shall prove next) that the vector equation that gov-
erns the motion of the center of mass of such a system of particles is

(system of particles). (9-14)

This equation is Newton’s second law for the motion of the center of mass of
a system of particles. Note that its form is the same as the form of the equation

for the motion of a single particle. However, the three quantities that
appear in Eq. 9-14 must be evaluated with some care:

1. is the net force of all external forces that act on the system. Forces on one
part of the system from another part of the system (internal forces) are not in-
cluded in Eq. 9-14.

2. M is the total mass of the system. We assume that no mass enters or leaves the
system as it moves, so that M remains constant. The system is said to be closed.

3. is the acceleration of the center of mass of the system. Equation 9-14 gives
no information about the acceleration of any other point of the system.

Equation 9-14 is equivalent to three equations involving the components of
and along the three coordinate axes.These equations are

Fnet, x ! Macom, x Fnet, y ! Macom, y Fnet, z ! Macom, z. (9-15)

Now we can go back and examine the behavior of the billiard balls. Once 
the cue ball has begun to roll, no net external force acts on the (two-ball) system.
Thus, because ! 0, Eq. 9-14 tells us that ! 0 also. Because accelera-
tion is the rate of change of velocity, we conclude that the velocity of the center of
mass of the system of two balls does not change. When the two balls collide, the
forces that come into play are internal forces, on one ball from the other. Such forces
do not contribute to the net force , which remains zero.Thus, the center of mass
of the system, which was moving forward before the collision, must continue to
move forward after the collision, with the same speed and in the same direction.

Equation 9-14 applies not only to a system of particles but also to a solid
body, such as the bat of Fig. 9-1b. In that case, M in Eq. 9-14 is the mass of the bat
and is the gravitational force on the bat. Equation 9-14 then tells us that

In other words, the center of mass of the bat moves as if the bat were a
single particle of mass M, with force acting on it.

Figure 9-5 shows another interesting case. Suppose that at a fireworks display, a
rocket is launched on a parabolic path. At a certain point, it explodes into frag-
ments. If the explosion had not occurred, the rocket would have continued along
the trajectory shown in the figure. The forces of the explosion are internal to the
system (at first the system is just the rocket, and later it is its fragments); that is, they
are forces on parts of the system from other parts. If we ignore air drag, the net ex-
ternal force acting on the system is the gravitational force on the system, re-
gardless of whether the rocket explodes. Thus, from Eq. 9-14, the acceleration 
of the center of mass of the fragments (while they are in flight) remains equal to 
This means that the center of mass of the fragments follows the same parabolic tra-
jectory that the rocket would have followed had it not exploded.

g:.
a:com

F
:

net

F
:

g

a:com ! g:.
F
:

net

F
:

net

a:comF
:

net

a:comF
:

net

a:com

F
:

net

(Fnet
:

! ma:)

F
:

net ! Ma:com
Fig. 9-5 A fireworks rocket explodes in
flight. In the absence of air drag, the center
of mass of the fragments would continue to
follow the original parabolic path, until
fragments began to hit the ground.

The internal forces of the
explosion cannot change
the path of the com.
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Fig. 9-6 A grand
jeté. (Adapted from
The Physics of
Dance, by Kenneth
Laws, Schirmer
Books, 1984.)
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When a ballet dancer leaps across the stage in a grand jeté, she raises her arms
and stretches her legs out horizontally as soon as her feet leave the stage (Fig. 9-6).
These actions shift her center of mass upward through her body.Although the shift-
ing center of mass faithfully follows a parabolic path across the stage, its movement
relative to the body decreases the height that is attained by her head and torso, rel-
ative to that of a normal jump.The result is that the head and torso follow a nearly
horizontal path, giving an illusion that the dancer is floating.

Proof of Equation 9-14
Now let us prove this important equation. From Eq. 9-8 we have, for a system of n
particles,

(9-16)

in which M is the system’s total mass and is the vector locating the position of
the system’s center of mass.

Differentiating Eq. 9-16 with respect to time gives

(9-17)

Here is the velocity of the ith particle, and is the
velocity of the center of mass.

Differentiating Eq. 9-17 with respect to time leads to

(9-18)

Here is the acceleration of the ith particle, and is
the acceleration of the center of mass. Although the center of mass is just a geo-
metrical point, it has a position, a velocity, and an acceleration, as if it were a particle.

From Newton’s second law, is equal to the resultant force that acts on
the ith particle.Thus, we can rewrite Eq. 9-18 as

(9-19)

Among the forces that contribute to the right side of Eq. 9-19 will be forces that
the particles of the system exert on each other (internal forces) and forces
exerted on the particles from outside the system (external forces). By Newton’s
third law, the internal forces form third-law force pairs and cancel out in the sum
that appears on the right side of Eq. 9-19. What remains is the vector sum of
all the external forces that act on the system. Equation 9-19 then reduces to
Eq. 9-14, the relation that we set out to prove.

Ma:com ! F1
:

" F2
:

" F3
:

" # # # " Fn
:

.

Fi
:

miai
:

a:com (! d v:com /dt)a:i (! d v:i/dt)

Ma:com ! m1a1
: " m2a2

: " m3a3
: " # # # " mnan

: .

v:com (! d r:com/dt)vi
: 

(! d ri
: /dt)

Mv:com ! m1v1
: " m2v2

: " m3v3
: " # # # " mnvn

: .

rcom
:

M r:com ! m1r1
: " m2r2

: " m3r3
: " # # # " mnrn

: ,

halliday_c09_201-240v2.qxd  4-09-2009  17:13  Page 208



2099-3 N EWTON’S S ECON D LAW FOR A SYSTE M OF PARTICLE S
PART 1

HALLIDAY REVISED

Sample Problem

We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
to the center of mass, writing

(9-20)

or

so (9-21)

Equation 9-20 tells us that the acceleration of the 
center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
component form, find the components of and then find

Along the x axis, we have

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)
and the angle (from the positive direction of the x axis)

(Answer)( ! tan%1 
acom, y

acom, x
! 27).

 ! 1.16 m/s2 # 1.2 m/s2

 acom ! 2(acom, x)2 " (acom, y)2

a:com

 !
0 " (12 N) sin 45) " 0

16 kg
! 0.530 m/s2.

 acom, y !
F1y " F2y " F3y

M

 !
%6.0 N " (12 N) cos 45) " 14 N

16 kg
! 1.03 m/s2.

 acom, x !
F1x " F2x " F3x

M

a:com.
a:com,

F
:

net.a:com

F
:

net

a:com

a:com !
F1
:

" F2
:

" F3
:

M
.

F1
:

" F2
:

" F3
:

! Ma:com

F
:

net ! Ma:com

(F
:

net ! ma:)

Additional examples, video, and practice available at WileyPLUS

Motion of the com of three particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 ! 6.0 N, F2 ! 12 N, and F3 ! 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY I DEAS

The position of the center of mass is marked by a dot in the
figure.We can treat the center of mass as if it were a real parti-
cle, with a mass equal to the system’s total mass M ! 16 kg.

CHECKPOINT 2

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Fig. 9-7 (a) Three particles, initially at rest in the positions
shown, are acted on by the external forces shown.The center of
mass (com) of the system is marked. (b) The forces are now trans-
ferred to the center of mass of the system, which behaves like a
particle with a mass M equal to the total mass of the system.The
net external force and the acceleration of the center of
mass are shown.

a:com F
:

net

x 

y 

3 

2 

1 

0 

 –1 

 –2 

 –3 

–3    –2     –1             1      2       3      4      5 

x 

y 

3 

2 

1 

0 
–3    –2     –1             1      2       3      4      5 

45° 

8.0 kg com 

4.0 kg 

4.0 kg 

com 
θ 

M = 16 kg 

(b) 

(a) 

F1 F2 

F3 

F3 

F1 

F2 Fnet 

acom 

The com of the system
will move as if all the
mass were there and
the net force acted there.
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9-4 Linear Momentum
In this section, we discuss only a single particle instead of a system of particles, in
order to define two important quantities.Then in Section 9-5, we extend those de-
finitions to systems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is
often dropped, but it serves to distinguish from angular momentum, which is in-
troduced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction.
From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second
(kg # m/s).

Newton expressed his second law of motion in terms of momentum:

v:p:

p:
v:

p: ! mv:

p:

The time rate of change of the momentum of a particle is equal to the net force 
acting on the particle and is in the direction of that force.

In equation form this becomes

(9-23)

In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Section 9-7, this last fact can be an extremely power-
ful tool in solving problems.

Manipulating Eq. 9-23 by substituting for from Eq. 9-22 gives, for constant
mass m,

Thus, the relations and are equivalent expressions of
Newton’s second law of motion for a particle.

F
:

net ! ma:F
:

net ! dp:/dt

F
:

net !
dp:

dt
!

d
dt

 (mv:) ! m 
dv:

dt
! ma:.

p:

p:
p:.

F
:

net

F
:

net !
dp:

dt
.

CHECKPOINT 3

The figure gives the magnitude p of the linear momentum versus time t for a particle mov-
ing along an axis.A force directed along the axis acts on the particle. (a) Rank the four re-
gions indicated according to the magnitude of the force, greatest first. (b) In which region
is the particle slowing?

p 

t 

1 

2 

3 

4 

halliday_c09_201-240v2.qxd  4-09-2009  17:13  Page 210



2119-6 COLLI S ION AN D I M PU LS E
PART 1

HALLIDAY REVISED

9-5 The Linear Momentum of a System of Particles
Let’s extend the definition of linear momentum to a system of particles. Consider
a system of n particles, each with its own mass, velocity, and linear momentum.
The particles may interact with each other, and external forces may act on them.
The system as a whole has a total linear momentum which is defined to be the
vector sum of the individual particles’ linear momenta.Thus,

(9-24)

If we compare this equation with Eq. 9-17, we see that

(linear momentum, system of particles), (9-25)

which is another way to define the linear momentum of a system of particles:

P
:

! Mv:com

 ! m1v:1 " m2v:2 " m3v:3 " # # # " mnv:n.
 P

:
! p:1 " p:2 " p:3 " # # # " p:n

P
:

,

The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

If we take the time derivative of Eq. 9-25, we find

(9-26)

Comparing Eqs. 9-14 and 9-26 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form

(system of particles), (9-27)

where is the net external force acting on the system. This equation is the gen-
eralization of the single-particle equation to a system of many 
particles. In words, the equation says that the net external force on a system
of particles changes the linear momentum of the system. Conversely, the linear
momentum can be changed only by a net external force. If there is no net exter-
nal force, cannot change.

9-6 Collision and Impulse
The momentum of any particle-like body cannot change unless a net
external force changes it. For example, we could push on the body to change its
momentum. More dramatically, we could arrange for the body to collide with a
baseball bat. In such a collision (or crash), the external force on the body is brief,
has large magnitude, and suddenly changes the body’s momentum. Collisions oc-
cur commonly in our world, but before we get to them, we need to consider a sim-
ple collision in which a moving particle-like body (a projectile) collides with some
other body (a target).

Single Collision
Let the projectile be a ball and the target be a bat.The collision is brief, and the ball
experiences a force that is great enough to slow, stop, or even reverse its motion.
Figure 9-8 depicts the collision at one instant. The ball experiences a force thatF

:
(t)

p:

P
:

P
:

F
:

net

F
:

net ! dp:/dt
F
:

net

F
:

net !
dP

:

dt

dP
:

dt
! M 

dv:com

dt
! Ma:com.

The collision of a ball with a bat collapses
part of the ball. (Photo by Harold E.
Edgerton. ©The Harold and Esther
Edgerton Family Trust, courtesy of Palm
Press, Inc.)

Fig. 9-8 Force acts on a ball
as the ball and a bat collide.

F
:

(t)

x

Bat Ball

F (t)
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varies during the collision and changes the linear momentum of the ball. That
change is related to the force by Newton’s second law written in the form 
Thus, in time interval dt, the change in the ball’s momentum is

(9-28)

We can find the net change in the ball’s momentum due to the collision if we inte-
grate both sides of Eq. 9-28 from a time ti just before the collision to a time tf just
after the collision:

(9-29)

The left side of this equation gives us the change in momentum:
The right side, which is a measure of both the magnitude and the duration of the
collision force, is called the impulse of the collision:

(impulse defined). (9-30)

Thus, the change in an object’s momentum is equal to the impulse on the object:

(linear momentum–impulse theorem). (9-31)

This expression can also be written in the vector form

(9-32)

and in such component forms as

*px ! Jx (9-33)

and (9-34)

If we have a function for we can evaluate (and thus the change in 
momentum) by integrating the function. If we have a plot of versus time t, we
can evaluate by finding the area between the curve and the t axis, such as in Fig.
9-9a. In many situations we do not know how the force varies with time but we do
know the average magnitude Favg of the force and the duration *t (! tf % ti) of
the collision.Then we can write the magnitude of the impulse as

J ! Favg *t. (9-35)

The average force is plotted versus time as in Fig. 9-9b. The area under that curve
is equal to the area under the curve for the actual force F(t) in Fig. 9-9a because
both areas are equal to impulse magnitude J.

Instead of the ball, we could have focused on the bat in Fig. 9-8. At any
instant, Newton’s third law tells us that the force on the bat has the same
magnitude but the opposite direction as the force on the ball. From Eq. 9-30, this
means that the impulse on the bat has the same magnitude but the opposite
direction as the impulse on the ball.

J
:

F
:

J
:

F
:

(t),

pfx % pix ! "tf

ti

 Fx dt.

p:f % p:i ! J
:

*p: ! J
:

J
:

! "tf

ti

  F
:

(t) dt

J
:

p:f % p:i ! *p:.

"tf

ti

 dp: ! "tf

ti

 F
:
(t) dt.

dp: ! F
:

(t) dt.

F
:

! dp:/dt.
p:

Fig. 9-9 (a) The curve shows the magni-
tude of the time-varying force F(t) that acts
on the ball in the collision of Fig. 9-8.The
area under the curve is equal to the magni-
tude of the impulse on the ball in the colli-
sion. (b) The height of the rectangle repre-
sents the average force Favg acting on the ball
over the time interval *t.The area within the
rectangle is equal to the area under the curve
in (a) and thus is also equal to the magnitude
of the impulse in the collision.J

:

J
:

ti 

F 

J 
F(t) 

tf 
∆t 

∆t 

t 

ti 

F 

Favg 

tf 

t 

J 

(a) 

(b) 

The impulse in the collision
is equal to the area under
the curve.

The average force gives
the same area under the
curve.

CHECKPOINT 4
A paratrooper whose chute fails to open lands in snow; he is hurt slightly. Had he landed
on bare ground, the stopping time would have been 10 times shorter and the collision
lethal. Does the presence of the snow increase, decrease, or leave unchanged the values
of (a) the paratrooper’s change in momentum, (b) the impulse stopping the paratrooper,
and (c) the force stopping the paratrooper?
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Series of Collisions
Now let’s consider the force on a body when it undergoes a series of identical, re-
peated collisions. For example, as a prank, we might adjust one of those machines
that fire tennis balls to fire them at a rapid rate directly at a wall. Each collision
would produce a force on the wall, but that is not the force we are seeking. We
want the average force Favg on the wall during the bombardment—that is, the av-
erage force during a large number of collisions.

In Fig. 9-10, a steady stream of projectile bodies, with identical mass m and
linear momenta moves along an x axis and collides with a target body that is
fixed in place. Let n be the number of projectiles that collide in a time interval *t.
Because the motion is along only the x axis, we can use the components of the
momenta along that axis. Thus, each projectile has initial momentum mv and
undergoes a change *p in linear momentum because of the collision. The total
change in linear momentum for n projectiles during interval *t is n *p. The
resulting impulse on the target during *t is along the x axis and has the same
magnitude of n *p but is in the opposite direction. We can write this relation in
component form as

J ! %n *p, (9-36)

where the minus sign indicates that J and *p have opposite directions.
By rearranging Eq. 9-35 and substituting Eq. 9-36, we find the average force

Favg acting on the target during the collisions:

(9-37)

This equation gives us Favg in terms of n/*t, the rate at which the projectiles
collide with the target, and *v, the change in the velocity of those projectiles.

If the projectiles stop upon impact, then in Eq. 9-37 we can substitute, for *v,

*v ! vf % vi ! 0 % v ! %v, (9-38)

where vi (! v) and vf (! 0) are the velocities before and after the collision,
respectively. If, instead, the projectiles bounce (rebound) directly backward from
the target with no change in speed, then vf ! %v and we can substitute

*v ! vf % vi ! %v % v ! %2v. (9-39)

In time interval *t, an amount of mass *m ! nm collides with the target.
With this result, we can rewrite Eq. 9-37 as

(9-40)

This equation gives the average force Favg in terms of *m/*t, the rate at which
mass collides with the target. Here again we can substitute for *v from Eq. 9-38
or 9-39 depending on what the projectiles do.

Favg ! %
*m
*t

 *v.

Favg !
J

*t
! %

n
*t

 *p ! %
n
*t

 m *v.

J
:

mv:,

Fig. 9-10 A steady stream of projectiles,
with identical linear momenta, collides with
a target, which is fixed in place.The average
force Favg on the target is to the right and
has a magnitude that depends on the rate at
which the projectiles collide with the target
or, equivalently, the rate at which mass col-
lides with the target.

xTarget

v

Projectiles

CHECKPOINT 5

The figure shows an overhead view of a ball bounc-
ing from a vertical wall without any change in its
speed. Consider the change in the ball’s linear
momentum. (a) Is *px positive, negative, or zero?
(b) Is *py positive, negative, or zero? (c) What is the
direction of ?*p:

*p:

θ θ 

y 

x 
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Sample Problem

Additional examples, video, and practice available at WileyPLUS

Two-dimensional impulse, race car–wall collision

Figure 9-11a is an overhead view of
the path taken by a race car driver as his car collides with the
racetrack wall. Just before the collision, he is traveling at
speed vi ! 70 m/s along a straight line at 30° from the wall.
Just after the collision, he is traveling at speed vf ! 50 m/s
along a straight line at 10° from the wall. His mass m is 80 kg.

(a) What is the impulse on the driver due to the collision?

KEY I DEAS

We can treat the driver as a particle-like body and thus apply
the physics of this section. However, we cannot calculate di-
rectly from Eq. 9-30 because we do not know anything about
the force on the driver during the collision.That is, we do
not have a function of or a plot for it and thus cannot
integrate to find . However, we can find from the change in
the driver’s linear momentum via Eq. 9-32 .

Calculations: Figure 9-11b shows the driver’s momentum 
before the collision (at angle 30° from the positive x direc-
tion) and his momentum after the collision (at angle 10°).
From Eqs. 9-32 and 9-22 , we can write

(9-41)

We could evaluate the right side of this equation directly on
a vector-capable calculator because we know m is 80 kg,
is 50 m/s at %10°, and is 70 m/s at 30°. Instead, here we
evaluate Eq. 9-41 in component form.

x component: Along the x axis we have

Jx ! m(vfx % vix)

! (80 kg)[(50 m/s) cos(%10°) % (70 m/s) cos 30°]

! %910 kg # m/s.

y component: Along the y axis,

Jy ! m(vfy % viy)

! (80 kg)[(50 m/s) sin(%10°) % (70 m/s) sin 30°]

! %3495 kg # m/s # %3500 kg # m/s.

v:i

v:f

J
:

! p:f % p:i ! mv:f % mvi
: ! m(v:f % v:i).

mv:)( p: !
%p:f

p:i

( J
:

! p:f % p:i)p:
J
:

J
:

F
:

(t)
F
:

(t)

J
:

J
:

Race car–wall collision.

Wall 

x 

y 

30° 
10° 

30° 

Path 

(a) 

x 

y 

10° 

(b) 

pi 

pf –105°
x

y

(c)

Jy

Jx

J

The impulse on the car 
is equal to the change 
in the momentum.

The collision 
changes the 
momentum.

Fig. 9-11 (a) Overhead
view of the path taken by a
race car and its driver as the
car slams into the racetrack
wall. (b) The initial momen-
tum and final momen-
tum of the driver. (c) The
impulse on the driver
during the collision.

J
:

p:
f

p:i

Impulse: The impulse is then

(Answer)

which means the impulse magnitude is

The angle of is given by
(Answer)

which a calculator evaluates as 75.4°. Recall that the physi-
cally correct result of an inverse tangent might be the
displayed answer plus 180°. We can tell which is correct here
by drawing the components of (Fig. 9-11c). We find that u
is actually 75.4° " 180° ! 255.4°, which we can write as

u ! %105°. (Answer)

(b) The collision lasts for 14 ms. What is the magnitude of
the average force on the driver during the collision?

KEY I DEA

From Eq. 9-35 (J ! Favg *t), the magnitude Favg of the aver-
age force is the ratio of the impulse magnitude J to the dura-
tion *t of the collision.

Calculations: We have

. (Answer)

Using F ! ma with m ! 80 kg, you can show that the magni-
tude of the driver’s average acceleration during the collision
is about 3.22 & 103 m/s2 ! 329g, which is fatal.

Surviving: Mechanical engineers attempt to reduce the
chances of a fatality by designing and building racetrack
walls with more “give,” so that a collision lasts longer. For
example, if the collision here lasted 10 times longer and the
other data remained the same, the magnitudes of the aver-
age force and average acceleration would be 10 times less
and probably survivable.

! 2.583 & 105 N # 2.6 & 105 N

Favg !
J

*t
!

3616 kg #m/s
0.014 s

J
:

( ! tan%1 
Jy

Jx
,

J
:

J ! √J x
2 " J y

2 ! 3616 kg #m/s # 3600 kg #m/s.

 J
:

! (%910î % 3500 ĵ) kg #m/s,
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9-7 Conservation of Linear Momentum
Suppose that the net external force (and thus the net impulse ) acting on a
system of particles is zero (the system is isolated) and that no particles leave or
enter the system (the system is closed). Putting in Eq. 9-27 then yields

, or

(closed, isolated system). (9-42)

In words,

P
:

! constant

dP
:

/dt ! 0
F
:

net ! 0

J
:

F
:

net

This result is called the law of conservation of linear momentum. It can also be
written as

(closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

.

Caution: Momentum should not be confused with energy. In the sample prob-
lems of this section, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,

$total linear momentum
at some initial time ti

% ! $total linear momentum
at some later time tf %

P
:

i ! P
:

f

If no net external force acts on a system of particles, the total linear momentum of
the system cannot change.

P
:

If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

As an example, suppose that you toss a grapefruit across a room. During its
flight, the only external force acting on the grapefruit (which we take as the
system) is the gravitational force , which is directed vertically downward. Thus,
the vertical component of the linear momentum of the grapefruit changes,
but since no horizontal external force acts on the grapefruit, the horizontal
component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system.
Although internal forces can change the linear momentum of portions of the sys-
tem, they cannot change the total linear momentum of the entire system.

The sample problems in this section involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along
a single axis) or two-dimensional (meaning that they are in a plane containing
two axes). In the following sections we consider collisions.

F
:

g

CHECKPOINT 6

An initially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the
second piece move at an angle to the x axis? (c) What is the direction of the momentum
of the second piece?
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where the subscripts i and f refer to values before and after
the ejection, respectively.

Calculations: Because the motion is along a single axis, we
can write momenta and velocities in terms of their x compo-
nents, using a sign to indicate direction. Before the ejection,
we have

Pi ! Mvi. (9-45)

Let vMS be the velocity of the ejected module relative to the
Sun.The total linear momentum of the system after the ejec-
tion is then

Pf ! (0.20M)vMS " (0.80M)vHS, (9-46)

where the first term on the right is the linear momentum of the
module and the second term is that of the hauler.

We do not know the velocity vMS of the module relative
to the Sun, but we can relate it to the known velocities with

.

In symbols, this gives us
vHS ! vrel " vMS (9-47)

or vMS ! vHS % vrel.

Substituting this expression for vMS into Eq. 9-46, and then
substituting Eqs. 9-45 and 9-46 into Eq. 9-44, we find

Mvi ! 0.20M(vHS % vrel) " 0.80MvHS,

which gives us
vHS ! vi " 0.20vrel,

or vHS ! 2100 km/h " (0.20)(500 km/h)

! 2200 km/h. (Answer)

$ velocity of
hauler relative

to Sun % ! $ velocity of
hauler relative

to module % " $ velocity of
module relative

to Sun %

One-dimensional explosion, relative velocity, space hauler

One-dimensional explosion: Figure 9-12a shows a space hauler
and cargo module, of total mass M, traveling along an x axis in
deep space. They have an initial velocity of magnitude 2100
km/h relative to the Sun. With a small explosion, the hauler
ejects the cargo module, of mass 0.20M (Fig. 9-12b).The hauler
then travels 500 km/h faster than the module along the x axis;
that is, the relative speed vrel between the hauler and the mod-
ule is 500 km/h.What then is the velocity of the hauler rela-
tive to the Sun?

KEY I DEA

Because the hauler–module system is closed and isolated,
its total linear momentum is conserved; that is,

, (9-44)P
:

i ! P
:

f

v:HS

v:i

Sample Problem

Sample Problem

system, and (3) no net external force acts on the system.
Therefore, the linear momentum of the system is conserved.

Calculations: To get started, we superimpose an xy coordi-
nate system as shown in Fig. 9-13b, with the negative direction
of the x axis coinciding with the direction of The x axis is at
80° with the direction of and 50° with the direction of .

Linear momentum is conserved separately along each
axis. Let’s use the y axis and write

Piy ! Pfy, (9-48)

where subscript i refers to the initial value (before the explo-
sion), and subscript y refers to the y component of or .Pf

:
Pi
:

v:f Bv:f C

v:fA.

Two-dimensional explosion, momentum, coconut

Two-dimensional explosion: A firecracker placed inside a
coconut of mass M, initially at rest on a frictionless floor,
blows the coconut into three pieces that slide across the floor.
An overhead view is shown in Fig. 9-13a. Piece C, with mass
0.30M, has final speed vf C ! 5.0 m/s.

(a) What is the speed of piece B, with mass 0.20M?

KEY I DEA

First we need to see whether linear momentum is con-
served. We note that (1) the coconut and its pieces form a
closed system, (2) the explosion forces are internal to that

Fig. 9-12 (a) A space hauler, with a cargo module, moving at
initial velocity (b) The hauler has ejected the cargo module.
Now the velocities relative to the Sun are for the module and

for the hauler.v:HS

v:MS

v:i.

(a) (b) 

Cargo module 

Hauler 
0.20M 

vMS vHS vi 

0.80M 

x x 

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.
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Additional examples, video, and practice available at WileyPLUS

A 

B

C 

vfB

vfCvfA

100° 

130° 

(a) 

B 

C 

vfB

vfC
vfA

80° 

(b) 

x

y

50° 

A 

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.

Fig. 9-13 Three pieces of an exploded coconut move off in three
directions along a frictionless floor. (a) An overhead view of the
event. (b) The same with a two-dimensional axis system imposed.

The component Piy of the initial linear momentum is
zero, because the coconut is initially at rest. To get an ex-
pression for Pfy, we find the y component of the final linear
momentum of each piece, using the y-component version of
Eq. 9-22 ( py ! mvy):

pfA,y ! 0,

pfB,y ! %0.20MvfB,y ! %0.20MvfB sin 50°,

pfC,y ! 0.30Mvf C,y ! 0.30Mvf C sin 80°.

(Note that pfA,y ! 0 because of our choice of axes.)
Equation 9-48 can now be written as

Piy ! Pfy ! pfA,y " pfB,y " pfC,y.

Then, with vfC ! 5.0 m/s, we have

0 ! 0 % 0.20MvfB sin 50° " (0.30M)(5.0 m/s) sin 80°,

from which we find

vfB ! 9.64 m/s # 9.6 m/s. (Answer)

(b) What is the speed of piece A?

Calculations: Because linear momentum is also conserved
along the x axis, we have

Pix ! Pfx, (9-49)

where Pix ! 0 because the coconut is initially at rest. To
get Pfx, we find the x components of the final momenta,
using the fact that piece A must have a mass of 0.50M
(! M % 0.20M % 0.30M):

pfA,x ! %0.50MvfA,

pfB,x ! 0.20MvfB,x ! 0.20MvfB cos 50°,

pfC,x ! 0.30Mvf C,x ! 0.30Mvf C cos 80°.

Equation 9-49 can now be written as

Pix ! Pfx ! pfA,x " pfB,x " pf C,x.

Then, with vfC ! 5.0 m/s and vfB ! 9.64 m/s, we have

0 ! %0.50MvfA " 0.20M(9.64 m/s) cos 50°

" 0.30M(5.0 m/s) cos 80°,

from which we find

vfA ! 3.0 m/s. (Answer)

9-8 Momentum and Kinetic Energy in Collisions
In Section 9-6, we considered the collision of two particle-like bodies but focused
on only one of the bodies at a time. For the next several sections we switch our fo-
cus to the system itself, with the assumption that the system is closed and isolated.
In Section 9-7, we discussed a rule about such a system: The total linear momen-
tum of the system cannot change because there is no net external force to
change it.This is a very powerful rule because it can allow us to determine the re-
sults of a collision without knowing the details of the collision (such as how much
damage is done).

We shall also be interested in the total kinetic energy of a system of two col-
liding bodies. If that total happens to be unchanged by the collision, then the
kinetic energy of the system is conserved (it is the same before and after the
collision). Such a collision is called an elastic collision. In everyday collisions of
common bodies, such as two cars or a ball and a bat, some energy is always trans-
ferred from kinetic energy to other forms of energy, such as thermal energy or en-
ergy of sound. Thus, the kinetic energy of the system is not conserved. Such a col-
lision is called an inelastic collision.

However, in some situations, we can approximate a collision of common bod-
ies as elastic. Suppose that you drop a Superball onto a hard floor. If the collision

P
:
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Fig. 9-14 Bodies 1 and 2 move along an
x axis, before and after they have an inelas-
tic collision.

m1 m2 

Before 

Body 1 Body 2 

x 

v1i v2i 

m1 m2 

After 
x 

v1f v2f 

Here is the generic setup
for an inelastic collision.

Fig. 9-15 A completely inelastic
collision between two bodies. Before the
collision, the body with mass m2 is at rest
and the body with mass m1 moves directly
toward it.After the collision, the stuck-
together bodies move with the same 
velocity .V

:

m1 
Projectile 

m2 
Target 

x 

x 

V 

v1i 

After 

Before 

m1 + m2 

v2i = 0 

In a completely inelastic
collision, the bodies
stick together.

between the ball and floor (or Earth) were elastic, the ball would lose no kinetic
energy because of the collision and would rebound to its original height.
However, the actual rebound height is somewhat short, showing that at least
some kinetic energy is lost in the collision and thus that the collision is somewhat
inelastic. Still, we might choose to neglect that small loss of kinetic energy to ap-
proximate the collision as elastic.

The inelastic collision of two bodies always involves a loss in the kinetic
energy of the system. The greatest loss occurs if the bodies stick together, in
which case the collision is called a completely inelastic collision. The collision of a
baseball and a bat is inelastic. However, the collision of a wet putty ball and a bat
is completely inelastic because the putty sticks to the bat.

9-9 Inelastic Collisions in One Dimension
One-Dimensional Inelastic Collision
Figure 9-14 shows two bodies just before and just after they have a one-
dimensional collision. The velocities before the collision (subscript i) and after
the collision (subscript f ) are indicated.The two bodies form our system, which is
closed and isolated.We can write the law of conservation of linear momentum for
this two-body system as

,

which we can symbolize as

(conservation of linear momentum). (9-50)

Because the motion is one-dimensional, we can drop the overhead arrows for
vectors and use only components along the axis, indicating direction with a sign.
Thus, from p ! mv, we can rewrite Eq. 9-50 as

m1v1i " m2v2i ! m1v1f " m2v2f. (9-51)

If we know values for, say, the masses, the initial velocities, and one of the final ve-
locities, we can find the other final velocity with Eq. 9-51.

One-Dimensional Completely Inelastic Collision
Figure 9-15 shows two bodies before and after they have a completely inelastic
collision (meaning they stick together).The body with mass m2 happens to be ini-
tially at rest (v2i ! 0). We can refer to that body as the target and to the incoming
body as the projectile. After the collision, the stuck-together bodies move with
velocity V. For this situation, we can rewrite Eq. 9-51 as

m1v1i ! (m1 " m2)V (9-52)

or . (9-53)

If we know values for, say, the masses and the initial velocity v1i of the projectile,
we can find the final velocity V with Eq. 9-53. Note that V must be less than v1i be-
cause the mass ratio m1/(m1 " m2) must be less than unity.

Velocity of the Center of Mass
In a closed, isolated system, the velocity of the center of mass of the system
cannot be changed by a collision because, with the system isolated, there is no net

v:com

V !
m1

m1 " m2
 v1i

p:1i " p:2i ! p:1f " p:2f 

$total momentum P
:

i

before the collision% ! $total momentum P
:

f

after the collision %
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external force to change it. To get an expression for , let us return to the two-
body system and one-dimensional collision of Fig. 9-14. From Eq. 9-25

, we can relate to the total linear momentum of that two-
body system by writing

. (9-54)

The total linear momentum is conserved during the collision; so it is given by
either side of Eq. 9-50. Let us use the left side to write

. (9-55)

Substituting this expression for in Eq. 9-54 and solving for give us

. (9-56)

The right side of this equation is a constant, and has that same constant value
before and after the collision.

For example, Fig. 9-16 shows, in a series of freeze-frames, the motion of the
center of mass for the completely inelastic collision of Fig. 9-15. Body 2 is the tar-
get, and its initial linear momentum in Eq. 9-56 is Body 1 is
the projectile, and its initial linear momentum in Eq. 9-56 is Note
that as the series of freeze-frames progresses to and then beyond the collision,
the center of mass moves at a constant velocity to the right. After the
collision, the common final speed V of the bodies is equal to because then
the center of mass travels with the stuck-together bodies.

v:com

p:1i ! m1v:1i.
p:2i ! m2v:2i ! 0.

v:com

v:com !
P
:

m1 " m2
!

p:1i " p:2i

m1 " m2

v:comP
:

P
:

! p:1i " p:2i

P
:

P
:

! M v:com ! (m1 " m2)v:com

P
:

v:com(P
:

! M v:com)

v:com

x 

m1 

v1i v2i = 0 
m2 

m1 +  m2 

V   = vcom 

Collision! 

vcom 

The com of the two
bodies is between
them and moves at a
constant velocity.

Here is the
incoming projectile.

The com moves at the
same velocity even after
the bodies stick together.

Here is the
stationary target.

Fig. 9-16 Some freeze-
frames of the two-body system
in Fig. 9-15, which undergoes a
completely inelastic collision.
The system’s center of mass is
shown in each freeze-frame.The
velocity of the center of
mass is unaffected by the colli-
sion. Because the bodies stick
together after the collision, their
common velocity must be
equal to .v:com

V
:

v:com

CHECKPOINT 7

Body 1 and body 2 are in a completely inelastic one-dimensional collision. What is their
final momentum if their initial momenta are, respectively, (a) 10 kg # m/s and 0; (b) 10
kg # m/s and 4 kg # m/s; (c) 10 kg # m/s and %4 kg # m/s?
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Sample Problem

(This mechanical energy is not changed by the force of the
cords on the block, because that force is always directed per-
pendicular to the block’s direction of travel.) Let’s take the
block’s initial level as our reference level of zero gravita-
tional potential energy. Then conservation of mechanical en-
ergy means that the system’s kinetic energy at the start of the
swing must equal its gravitational potential energy at the
highest point of the swing. Because the speed of the bul-
let and block at the start of the swing is the speed V
immediately after the collision, we may write this con-
servation as

(9-60)

Combining steps: Substituting for V from Eq. 9-58 leads
to

(9-61)

(Answer)

The ballistic pendulum is a kind of “transformer,” exchang-
ing the high speed of a light object (the bullet) for the low—
and thus more easily measurable—speed of a massive ob-
ject (the block).

 ! 630 m/s.

 ! $ 0.0095 kg " 5.4 kg
0.0095 kg

 % 2(2)(9.8 m/s2)(0.063 m)

 v !
m " M

m
 22gh

1
2(m " M)V 2 ! (m " M)gh.

Additional examples, video, and practice available at WileyPLUS

Conservation of momentum, ballistic pendulum

m 

h 

M 

v 

There are two events here.
The bullet collides with the
block. Then the bullet–block
system swings upward by
height h.

Fig. 9-17 A ballistic pendulum, used to measure the speeds of
bullets.

The ballistic pendulum was used to measure the speeds of
bullets before electronic timing devices were developed. The
version shown in Fig. 9-17 consists of a large block of wood of
mass M ! 5.4 kg, hanging from two long cords. A bullet of
mass m ! 9.5 g is fired into the block, coming quickly to rest.
The block " bullet then swing upward, their center of mass
rising a vertical distance h ! 6.3 cm before the pendulum
comes momentarily to rest at the end of its arc. What is the
speed of the bullet just prior to the collision?

KEY I DEAS

We can see that the bullet’s speed v must determine the rise
height h. However, we cannot use the conservation of mechani-
cal energy to relate these two quantities because surely energy
is transferred from mechanical energy to other forms (such as
thermal energy and energy to break apart the wood) as the bul-
let penetrates the block. Nevertheless, we can split this compli-
cated motion into two steps that we can separately analyze: (1)
the bullet–block collision and (2) the bullet–block rise, during
which mechanical energy is conserved.
Reasoning step 1: Because the collision within the bul-
let – block system is so brief, we can make two important
assumptions: (1) During the collision, the gravitational
force on the block and the force on the block from the
cords are still balanced. Thus, during the collision, the net
external impulse on the bullet–block system is zero.
Therefore, the system is isolated and its total linear momen-
tum is conserved:

(9-57)

(2) The collision is one-dimensional in the sense that the di-
rection of the bullet and block just after the collision is in the
bullet’s original direction of motion.

Because the collision is one-dimensional, the block is
initially at rest, and the bullet sticks in the block, we use Eq.
9-53 to express the conservation of linear momentum.
Replacing the symbols there with the corresponding sym-
bols here, we have

(9-58)

Reasoning step 2: As the bullet and block now swing up
together, the mechanical energy of the bullet– block–Earth
system is conserved:

(9-59)$ mechanical energy
at bottom % ! $mechanical energy

at top %.

V !
m

m " M
 v.

$ total momentum
before the collision% ! $ total momentum

after the collision%.
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9-10 Elastic Collisions in One Dimension
As we discussed in Section 9-8, everyday collisions are inelastic but we can
approximate some of them as being elastic; that is, we can approximate that the
total kinetic energy of the colliding bodies is conserved and is not transferred to
other forms of energy:

. (9-62)

This does not mean that the kinetic energy of each colliding body cannot change.
Rather, it means this:

$total kinetic energy
before the collision% ! $total kinetic energy

after the collision %

For example, the collision of a cue ball with an object ball in a game of pool
can be approximated as being an elastic collision. If the collision is head-on
(the cue ball heads directly toward the object ball), the kinetic energy of the cue
ball can be transferred almost entirely to the object ball. (Still, the fact that the
collision makes a sound means that at least a little of the kinetic energy is trans-
ferred to the energy of the sound.)

Stationary Target
Figure 9-18 shows two bodies before and after they have a one-dimensional colli-
sion, like a head-on collision between pool balls. A projectile body of mass m1

and initial velocity v1i moves toward a target body of mass m2 that is initially at
rest (v2i ! 0). Let’s assume that this two-body system is closed and isolated. Then
the net linear momentum of the system is conserved, and from Eq. 9-51 we can
write that conservation as

m1v1i ! m1v1f " m2v2f (linear momentum). (9-63)

If the collision is also elastic, then the total kinetic energy is conserved and we
can write that conservation as

(kinetic energy). (9-64)

In each of these equations, the subscript i identifies the initial velocities and the
subscript f the final velocities of the bodies. If we know the masses of the bodies
and if we also know v1i , the initial velocity of body 1, the only unknown quantities
are v1f and v2f, the final velocities of the two bodies.With two equations at our dis-
posal, we should be able to find these two unknowns.

To do so, we rewrite Eq. 9-63 as

m1(v1i % v1f) ! m2v2f (9-65)
and Eq. 9-64 as*

(9-66)

After dividing Eq. 9-66 by Eq. 9-65 and doing some more algebra, we obtain

(9-67)

and (9-68)v2f !
2m1

m1 " m2
 v1i.

v1f !
m1 % m2

m1 " m2
 v1i

m1(v1i % v1f)(v1i " v1f) ! m2v2f
2 .

1
2m1v1i

2 ! 1
2m1v1f

2 " 1
2m2v2f

2

In an elastic collision, the kinetic energy of each colliding body may change, but 
the total kinetic energy of the system does not change.

*In this step, we use the identity a2 % b2 ! (a % b)(a " b). It reduces the amount of algebra needed to
solve the simultaneous equations Eqs. 9-65 and 9-66.

Fig. 9-18 Body 1 moves along an x axis
before having an elastic collision with body
2, which is initially at rest. Both bodies
move along that axis after the collision.

x 

Before v1i 

m1 
Projectile 

m2 
Target 

v2i = 0 

x 
After 

v1f 

m1 m2 

v2f  

Here is the generic setup
for an elastic collision with
a stationary target.
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Fig. 9-19 Two bodies headed for a one-
dimensional elastic collision.

x 
m1 

v1i 

m2 

v2i 

Here is the generic setup
for an elastic collision with
a moving target.

We note from Eq. 9-68 that v2f is always positive (the initially stationary target
body with mass m2 always moves forward). From Eq. 9-67 we see that v1f may be
of either sign (the projectile body with mass m1 moves forward if m1 + m2 but re-
bounds if m1 , m2).

Let us look at a few special situations.

1. Equal masses If m1 ! m2, Eqs. 9-67 and 9-68 reduce to
v1f ! 0 and v2f ! v1i ,

which we might call a pool player’s result. It predicts that after a head-on colli-
sion of bodies with equal masses, body 1 (initially moving) stops dead in its
tracks and body 2 (initially at rest) takes off with the initial speed of body 1. In
head-on collisions, bodies of equal mass simply exchange velocities. This is
true even if body 2 is not initially at rest.

2. A massive target In Fig. 9-18, a massive target means that m2 m1. For
example, we might fire a golf ball at a stationary cannonball. Equations 9-67
and 9-68 then reduce to

(9-69)

This tells us that body 1 (the golf ball) simply bounces back along its incom-
ing path, its speed essentially unchanged. Initially stationary body 2 (the
cannonball) moves forward at a low speed, because the quantity in paren-
theses in Eq. 9-69 is much less than unity.All this is what we should expect.

3. A massive projectile This is the opposite case; that is, m1 m2.This time, we fire
a cannonball at a stationary golf ball. Equations 9-67 and 9-68 reduce to

v1f # v1i and v2f # 2v1i . (9-70)

Equation 9-70 tells us that body 1 (the cannonball) simply keeps on going,
scarcely slowed by the collision. Body 2 (the golf ball) charges ahead at twice
the speed of the cannonball.

You may wonder: Why twice the speed? Recall the collision described by
Eq. 9-69, in which the velocity of the incident light body (the golf ball)
changed from "v to %v, a velocity change of 2v. The same change in velocity
(but now from zero to 2v) occurs in this example also.

Moving Target
Now that we have examined the elastic collision of a projectile and a stationary
target, let us examine the situation in which both bodies are moving before they
undergo an elastic collision.

For the situation of Fig. 9-19, the conservation of linear momentum is written as

m1v1i " m2v2i ! m1v1f " m2v2f , (9-71)

and the conservation of kinetic energy is written as

(9-72)

To solve these simultaneous equations for v1f and v2f , we first rewrite Eq. 9-71 as

m1(v1i % v1f) ! %m2(v2i % v2f), (9-73)
and Eq. 9-72 as

m1(v1i % v1f)(v1i " v1f) ! %m2(v2i % v2f)(v2i " v2f). (9-74)

After dividing Eq. 9-74 by Eq. 9-73 and doing some more algebra, we obtain

(9-75)

and (9-76)v2f !
2m1

m1 " m2
 v1i "

m2 % m1

m1 " m2
 v2i.

v1f !
m1 % m2

m1 " m2
 v1i "

2m2

m1 " m2
 v2i

1
2m1v1i

2 " 1
2m2v2i

2 ! 1
2m1v1f

2 " 1
2m2v2f

2 .

-

v1f # %v1i and v2f # $ 2m1

m2
%v1i.

-
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Note that the assignment of subscripts 1 and 2 to the bodies is arbitrary. If we ex-
change those subscripts in Fig. 9-19 and in Eqs. 9-75 and 9-76, we end up with the
same set of equations. Note also that if we set v2i ! 0, body 2 becomes a
stationary target as in Fig. 9-18, and Eqs. 9-75 and 9-76 reduce to Eqs. 9-67 and
9-68, respectively.

CHECKPOINT 8

What is the final linear momentum of the target in Fig. 9-18 if the initial linear momen-
tum of the projectile is 6 kg # m/s and the final linear momentum of the projectile is (a) 2
kg # m/s and (b) %2 kg # m/s? (c) What is the final kinetic energy of the target if the ini-
tial and final kinetic energies of the projectile are, respectively, 5 J and 2 J?

Sample Problem

brief, we can assume that the two-sphere system is closed and
isolated.This means that the total linear momentum of the sys-
tem is conserved.

Calculation: Thus, we can use Eq. 9-67 to find the velocity of
sphere 1 just after the collision:

(Answer)

The minus sign tells us that sphere 1 moves to the left just
after the collision.

 ! %0.537 m/s # %0.54 m/s.

 !
0.030 kg % 0.075 kg
0.030 kg " 0.075 kg

 (1.252 m/s)

 v1f !
m1 % m2

m1 " m2
 v1i

Additional examples, video, and practice available at WileyPLUS

Elastic collision, two pendulums

Two metal spheres, suspended by vertical cords, initially just
touch, as shown in Fig. 9-20. Sphere 1, with mass 
m1 ! 30 g, is pulled to the left to height h1 ! 8.0 cm, and
then released from rest. After swinging down, it undergoes
an elastic collision with sphere 2, whose mass m2 ! 75 g.
What is the velocity v1f of sphere 1 just after the collision?

KEY I DEA

We can split this complicated motion into two steps that we
can analyze separately: (1) the descent of sphere 1 (in which
mechanical energy is conserved) and (2) the two-sphere col-
lision (in which momentum is also conserved).
Step 1: As sphere 1 swings down, the mechanical energy of
the sphere–Earth system is conserved. (The mechanical en-
ergy is not changed by the force of the cord on sphere 1 be-
cause that force is always directed perpendicular to the
sphere’s direction of travel.)

Calculation: Let’s take the lowest level as our reference
level of zero gravitational potential energy. Then the kinetic
energy of sphere 1 at the lowest level must equal the gravi-
tational potential energy of the system when sphere 1 is at
height h1.Thus,

which we solve for the speed v1i of sphere 1 just before the
collision:

Step 2: Here we can make two assumptions in addition to
the assumption that the collision is elastic. First, we can as-
sume that the collision is one-dimensional because the motions
of the spheres are approximately horizontal from just before
the collision to just after it. Second, because the collision is so

 ! 1.252 m/s.

 v1i ! 22gh1 ! 2(2)(9.8 m/s2)(0.080 m)

1
2m 1v1i

2 ! m 1gh1,

Fig. 9-20 Two metal spheres suspended by cords just touch
when they are at rest. Sphere 1, with mass m1, is pulled to the left to
height h1 and then released.

h1 

m2 m1 

1  2 

Ball 1 swings down and
collides with ball 2, which
then swings upward. If the
collision is elastic, no
mechanical energy is lost.
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9-12 Systems with Varying Mass: A Rocket
In the systems we have dealt with so far, we have assumed that the total mass of
the system remains constant. Sometimes, as in a rocket, it does not. Most of the
mass of a rocket on its launching pad is fuel, all of which will eventually be
burned and ejected from the nozzle of the rocket engine.

We handle the variation of the mass of the rocket as the rocket accelerates by
applying Newton’s second law, not to the rocket alone but to the rocket and its
ejected combustion products taken together. The mass of this system does not
change as the rocket accelerates.

Finding the Acceleration
Assume that we are at rest relative to an inertial reference frame, watching a
rocket accelerate through deep space with no gravitational or atmospheric drag
forces acting on it. For this one-dimensional motion, let M be the mass of the
rocket and v its velocity at an arbitrary time t (see Fig. 9-22a).
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9-11 Collisions in Two Dimensions
When two bodies collide, the impulse between them determines the directions in
which they then travel. In particular, when the collision is not head-on, the bodies
do not end up traveling along their initial axis. For such two-dimensional colli-
sions in a closed, isolated system, the total linear momentum must still be con-
served:

. (9-77)

If the collision is also elastic (a special case), then the total kinetic energy is also
conserved:

K1i " K2i ! K1f " K2f . (9-78)

Equation 9-77 is often more useful for analyzing a two-dimensional collision
if we write it in terms of components on an xy coordinate system. For example,
Fig. 9-21 shows a glancing collision (it is not head-on) between a projectile body and a
target body initially at rest.The impulses between the bodies have sent the bodies off
at angles u1 and u2 to the x axis, along which the projectile initially traveled. In this situ-
ation we would rewrite Eq.9-77 for components along the x axis as

m1v1i ! m1v1f cos u1 " m2v2f cos u2, (9-79)

and along the y axis as

(9-80)

We can also write Eq. 9-78 (for the special case of an elastic collision) in terms of
speeds:

(kinetic energy). (9-81)

Equations 9-79 to 9-81 contain seven variables: two masses, m1 and m2; three
speeds, v1i , v1f , and v2f ; and two angles, u1 and u2. If we know any four of these
quantities, we can solve the three equations for the remaining three quantities.

1
2m1v1i

2 ! 1
2m1v1f

2 " 1
2m2v2f

2

0 ! %m1v1f  sin (1 " m2v2f  sin (2.

P
:

1i " P
:

2i ! P
:

1f " P
:

2f

Fig. 9-21 An elastic collision between
two bodies in which the collision is not
head-on.The body with mass m2 (the tar-
get) is initially at rest.

x

y

θ2 

θ1 v1i

v2f

v1f

m1

m2

A glancing collision
that conserves
both momentum and
kinetic energy.

CHECKPOINT 9

In Fig. 9-21, suppose that the projectile has an initial momentum of 6 kg # m/s, a final x
component of momentum of 4 kg # m/s, and a final y component of momentum of %3
kg # m/s. For the target, what then are (a) the final x component of momentum and (b)
the final y component of momentum?
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Fig. 9-22 (a) An accelerating rocket of mass M at time t, as seen from an inertial
reference frame. (b) The same but at time t " dt.The exhaust products released during 
interval dt are shown.

x

vM

System boundary

(a) x

v + dvM + dM

System boundary

(b)

–dM

U

The ejection of mass from
the rocket's rear increases
the rocket's speed.

Figure 9-22b shows how things stand a time interval dt later. The rocket now
has velocity v " dv and mass M " dM, where the change in mass dM is a negative
quantity. The exhaust products released by the rocket during interval dt have
mass %dM and velocity U relative to our inertial reference frame.

Our system consists of the rocket and the exhaust products released during
interval dt. The system is closed and isolated, so the linear momentum of the sys-
tem must be conserved during dt; that is,

Pi ! Pf , (9-82)

where the subscripts i and f indicate the values at the beginning and end of time
interval dt. We can rewrite Eq. 9-82 as

Mv ! %dM U " (M " dM)(v " dv), (9-83)

where the first term on the right is the linear momentum of the exhaust products
released during interval dt and the second term is the linear momentum of the
rocket at the end of interval dt.

We can simplify Eq. 9-83 by using the relative speed vrel between the rocket and
the exhaust products,which is related to the velocities relative to the frame with

.

In symbols, this means
(v " dv) ! vrel " U,

or U ! v " dv % vrel. (9-84)

Substituting this result for U into Eq. 9-83 yields, with a little algebra,

%dM vrel ! M dv. (9-85)

Dividing each side by dt gives us

(9-86)

We replace dM/dt (the rate at which the rocket loses mass) by %R, where R is the
(positive) mass rate of fuel consumption, and we recognize that dv/dt is the accel-
eration of the rocket.With these changes, Eq. 9-86 becomes

Rvrel ! Ma (first rocket equation). (9-87)

Equation 9-87 holds for the values at any given instant.
Note the left side of Eq. 9-87 has the dimensions of force (kg/s # m/s !

kg # m/s2 ! N) and depends only on design characteristics of the rocket engine—
namely, the rate R at which it consumes fuel mass and the speed vrel with which

%
dM
dt

 vrel ! M 
dv
dt

.

$velocity of rocket
relative to frame % ! $ velocity of rocket

relative to products% " $velocity of products
relative to frame %
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that mass is ejected relative to the rocket. We call this term Rvrel the thrust of the
rocket engine and represent it with T. Newton’s second law emerges clearly if we
write Eq. 9-87 as T ! Ma, in which a is the acceleration of the rocket at the time
that its mass is M.

Finding the Velocity
How will the velocity of a rocket change as it consumes its fuel? From Eq. 9-85
we have

Integrating leads to

in which Mi is the initial mass of the rocket and Mf its final mass. Evaluating the
integrals then gives

(second rocket equation) (9-88)

for the increase in the speed of the rocket during the change in mass from Mi to
Mf . (The symbol “ln” in Eq. 9-88 means the natural logarithm.) We see here the
advantage of multistage rockets, in which Mf is reduced by discarding successive
stages when their fuel is depleted. An ideal rocket would reach its destination
with only its payload remaining.

vf % vi ! vrel ln 
Mi

Mf

"vf

vi

 dv ! %vrel "Mf

Mi

 
dM
M

,

dv ! %vrel 
dM
M

.

Sample Problem

rocket’s mass. However, M decreases and a increases as fuel
is consumed. Because we want the initial value of a here, we
must use the intial value Mi of the mass.

Calculation: We find

(Answer)

To be launched from Earth’s surface, a rocket must have
an initial acceleration greater than . That is, it
must be greater than the gravitational acceleration at the
surface. Put another way, the thrust T of the rocket engine
must exceed the initial gravitational force on the rocket,
which here has the magnitude Mi g, which gives us 

(850 kg)(9.8 m/s2) = 8330 N.

Because the acceleration or thrust requirement is not met
(here T ! 6400 N), our rocket could not be launched from
Earth’s surface by itself; it would require another, more
powerful, rocket.

g ! 9.8 m/s2

a !
T
Mi

!
6440 N
850 kg

! 7.6 m/s2.

Additional examples, video, and practice available at WileyPLUS

Rocket engine, thrust, acceleration

A rocket whose initial mass Mi is 850 kg consumes fuel at
the rate The speed vrel of the exhaust gases rel-
ative to the rocket engine is 2800 m/s. What thrust does the
rocket engine provide?

KEY I DEA

Thrust T is equal to the product of the fuel consumption
rate R and the relative speed vrel at which exhaust gases are
expelled, as given by Eq. 9-87.

Calculation: Here we find

(Answer)

(b) What is the initial acceleration of the rocket?

KEY I DEA

We can relate the thrust T of a rocket to the magnitude a of
the resulting acceleration with , where M is theT ! Ma

 ! 6440 N # 6400 N.

 T ! Rvrel ! (2.3 kg/s)(2800 m/s)

R ! 2.3 kg/s.
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Center of Mass The center of mass of a system of n particles is
defined to be the point whose coordinates are given by

(9-5)

or (9-8)

where M is the total mass of the system.

Newton’s Second Law for a System of Particles The
motion of the center of mass of any system of particles is governed
by Newton’s second law for a system of particles, which is

. (9-14)

Here is the net force of all the external forces acting on the sys-
tem, M is the total mass of the system, and is the acceleration
of the system’s center of mass.

Linear Momentum and Newton’s Second Law For a sin-
gle particle, we define a quantity called its linear momentum as

, (9-22)

and can write Newton’s second law in terms of this momentum:

(9-23)

For a system of particles these relations become

and (9-25, 9-27)

Collision and Impulse Applying Newton’s second law in
momentum form to a particle-like body involved in a collision
leads to the impulse– linear momentum theorem:

, (9-31, 9-32)

where is the change in the body’s linear
momentum, and is the impulse due to the force exerted on
the body by the other body in the collision:

(9-30)

If Favg is the average magnitude of during the collision and *t
is the duration of the collision, then for one-dimensional motion

J ! Favg *t. (9-35)

When a steady stream of bodies, each with mass m and speed v, col-
lides with a body whose position is fixed, the average force on the
fixed body is

(9-37)

where n/*t is the rate at which the bodies collide with the fixed
body, and *v is the change in velocity of each colliding body. This
average force can also be written as

(9-40)Favg ! %
*m
*t

 *v,

Favg ! %
n
*t

 *p ! %
n
*t

 m *v,

F
:

(t)

 J
:

! "tf

ti

 F
:

(t) dt.

F
:

(t)J
:

p:f % p:i ! *p:

p:f % p:i ! *p: ! J
:

F
:

net !
dP

:

dt
.P

:
! Mv:com

F
:

net !
d p:

dt
.

p: ! mv:

p:

a:com

F
:

net

F
:

net ! M a:com

r:com !
1
M

 !
n

i!1
 mi r:i ,

xcom !
1
M

 !
n

i!1
 mi xi , ycom !

1
M

 !
n

i!1
 mi yi , zcom !

1
M

 !
n

i!1
 mi zi ,

where *m/*t is the rate at which mass collides with the fixed body. In
Eqs. 9-37 and 9-40, *v ! %v if the bodies stop upon impact and *v !
%2v if they bounce directly backward with no change in their speed.

Conservation of Linear Momentum If a system is isolated
so that no net external force acts on it, the linear momentum of
the system remains constant:

(closed, isolated system). (9-42)

This can also be written as

(closed, isolated system), (9-43)

where the subscripts refer to the values of at some initial time and
at a later time. Equations 9-42 and 9-43 are equivalent statements of
the law of conservation of linear momentum.

Inelastic Collision in One Dimension In an inelastic col-
lision of two bodies, the kinetic energy of the two-body system is
not conserved. If the system is closed and isolated, the total linear
momentum of the system must be conserved, which we can write in
vector form as

, (9-50)

where subscripts i and f refer to values just before and just after the
collision, respectively.

If the motion of the bodies is along a single axis, the collision is
one-dimensional and we can write Eq. 9-50 in terms of velocity
components along that axis:

m1v1i " m2v2i ! m1v1f " m2v2f . (9-51)

If the bodies stick together, the collision is a completely
inelastic collision and the bodies have the same final velocity V
(because they are stuck together).

Motion of the Center of Mass The center of mass of a
closed, isolated system of two colliding bodies is not affected by a
collision. In particular, the velocity of the center of mass can-
not be changed by the collision.

Elastic Collisions in One Dimension An elastic collision
is a special type of collision in which the kinetic energy of a system
of colliding bodies is conserved. If the system is closed and iso-
lated, its linear momentum is also conserved. For a one-dimen-
sional collision in which body 2 is a target and body 1 is an incom-
ing projectile, conservation of kinetic energy and linear
momentum yield the following expressions for the velocities im-
mediately after the collision:

(9-67)

and (9-68)

Collisions in Two Dimensions If two bodies collide and
their motion is not along a single axis (the collision is not head-on),
the collision is two-dimensional. If the two-body system is closed
and isolated, the law of conservation of momentum applies to the

v2f !
2m1

m1 " m2
 v1i.

v1f !
m1 % m2

m1 " m2
 v1i

v:com

p:1i " p:2i ! p:1f " p:2f

P
:

P
:

i ! P
:

f

 P
:

! constant

P
:
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y

x

(a)

y

x

(c)

y

x

(b)

y

x

(d)

Fig. 9-28 Question 6.

collision and can be written as

. (9-77)

In component form, the law gives two equations that describe the
collision (one equation for each of the two dimensions). If the col-
lision is also elastic (a special case), the conservation of kinetic en-
ergy during the collision gives a third equation:

K1i " K2i ! K1f " K2f . (9-78)

Variable-Mass Systems In the absence of external forces a

P
:

1i " P
:

2i ! P
:

1f " P
:

2f

rocket accelerates at an instantaneous rate given by

Rvrel ! Ma (first rocket equation), (9-87)

in which M is the rocket’s instantaneous mass (including
unexpended fuel), R is the fuel consumption rate, and vrel is the fuel’s
exhaust speed relative to the rocket. The term Rvrel is the thrust of
the rocket engine. For a rocket with constant R and vrel, whose speed
changes from vi to vf when its mass changes from Mi to Mf ,

(second rocket equation). (9-88)vf % vi ! vrel ln 
Mi

Mf

1 Figure 9-23 shows an overhead
view of three particles on which ex-
ternal forces act. The magnitudes
and directions of the forces on two of
the particles are indicated. What are
the magnitude and direction of the
force acting on the third particle if
the center of mass of the three-parti-
cle system is (a) stationary, (b) mov-
ing at a constant velocity rightward, and (c) accelerating rightward?

2 Figure 9-24 shows an overhead view of four particles of equal mass
sliding over a frictionless surface at constant velocity.The directions of
the velocities are indicated; their magnitudes are equal. Consider pair-
ing the particles.Which pairs form a system with a center of mass that
(a) is stationary, (b) is stationary and at the origin, and (c) passes
through the origin?

4 Figure 9-26 shows graphs of force magnitude versus time for a
body involved in a collision. Rank the graphs according to the
magnitude of the impulse on the body, greatest first.

y

1
5 N

3 N2

3
x

Fig. 9-23 Question 1.

c d

a

y (m)

2

–2 2 4–4

–2

x (m)

b

Fig. 9-24 Question 2.

xxx

y y y

60°

60°

60°60°
8 Ν 6 Ν

5 Ν

4 Ν

6 Ν

8 Ν
3 Ν

4 Ν

2 Ν
2 Ν

6 Ν 5 Ν2 Ν3 Ν

(a) (b) (c)

Fig. 9-27 Question 5.

v2 v2v1 v1

(b) (c)(a)

v1

Fig. 9-25 Question 3.

2F0

4F0

6t0
t

F F

t t

F

(a) (b) (c)
3t0 12t0

2F0

Fig. 9-26 Question 4.

5 The free-body diagrams in Fig. 9-27 give, from overhead views,
the horizontal forces acting on three boxes of chocolates as the
boxes move over a frictionless confectioner’s counter. For each box,
is its linear momentum conserved along the x axis and the y axis?

6 Figure 9-28 shows four groups of three or four identical parti-
cles that move parallel to either the x axis or the y axis, at identical
speeds. Rank the groups according to center-of-mass speed, great-
est first.

3 Consider a box that explodes into two pieces while moving with
a constant positive velocity along an x axis. If one piece, with mass
m1, ends up with positive velocity , then the second piece, with
mass m2, could end up with (a) a positive velocity (Fig. 9-25a), (b)
a negative velocity (Fig. 9-25b), or (c) zero velocity (Fig. 9-25c).
Rank those three possible results for the second piece according to
the corresponding magnitude of , greatest first.v1

:

v2
:

v2
:

v1
:
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7 A block slides along a frictionless floor and into a stationary
second block with the same mass. Figure 9-29 shows four choices
for a graph of the kinetic energies K of the blocks. (a) Determine
which represent physically impossible situations. Of the others,
which best represents (b) an elastic collision and (c) an inelastic
collision?

x

t
tc

xc

A

B

C

D
5

4

3

21

Fig. 9-33 Question 11.

K 

t 
(a)

K 

t 
(b)

K 

t 

(c)

K

t
(d)

Fig. 9-29 Question 7.

1 2A B C

Fig. 9-30 Question 8.

8 Figure 9-30 shows a snapshot of block 1 as it slides along an x axis
on a frictionless floor, before it undergoes an elastic collision with sta-
tionary block 2. The figure also shows three possible positions of the
center of mass (com) of the two-block system at the time of the snap-
shot. (Point B is halfway between the centers of the two blocks.) Is
block 1 stationary, moving forward, or moving backward after the col-
lision if the com is located in the snapshot at (a) A, (b) B, and (c) C?

9 Two bodies have undergone an elastic one-dimensional colli-
sion along an x axis. Figure 9-31 is a graph of position versus time
for those bodies and for their center of mass. (a) Were both bodies
initially moving, or was one initially stationary? Which line segment
corresponds to the motion of the center of mass (b) before the colli-
sion and (c) after the collision? (d) Is the mass of the body that was
moving faster before the collision greater than, less than, or equal to
that of the other body?

x

t

1

2 3

4 5

6

Fig. 9-31 Question 9.

p

t

(a)

p

t

(b)

p

t

(c)

p

t

(d)

p

t

(e)

p

t

( f )

Fig. 9-32 Question 10.

11 Block 1 with mass m1 slides along an x axis across a frictionless
floor and then undergoes an elastic collision with a stationary block 2
with mass m2. Figure 9-33 shows a plot of position x versus time t of
block 1 until the collision occurs at position xc and time tc. In which of
the lettered regions on the graph will the plot be continued (after the
collision) if (a) m1 , m2 and (b) m1 + m2? (c) Along which of the num-
bered dashed lines will the plot be continued if m1 ! m2?

10 Figure 9-32:A block on a horizontal floor is initially either sta-
tionary, sliding in the positive direction of an x axis, or sliding in the
negative direction of that axis. Then the block explodes into two
pieces that slide along the x axis. Assume the block and the two
pieces form a closed, isolated system. Six choices for a graph of the
momenta of the block and the pieces are given, all versus time t.
Determine which choices represent physically impossible situa-
tions and explain why.

12 Figure 9-34 shows four graphs of position versus time for two
bodies and their center of mass.The two bodies form a closed, isolated
system and undergo a completely inelastic, one-dimensional collision
on an x axis. In graph 1, are (a) the two bodies and (b) the center of
mass moving in the positive or negative direction of the x axis? (c)
Which graphs correspond to a physically impossible situation?
Explain.

x x

x x

t t

t t

(1) (2)

(3) (4)

Fig. 9-34 Question 12.
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N

L

H

H

H

d

x

y

Fig. 9-40 Problem 7.

Fig. 9-36 Problem 3.

Aluminum

Iron Midpoint

2d1

d2

d1

d1

d 3

y

z

x

••5 What are (a) the x coordinate and (b) the y coordinate of the
center of mass for the uniform plate shown in Fig. 9-38 if L 5.0 cm?!

3L

4L

2L

2L

2L

4L

L

x

y

Fig. 9-38 Problem 5.

sec. 9-2 The Center of Mass
•1 A 2.00 kg particle has the xy coordinates (%1.20 m, 0.500 m),
and a 4.00 kg particle has the xy coordinates (0.600 m, %0.750 m).
Both lie on a horizontal plane. At what (a) x and (b) y coordinates
must you place a 3.00 kg particle such that the center of mass of the
three-particle system has the coordinates (%0.500 m, %0.700 m)?

•2 Figure 9-35 shows a three-
particle system, with masses m1 !
3.0 kg, m2 ! 4.0 kg, and m3 ! 8.0
kg. The scales on the axes are set
by xs ! 2.0 m and ys ! 2.0 m.
What are (a) the x coordinate and
(b) the y coordinate of the sys-
tem’s center of mass? (c) If m3 is
gradually increased, does the cen-
ter of mass of the system shift to-
ward or away from that particle, or does it remain stationary?

••3 Figure 9-36 shows a  slab with dimensions d1 ! 11.0 cm,
d2 ! 2.80 cm, and d3 ! 13.0 cm. Half the slab consists of alu-
minum (density ! 2.70 g/cm3) and half consists of iron (density !
7.85 g/cm3).What are (a) the x coordinate, (b) the y coordinate, and
(c) the z coordinate of the slab’s center of mass?

y (m)

x (m)

ys

0 xs

m1

m3

m2

Fig. 9-35 Problem 2.

••4 In Fig. 9-37, three uniform thin rods, each of length L ! 22
cm, form an inverted U. The vertical rods each have a mass of 14 g;
the horizontal rod has a mass of 42 g.What are (a) the x coordinate
and (b) the y coordinate of the system’s center of mass?

L

x

y

L

L

Fig. 9-37 Problem 4.

••6 Figure 9-39 shows a cubical box that has been constructed
from uniform metal plate of negligible thickness. The box is open
at the top and has edge length L ! 40 cm. Find (a) the x coordi-
nate, (b) the y coordinate, and (c) the z coordinate of the center of
mass of the box.

L
O y

x

z

Fig. 9-39 Problem 6.

•••7 In the ammonia (NH3) molecule of Fig. 9-40, three
hydrogen (H) atoms form an equilateral triangle, with the center
of the triangle at distance d ! 9.40 & 10%11 m from each hydrogen
atom. The nitrogen (N) atom is at the apex of a pyramid, with the
three hydrogen atoms forming the base. The nitrogen-to-hydrogen
atomic mass ratio is 13.9, and the nitrogen-to-hydrogen distance is
L ! 10.14 & 10%11 m. What are the (a) x and (b) y coordinates of
the molecule’s center of mass?

ILW

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign
SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at
ILW Interactive solution is at 

http://www.wiley.com/college/halliday
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•••8 A uniform soda can of mass 0.140 kg
is 12.0 cm tall and filled with 0.354 kg of
soda (Fig. 9-41). Then small holes are
drilled in the top and bottom (with negligi-
ble loss of metal) to drain the soda.What is
the height h of the com of the can and con-
tents (a) initially and (b) after the can loses
all the soda? (c) What happens to h as the
soda drains out? (d) If x is the height of the
remaining soda at any given instant, find x
when the com reaches its lowest point.

sec. 9-3 Newton’s Second Law for a System of Particles
•9 A stone is dropped at t ! 0. A second stone, with twice the
mass of the first, is dropped from the same point at
t ! 100 ms. (a) How far below the release point is the center of
mass of the two stones at t ! 300 ms? (Neither stone has yet
reached the ground.) (b) How fast is the center of mass of the two-
stone system moving at that time?

•10 A 1000 kg automobile is at rest at a traffic signal. At the
instant the light turns green, the automobile starts to move with a
constant acceleration of 4.0 m/s2. At the same instant a 2000 kg
truck, traveling at a constant speed of 8.0 m/s, overtakes and passes
the automobile. (a) How far is the com of the automobile– truck
system from the traffic light at t ! 3.0 s? (b) What is the speed of
the com then?

•11 A big olive (m ! 0.50 kg) lies at the origin of an xy
coordinate system, and a big Brazil nut (M ! 1.5 kg) lies at the
point (1.0, 2.0) m. At t ! 0, a force begins to
act on the olive, and a force begins to act on
the nut. In unit-vector notation, what is the displacement of the
center of mass of the olive–nut system at t ! 4.0 s, with respect to
its position at t ! 0?

•12 Two skaters, one with mass 65 kg and the other with mass 40
kg, stand on an ice rink holding a pole of length 10 m and negligi-
ble mass. Starting from the ends of the pole, the skaters pull them-
selves along the pole until they meet. How far does the 40 kg
skater move?

••13 A shell is shot with an initial velocity of 20 m/s, at an
angle of with the horizontal.At the top of the trajectory, the
shell explodes into two fragments of equal mass (Fig. 9-42). One
fragment, whose speed immediately after the explosion is zero, falls
vertically. How far from the gun does the other fragment land, as-
suming that the terrain is level and that air drag is negligible?

(0 ! 60)
v:0SSM

F
:

n ! (%3.0î % 2.0ĵ ) N
F
:

o ! (2.0î " 3.0ĵ ) N

ILW

directly above particle 1. (a) What is the
maximum height Hmax reached by the
com of the two-particle system? In
unit-vector notation, what are the (b)
velocity and (c) acceleration of the
com when the com reaches Hmax?

••15 Figure 9-44 shows an arrange-
ment with an air track, in which a cart is connected by a cord to a
hanging block. The cart has mass m1 ! 0.600 kg, and its center is ini-
tially at xy coordinates (%0.500 m, 0 m); the block has mass 
m2 !0.400 kg, and its center is initially at xy coordinates
(0, %0.100 m).The mass of the cord and pulley are negligible.The cart
is released from rest, and both cart and block move until the cart hits
the pulley. The friction between the cart and the air track and be-
tween the pulley and its axle is negligible. (a) In unit-vector notation,
what is the acceleration of the center of mass of the cart–block sys-
tem? (b) What is the velocity of the com as a function of time t? (c)
Sketch the path taken by the com. (d) If the path is curved, determine
whether it bulges upward to the right or downward to the left, and if
it is straight, find the angle between it and the x axis.

x

Fig. 9-41 Problem 8.

v0

0

Explosion

θ

Fig. 9-42 Problem 13.

•••16 Ricardo, of mass 80 kg, and Carmelita, who is lighter, are en-
joying Lake Merced at dusk in a 30 kg canoe. When the canoe is at
rest in the placid water, they exchange seats, which are 3.0 m apart
and symmetrically located with respect to the canoe’s center. If the
canoe moves 40 cm horizontally relative to a pier post, what is
Carmelita’s mass?

•••17 In Fig. 9-45a, a 4.5 kg dog
stands on an 18 kg flatboat at dis-
tance D ! 6.1 m from the shore. It
walks 2.4 m along the boat toward
shore and then stops. Assuming no
friction between the boat and the wa-
ter, find how far the dog is then from
the shore. (Hint: See Fig. 9-45b.)

sec. 9-5 The Linear Momentum
of a System of Particles
•18 A 0.70 kg ball moving hori-
zontally at 5.0 m/s strikes a vertical
wall and rebounds with speed 2.0
m/s. What is the magnitude of the change in its linear momentum?

•19 A 2100 kg truck traveling north at 41 km/h turns east and
accelerates to 51 km/h. (a) What is the change in the truck’s kinetic
energy? What are the (b) magnitude and (c) direction of the
change in its momentum?

••20 At time t ! 0, a ball is struck at ground level and sent
over level ground. The momentum p versus t during the flight is

ILW

Fig. 9-43 Problem 14.

x

y

1

2

••14 In Figure 9-43, two particles are launched from the origin of
the coordinate system at time t ! 0. Particle 1 of mass m1 ! 5.00 g is
shot directly along the x axis on a frictionless floor, with constant
speed 10.0 m/s. Particle 2 of mass m2 ! 3.00 g is shot with a velocity
of magnitude 20.0 m/s, at an upward angle such that it always stays

Fig. 9-44 Problem 15.

y

x

m2

m1

Dog's displacement dd

Boat's displacement db

(b)

D

(a)

Fig. 9-45 Problem 17.
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Fmax

t

Fig. 9-49 Problem 30.
Fig. 9-48 Problem 23. Belly-flopping into 30 cm of water.
(George Long/ Sports Illustrated/©Time, Inc.)

given by Fig. 9-46 (
and ). At what ini-
tial angle is the ball launched? (Hint:
find a solution that does not require
you to read the time of the low point
of the plot.)

••21 A 0.30 kg softball has a veloc-
ity of 15 m/s at an angle of 35° below
the horizontal just before making
contact with the bat.What is the mag-
nitude of the change in momentum of
the ball while in contact with the bat if the ball leaves with a velocity of
(a) 20 m/s, vertically downward, and (b) 20 m/s, horizontally back to-
ward the pitcher?

••22 Figure 9-47 gives an overhead
view of the path taken by a 0.165 kg
cue ball as it bounces from a rail of a
pool table. The ball’s initial speed is
2.00 m/s, and the angle u1 is 30.0°.
The bounce reverses the y compo-
nent of the ball’s velocity but does
not alter the x component. What are
(a) angle u2 and (b) the change in the
ball’s linear momentum in unit-vec-
tor notation? (The fact that the ball
rolls is irrelevant to the problem.)

sec. 9-6 Collision and Impulse
•23 Until his seventies, Henri LaMothe (Fig. 9-48) excited
audiences by belly-flopping from a height of 12 m into 30 cm of

p1 ! 4.0 kg #m/s
p0 ! 6.0 kg #m/s water. Assuming that he stops just as he reaches the bottom of the

water and estimating his mass, find the magnitude of the impulse
on him from the water.

•24 In February 1955, a paratrooper fell 370 m from an air-
plane without being able to open his chute but happened to land in
snow, suffering only minor injuries. Assume that his speed at im-
pact was 56 m/s (terminal speed), that his mass (including gear)
was 85 kg, and that the magnitude of the force on him from the
snow was at the survivable limit of 1.2 & 105 N. What are (a) the
minimum depth of snow that would have stopped him safely and
(b) the magnitude of the impulse on him from the snow?

•25 A 1.2 kg ball drops vertically onto a floor, hitting with a
speed of 25 m/s. It rebounds with an initial speed of 10 m/s. (a)
What impulse acts on the ball during the contact? (b) If the ball is
in contact with the floor for 0.020 s, what is the magnitude of the
average force on the floor from the ball?

•26 In a common but dangerous prank, a chair is pulled away as a
person is moving downward to sit on it, causing the victim to land
hard on the floor. Suppose the victim falls by 0.50 m, the mass that
moves downward is 70 kg, and the collision on the floor lasts 0.082
s. What are the magnitudes of the (a) impulse and (b) average
force acting on the victim from the floor during the collision?

•27 A force in the negative direction of an x axis is applied
for 27 ms to a 0.40 kg ball initially moving at 14 m/s in the positive
direction of the axis. The force varies in magnitude, and the im-
pulse has magnitude 32.4 N # s.What are the ball’s (a) speed and (b)
direction of travel just after the force is applied? What are (c) the
average magnitude of the force and (d) the direction of the im-
pulse on the ball?

•28 In tae-kwon-do, a hand is slammed down onto a target
at a speed of 13 m/s and comes to a stop during the 5.0 ms collision.
Assume that during the impact the hand is independent of the arm
and has a mass of 0.70 kg. What are the magnitudes of the (a) im-
pulse and (b) average force on the hand from the target?

•29 Suppose a gangster sprays Superman’s chest with 3 g bullets at
the rate of 100 bullets/min, and the speed of each bullet is 500 m/s.
Suppose too that the bullets rebound straight back with no change
in speed. What is the magnitude of the average force on
Superman’s chest?

••30 Two average forces. A steady stream of 0.250 kg snowballs is
shot perpendicularly into a wall at a speed of 4.00 m/s. Each ball
sticks to the wall. Figure 9-49 gives the magnitude F of the force on
the wall as a function of time t for two of the snowball impacts.
Impacts occur with a repetition time interval *tr ! 50.0 ms, last a
duration time interval *td ! 10 ms, and produce isosceles triangles
on the graph, with each impact reaching a force maximum Fmax !
200 N. During each impact, what are the magnitudes of (a) the im-
pulse and (b) the average force on the wall? (c) During a time in-
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Fig. 9-47 Problem 22.
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Fig. 9-46 Problem 20.
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••36 A 0.25 kg puck is initially stationary on an ice surface with
negligible friction. At time t ! 0, a horizontal force begins to
move the puck. The force is given by ! (12.0 % , with 
in newtons and t in seconds, and it acts until its magnitude is
zero. (a) What is the magnitude of the impulse on the puck from
the force between t ! 0.500 s and t ! 1.25 s? (b) What is the
change in momentum of the puck between t ! 0 and the instant
at which F ! 0?

••37 A soccer player kicks a soccer ball of mass 0.45 kg that
is initially at rest. The foot of the player is in contact with the ball
for 3.0 & 10%3 s, and the force of the kick is given by

F(t) ! [(6.0 & 106)t % (2.0 & 109)t2] N

for 0 . t . 3.0 & 10%3 s, where t is in seconds. Find the magnitudes
of (a) the impulse on the ball due to the kick, (b) the average force
on the ball from the player’s foot during the period of contact, (c)
the maximum force on the ball from the player’s foot during the pe-
riod of contact, and (d) the ball’s velocity immediately after it
loses contact with the player’s foot.

••38 In the overhead view of Fig. 9-54, a 300 g ball with a speed v of
6.0 m/s strikes a wall at an angle u of 30° and then rebounds with the

SSM
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terval of many impacts, what is the magnitude of the average force
on the wall?

••31 Jumping up before the elevator hits. After the cable
snaps and the safety system fails, an elevator cab free-falls from a
height of 36 m. During the collision at the bottom of the elevator
shaft, a 90 kg passenger is stopped in 5.0 ms. (Assume that neither
the passenger nor the cab rebounds.) What are the magnitudes of
the (a) impulse and (b) average force on the passenger during the
collision? If the passenger were to jump upward with a speed of 7.0
m/s relative to the cab floor just before the cab hits the bottom of
the shaft, what are the magnitudes of the (c) impulse and (d) aver-
age force (assuming the same stopping time)?

••32 A 5.0 kg toy car can move
along an x axis; Fig. 9-50 gives Fx of
the force acting on the car, which
begins at rest at time t ! 0. The
scale on the Fx axis is set by

In unit-vector nota-
tion, what is at (a) t 4.0 s and
(b) t 7.0 s, and (c) what is at
t 9.0 s?

••33 Figure 9-51 shows a
0.300 kg baseball just before and
just after it collides with a bat. Just
before, the ball has velocity of magnitude 12.0 m/s and angle u1 !
35.0°. Just after, it is traveling directly upward with velocity of mag-
nitude 10.0 m/s. The duration of
the collision is 2.00 ms. What are
the (a) magnitude and (b) direc-
tion (relative to the positive
direction of the x axis) of the im-
pulse on the ball from the bat?
What are the (c) magnitude and
(d) direction of the average force
on the ball from the bat?

••34 Basilisk lizards can run across the top of a water sur-
face (Fig. 9-52). With each step, a lizard first slaps its foot against
the water and then pushes it down into the water rapidly enough to
form an air cavity around the top of the foot. To avoid having to
pull the foot back up against water drag in order to complete the
step, the lizard withdraws the foot before water can flow into the

v:2

v:1

!
v:!

!p:
Fxs ! 5.0 N.

air cavity. If the lizard is not to sink, the average upward impulse
on the lizard during this full action of slap, downward push, and
withdrawal must match the downward impulse due to the gravita-
tional force. Suppose the mass of a basilisk lizard is 90.0 g, the mass
of each foot is 3.00 g, the speed of a foot as it slaps the water is 1.50
m/s, and the time for a single step is 0.600 s. (a) What is the magni-
tude of the impulse on the lizard during the slap? (Assume this im-
pulse is directly upward.) (b) During the 0.600 s duration of a step,
what is the downward impulse on the lizard due to the gravita-
tional force? (c) Which action, the slap or the push, provides the
primary support for the lizard, or are they approximately equal in
their support?

••35 Figure 9-53 shows an approximate plot of force magnitude
F versus time t during the collision of a 58 g Superball with a wall.
The initial velocity of the ball is 34 m/s perpendicular to the wall; the
ball rebounds directly back with approximately the same speed, also
perpendicular to the wall. What is Fmax, the maximum magnitude of
the force on the ball from the wall during the collision?

2 4 86

–Fxs

Fxs

t (s)

Fx (N)

Fig. 9-50 Problem 32.
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Fig. 9-51 Problem 33.

Fig. 9-52 Problem 34. Lizard running across water. (Stephen
Dalton/Photo Researchers)

2 4

Fmax

t (ms)

F 
(N

)

60
0

Fig. 9-53 Problem 35.
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Fig. 9-54 Problem 38.

halliday_c09_201-240v2.qxd  4-09-2009  17:13  Page 233

** View All Solutions Here **

** View All Solutions Here **



234 CHAPTE R 9 CE NTE R OF MASS AN D LI N EAR MOM E NTU M

HALLIDAY REVISED

x

L R
C

0

Fig. 9-55 Problem 41.

Fig. 9-56 Problem 43. (Réunion des Musées Nationaux/Art
Resource)

µ = 0µL µR

dRdL

Fig. 9-57 Problem 44.

same speed and angle. It is in contact with the wall for 10 ms. In unit-
vector notation, what are (a) the impulse on the ball from the wall and
(b) the average force on the wall from the ball?

sec. 9-7 Conservation of Linear Momentum
•39 A 91 kg man lying on a surface of negligible friction
shoves a 68 g stone away from himself, giving it a speed of 4.0 m/s.
What speed does the man acquire as a result?

•40 A space vehicle is traveling at 4300 km/h relative to Earth when
the exhausted rocket motor (mass 4m) is disengaged and sent back-
ward with a speed of 82 km/h relative to the command module (mass
m). What is the speed of the command module relative to Earth just
after the separation?

••41 Figure 9-55 shows a two-ended “rocket” that is initially sta-
tionary on a frictionless floor, with its center at the origin of an x
axis.The rocket consists of a central block C (of mass M ! 6.00 kg)
and blocks L and R (each of mass m ! 2.00 kg) on the left and
right sides. Small explosions can shoot either of the side blocks
away from block C and along the x axis. Here is the sequence: (1)
At time t ! 0, block L is shot to the left with a speed of 3.00 m/s rel-
ative to the velocity that the explosion gives the rest of the rocket.
(2) Next, at time t ! 0.80 s, block R is shot to the right with a speed
of 3.00 m/s relative to the velocity that block C then has. At t !
2.80 s, what are (a) the velocity of block C and (b) the position of
its center?

SSM

with or without the halteres, and assume that he lands at the liftoff
level. What distance would the use of the halteres add to his range?  

••44 In Fig. 9-57, a stationary block explodes into two pieces L
and R that slide across a frictionless floor and then into regions with
friction, where they stop. Piece L, with a mass of 2.0 kg, encounters a
coefficient of kinetic friction mL ! 0.40 and slides to a stop in distance
dL ! 0.15 m. Piece R encounters a coefficient of kinetic friction mR !
0.50 and slides to a stop in distance dR ! 0.25 m. What was the mass
of the block?

••42 An object, with mass m and speed v relative to an observer,
explodes into two pieces, one three times as massive as the other;
the explosion takes place in deep space. The less massive piece
stops relative to the observer. How much kinetic energy is added
to the system during the explosion, as measured in the observer’s
reference frame?

••43 In the Olympiad of 708 B.C., some athletes competing in
the standing long jump used handheld weights called halteres to
lengthen their jumps (Fig. 9-56).The weights were swung up in front
just before liftoff and then swung down and thrown backward dur-
ing the flight. Suppose a modern 78 kg long jumper similarly uses
two 5.50 kg halteres, throwing them horizontally to the rear at his
maximum height such that their horizontal velocity is zero rela-
tive to the ground. Let his liftoff velocity be m/sv:

 
! (9.5î " 4.0ĵ)

••45 A 20.0 kg body is moving through space in the
positive direction of an x axis with a speed of 200 m/s when, due
to an internal explosion, it breaks into three parts. One part, with a
mass of 10.0 kg, moves away from the point of explosion with
a speed of 100 m/s in the positive y direction. A second part, with a
mass of 4.00 kg, moves in the negative x direction with a speed of
500 m/s. (a) In unit-vector notation, what is the velocity of the third
part? (b) How much energy is released in the explosion? Ignore ef-
fects due to the gravitational force.

••46 A 4.0 kg mess kit sliding on a frictionless surface explodes
into two 2.0 kg parts: 3.0 m/s, due north, and 5.0 m/s, 30° north of
east.What is the original speed of the mess kit?

••47 A vessel at rest at the origin of an xy coordinate system ex-
plodes into three pieces. Just after the explosion, one piece, of mass
m, moves with velocity (%30 m/s) and a second piece, also of mass
m, moves with velocity (%30 m/s) . The third piece has mass 3m.
Just after the explosion, what are the (a) magnitude and (b) direc-
tion of the velocity of the third piece?

•••48 Particle A and particle B are held together with a com-
pressed spring between them. When they are released, the spring
pushes them apart, and they then fly off in opposite directions, free of
the spring. The mass of A is 2.00 times the mass of B, and the energy
stored in the spring was 60 J. Assume that the spring has negligible
mass and that all its stored energy is transferred to the particles.
Once that transfer is complete, what are the kinetic energies of (a)
particle A and (b) particle B?

sec. 9-9 Inelastic Collisions in One Dimension
•49 A bullet of mass 10 g strikes a ballistic pendulum of mass
2.0 kg. The center of mass of the pendulum rises a vertical distance
of 12 cm. Assuming that the bullet remains embedded in the pen-
dulum, calculate the bullet’s initial speed.

•50 A 5.20 g bullet moving at 672 m/s strikes a 700 g wooden
block at rest on a frictionless surface. The bullet emerges, traveling
in the same direction with its speed reduced to 428 m/s. (a) What is
the resulting speed of the block? (b) What is the speed of the bul-
let–block center of mass?

••51 In Fig. 9-58a, a 3.50 g bullet is fired horizontally at two
blocks at rest on a frictionless table. The bullet passes through
block 1 (mass 1.20 kg) and embeds itself in block 2 (mass 1.80 kg).
The blocks end up with speeds v1 ! 0.630 m/s and v2 ! 1.40 m/s
(Fig. 9-58b). Neglecting the material removed from block 1 by the

ĵ
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bullet, find the speed of the bullet as it (a) leaves and (b) enters
block 1.

tances dA ! 8.2 m and dB ! 6.1 m.What are the speeds of (a) car A
and (b) car B at the start of the sliding, just after the collision? (c)
Assuming that linear momentum is conserved during the collision,
find the speed of car B just before the collision. (d) Explain why
this assumption may be invalid.

•••59 In Fig. 9-63, block 1 (mass 2.0 kg) is moving rightward
at 10 m/s and block 2 (mass 5.0 kg) is moving rightward at 3.0 m/s.
The surface is frictionless, and a spring with a spring constant of
1120 N/m is fixed to block 2. When the blocks collide, the compres-
sion of the spring is maximum at the instant the blocks have the
same velocity. Find the maximum compression.

ILW

••53 In Anchorage, collisions of a vehicle with a moose are so
common that they are referred to with the abbreviation MVC.
Suppose a 1000 kg car slides into a stationary 500 kg moose on a
very slippery road, with the moose being thrown through the wind-
shield (a common MVC result). (a) What percent of the original
kinetic energy is lost in the collision to other forms of energy? A
similar danger occurs in Saudi Arabia because of camel–vehicle
collisions (CVC). (b) What percent of the original kinetic energy is
lost if the car hits a 300 kg camel? (c) Generally, does the percent
loss increase or decrease if the animal mass decreases?

••54 A completely inelastic collision occurs between two balls of
wet putty that move directly toward each other along a vertical
axis. Just before the collision, one ball, of mass 3.0 kg, is moving up-
ward at 20 m/s and the other ball, of mass 2.0 kg, is moving down-
ward at 12 m/s. How high do the combined two balls of putty rise
above the collision point? (Neglect air drag.)

••55 A 5.0 kg block with a speed of 3.0 m/s collides with a 10
kg block that has a speed of 2.0 m/s in the same direction.After the
collision, the 10 kg block travels in the original direction with a
speed of 2.5 m/s. (a) What is the velocity of the 5.0 kg block imme-
diately after the collision? (b) By how much does the total kinetic
energy of the system of two blocks change because of the colli-
sion? (c) Suppose, instead, that the 10 kg block ends up with a
speed of 4.0 m/s. What then is the change in the total kinetic en-
ergy? (d) Account for the result you obtained in (c).

••56 In the “before” part of Fig. 9-60, car A (mass 1100 kg) is
stopped at a traffic light when it is rear-ended by car B (mass 1400
kg). Both cars then slide with locked wheels until the frictional
force from the slick road (with a low mk of 0.13) stops them, at dis-

ILW

••52 In Fig. 9-59, a 10 g bullet moving directly upward at 1000
m/s strikes and passes through the center of mass of a 5.0 kg block
initially at rest. The bullet emerges from the block moving directly
upward at 400 m/s. To what maximum height does the block then
rise above its initial position?

1 2
Frictionless
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Fig. 9-58 Problem 51.
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Fig. 9-59 Problem 52.

Fig. 9-60 Problem 56.
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Fig. 9-61 Problem 57.

•••58 In Fig. 9-62, block 2 (mass 1.0 kg) is at rest on a frictionless
surface and touching the end of an unstretched spring of spring
constant 200 N/m. The other end of the spring is fixed to a wall.
Block 1 (mass 2.0 kg), traveling at speed v1 ! 4.0 m/s, collides with
block 2, and the two blocks stick together. When the blocks mo-
mentarily stop, by what distance is the spring compressed?

1 2
v1

Fig. 9-62 Problem 58.

1 2

Fig. 9-63 Problem 59.

sec. 9-10 Elastic Collisions in One Dimension
•60 In Fig. 9-64, block A (mass 1.6 kg) slides into block B (mass 2.4
kg), along a frictionless surface. The directions of three velocities be-
fore (i) and after ( f ) the collision are indicated; the corresponding

••57 In Fig. 9-61, a ball of mass m ! 60 g is shot with speed
vi 22 m/s into the barrel of a spring gun of mass M 240 g ini-
tially at rest on a frictionless surface. The ball sticks in the barrel at
the point of maximum compression of the spring. Assume that the
increase in thermal energy due to friction between the ball and the
barrel is negligible. (a) What is the speed of the spring gun after the
ball stops in the barrel? (b) What fraction of the initial kinetic en-
ergy of the ball is stored in the spring?

!!
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x (cm)
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Fig. 9-66 Problem 67.

h

1

2
Frictionless µk

Fig. 9-67 Problem 68.

1 2

2d d

Fig. 9-69 Problem 70.

speeds are vAi 5.5 m/s, vBi 2.5
m/s, and vBf 4.9 m/s. What are the
(a) speed and (b) direction (left or
right) of velocity ? (c) Is the col-
lision elastic?

•61 A cart with mass 340 g
moving on a frictionless linear air
track at an initial speed of 1.2 m/s
undergoes an elastic collision with
an initially stationary cart of un-
known mass. After the collision, the first cart continues in its origi-
nal direction at 0.66 m/s. (a) What is the mass of the second cart?
(b) What is its speed after impact? (c) What is the speed of the two-
cart center of mass?

•62 Two titanium spheres approach each other head-on with the
same speed and collide elastically. After the collision, one of the
spheres, whose mass is 300 g, remains at rest. (a) What is the mass
of the other sphere? (b) What is the speed of the two-sphere center
of mass if the initial speed of each sphere is 2.00 m/s?

••63 Block 1 of mass m1 slides along a frictionless floor and into a
one-dimensional elastic collision with stationary block 2 of mass
m2 ! 3m1. Prior to the collision, the center of mass of the two-
block system had a speed of 3.00 m/s. Afterward, what are the
speeds of (a) the center of mass and (b) block 2?

••64 A steel ball of mass 0.500 kg
is fastened to a cord that is 70.0 cm long
and fixed at the far end.The ball is then
released when the cord is horizontal
(Fig. 9-65). At the bottom of its path,
the ball strikes a 2.50 kg steel block ini-
tially at rest on a frictionless surface.
The collision is elastic. Find (a) the
speed of the ball and (b) the speed of
the block, both just after the collision.

••65 A body of mass 2.0 kg makes an elastic collision with
another body at rest and continues to move in the original
direction but with one-fourth of its original speed. (a) What is the
mass of the other body? (b) What is the speed of the two-body cen-
ter of mass if the initial speed of the 2.0 kg body was 4.0 m/s?

••66 Block 1, with mass m1 and speed 4.0 m/s, slides along an x
axis on a frictionless floor and then undergoes a one-dimensional
elastic collision with stationary block 2, with mass m2 ! 0.40m1.The
two blocks then slide into a region where the coefficient of kinetic
friction is 0.50; there they stop. How far into that region do (a)
block 1 and (b) block 2 slide?

••67 In Fig. 9-66, particle 1 of mass m1 ! 0.30 kg slides rightward
along an x axis on a frictionless floor with a speed of 2.0 m/s. When
it reaches x 0, it undergoes a one-dimensional elastic collision
with stationary particle 2 of mass m2 0.40 kg. When particle 2
then reaches a wall at xw 70 cm, it bounces from the wall with no
loss of speed. At what position on the x axis does particle 2 then
collide with particle 1?

!
!

!
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!
!! ••68 In Fig. 9-67, block 1 of mass m1 slides from rest along a

frictionless ramp from height h 2.50 m and then collides with
stationary block 2, which has mass m2 ! 2.00m1.After the collision,
block 2 slides into a region where the coefficient of kinetic friction
mk is 0.500 and comes to a stop in distance d within that region.
What is the value of distance d if the collision is (a) elastic and (b)
completely inelastic?

!

vAf  = ? vBf 

vAi vBi

Fig. 9-64 Problem 60.

Fig. 9-65 Problem 64.

•••69 A small ball of mass m
is aligned above a larger ball of
mass M ! 0.63 kg (with a slight sep-
aration, as with the baseball and bas-
ketball of Fig. 9-68a), and the two are
dropped simultaneously from a
height of h ! 1.8 m. (Assume the ra-
dius of each ball is negligible relative
to h.) (a) If the larger ball rebounds
elastically from the floor and then
the small ball rebounds elastically
from the larger ball, what value of m
results in the larger ball stopping
when it collides with the small ball?
(b) What height does the small ball
then reach (Fig. 9-68b)?

•••70 In Fig. 9-69, puck 1 of mass m1 ! 0.20 kg is sent sliding
across a frictionless lab bench, to undergo a one-dimensional elas-
tic collision with stationary puck 2. Puck 2 then slides off the bench
and lands a distance d from the base of the bench. Puck 1 rebounds
from the collision and slides off the opposite edge of the bench,
landing a distance 2d from the base of the bench. What is the mass
of puck 2? (Hint: Be careful with signs.)

Basketball

Baseball

(a) Before (b) After

Fig. 9-68 Problem 69.

sec. 9-11 Collisions in Two Dimensions
••71 In Fig. 9-21, projectile particle 1 is an alpha particle and
target particle 2 is an oxygen nucleus. The alpha particle is scat-
tered at angle u1 64.0° and the oxygen nucleus recoils with speed
1.20 " 105 m/s and at angle u2 51.0°. In atomic mass units, the
mass of the alpha particle is 4.00 u and the mass of the oxygen nu-
cleus is 16.0 u.What are the (a) final and (b) initial speeds of the al-
pha particle?

••72 Ball B, moving in the positive direction of an x axis at speed
v, collides with stationary ball A at the origin. A and B have differ-
ent masses.After the collision, B moves in the negative direction of
the y axis at speed v/2. (a) In what direction does A move? (b)

!
!
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Show that the speed of A cannot be determined from the given in-
formation.

••73 After a completely inelastic collision, two objects of the
same mass and same initial speed move away together at half their
initial speed. Find the angle between the initial velocities of the
objects.

••74 Two 2.0 kg bodies, A and B, collide.The velocities before the
collision are and m/s.
After the collision, What are (a) the final
velocity of B and (b) the change in the total kinetic energy (includ-
ing sign)?

••75 A projectile proton with a speed of 500 m/s collides elasti-
cally with a target proton initially at rest. The two protons then
move along perpendicular paths, with the projectile path at 60°
from the original direction. After the collision, what are the speeds
of (a) the target proton and (b) the projectile proton?

sec. 9-12 Systems with Varying Mass: A Rocket
•76 A 6090 kg space probe moving nose-first toward Jupiter at
105 m/s relative to the Sun fires its rocket engine, ejecting 80.0 kg
of exhaust at a speed of 253 m/s relative to the space probe.What is
the final velocity of the probe?

•77 In Fig. 9-70, two long barges are moving in the same
direction in still water, one with a speed of 10 km/h and the other
with a speed of 20 km/h. While they are passing each other, coal is
shoveled from the slower to the faster one at a rate of 1000 kg/min.
How much additional force must be provided by the driving en-
gines of (a) the faster barge and (b) the slower barge if neither is to
change speed? Assume that the shoveling is always perfectly side-
ways and that the frictional forces between the barges and the water
do not depend on the mass of the barges.

SSM

20ĵ ) m/s.v:/A ! (%5.0î "
(%10î " 5.0ĵ )v:B !v:A ! (15î " 30ĵ ) m/s

of which 1.81 105 kg is fuel. The rocket engine is then fired for
250 s while fuel is consumed at the rate of 480 kg/s. The speed of
the exhaust products relative to the rocket is 3.27 km/s. (a) What is
the rocket’s thrust? After the 250 s firing, what are (b) the mass
and (c) the speed of the rocket?

Additional Problems
80 An object is tracked by a radar station and determined to have
a position vector given by ! (3500 % 160t) " 2700 " 300 ,
with in meters and t in seconds. The radar station’s x axis points
east, its y axis north, and its z axis vertically up. If the object is a
250 kg meteorological missile, what are (a) its linear momentum,
(b) its direction of motion, and (c) the net force on it?

81 The last stage of a rocket, which is traveling at a speed of 7600
m/s, consists of two parts that are clamped together: a rocket case
with a mass of 290.0 kg and a payload capsule with a mass of 150.0
kg.When the clamp is released, a compressed spring causes the two
parts to separate with a relative speed of 910.0 m/s. What are the
speeds of (a) the rocket case and (b) the payload after they have
separated? Assume that all velocities are along the same line. Find
the total kinetic energy of the two parts (c) before and (d) after
they separate. (e) Account for the difference.

82 Pancake collapse of a tall building. In the section of a
tall building shown in Fig. 9-71a, the infrastructure of any given
floor K must support the weight W of all higher floors. Normally
the infrastructure is constructed with a safety factor s so that it can
withstand an even greater downward force of sW. If, however, the
support columns between K and L suddenly collapse and allow the
higher floors to free-fall together onto floor K (Fig. 9-71b), the
force in the collision can exceed sW and, after a brief pause, cause
K to collapse onto floor J, which collapses on floor I, and so on un-
til the ground is reached. Assume that the floors are separated by

and have the same mass. Also assume that when the
floors above K free-fall onto K, the collision lasts 1.5 ms. Under
these simplified conditions, what value must the safety factor s ex-
ceed to prevent pancake collapse of the building?

d ! 4.0 m

r:
k̂ĵîr:

&

•78 Consider a rocket that is in deep space and at rest relative to
an inertial reference frame. The rocket’s engine is to be fired for a
certain interval. What must be the rocket’s mass ratio (ratio of ini-
tial to final mass) over that interval if the rocket’s original speed
relative to the inertial frame is to be equal to (a) the exhaust speed
(speed of the exhaust products relative to the rocket) and (b) 2.0
times the exhaust speed?

•79 A rocket that is in deep space and initially at rest
relative to an inertial reference frame has a mass of 2.55 105 kg,&

ILWSSM

Fig. 9-70 Problem 77.

N

M

L

K

J

I

d

(a) (b)

Fig. 9-71 Problem 82.

83 “Relative” is an important word. In Fig. 9-72, block L of mass
mL ! 1.00 kg and block R of mass mR ! 0.500 kg are held in place
with a compressed spring between them. When the blocks are re-
leased, the spring sends them sliding across a frictionless floor.
(The spring has negligible mass and falls to the floor after the

L R

Fig. 9-72 Problem 83.
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x

321

Fig. 9-75 Problem 86.

x

321

Fig. 9-74 Problem 85.

blocks leave it.) (a) If the spring gives block L a release speed of
1.20 m/s relative to the floor, how far does block R travel in the next
0.800 s? (b) If, instead, the spring gives block L a release speed of
1.20 m/s relative to the velocity that the spring gives block R, how
far does block R travel in the next 0.800 s?

84 Figure 9-73 shows an overhead
view of two particles sliding at constant
velocity over a frictionless surface. The
particles have the same mass and the
same initial speed v ! 4.00 m/s, and
they collide where their paths intersect.
An x axis is arranged to bisect the angle
between their incoming paths, such that
u ! 40.0°. The region to the right of the
collision is divided into four lettered
sections by the x axis and four numbered dashed lines. In what re-
gion or along what line do the particles travel if the collision is (a)
completely inelastic, (b) elastic, and (c) inelastic? What are their fi-
nal speeds if the collision is (d) completely inelastic and (e) elastic?

85 Speed deamplifier. In Fig. 9-74, block 1 of mass m1

slides along an x axis on a frictionless floor at speed 4.00 m/s. Then
it undergoes a one-dimensional elastic collision with stationary
block 2 of mass m2 ! 2.00m1. Next, block 2 undergoes a one-di-
mensional elastic collision with stationary block 3 of mass m3 !
2.00m2. (a) What then is the speed of block 3? Are (b) the speed,
(c) the kinetic energy, and (d) the momentum of block 3 greater
than, less than, or the same as the initial values for block 1? 

hand turn in 4.6 s, the inattentive operator drives into a tree, which
stops the car in 350 ms. In unit-vector notation, what is the impulse
on the car (a) due to the turn and (b) due to the collision? What is
the magnitude of the average force that acts on the car (c) during
the turn and (d) during the collision? (e) What is the direction of
the average force during the turn?

90 A certain radioactive (parent) nucleus transforms to a dif-
ferent (daughter) nucleus by emitting an electron and a neutrino.
The parent nucleus was at rest at the origin of an xy coordinate sys-
tem. The electron moves away from the origin with linear momen-
tum (%1.2 & 10%22 kg # m/s) ; the neutrino moves away from the
origin with linear momentum (%6.4 & 10%23 kg # m/s) . What are
the (a) magnitude and (b) direction of the linear momentum of the
daughter nucleus? (c) If the daughter nucleus has a mass of 5.8 &
10%26 kg, what is its kinetic energy?

91 A 75 kg man rides on a 39 kg cart moving at a velocity of 2.3 m/s.
He jumps off with zero horizontal velocity relative to the ground.
What is the resulting change in the cart’s velocity, including sign?

92 Two blocks of masses 1.0 kg and 3.0 kg are connected by a
spring and rest on a frictionless surface. They are given velocities
toward each other such that the 1.0 kg block travels initially at 1.7
m/s toward the center of mass, which remains at rest. What is the
initial speed of the other block?

93 A railroad freight car of mass 3.18 & 104 kg collides
with a stationary caboose car. They couple together, and 27.0% of
the initial kinetic energy is transferred to thermal energy, sound,
vibrations, and so on. Find the mass of the caboose.

94 An old Chrysler with mass 2400 kg is moving along a straight
stretch of road at 80 km/h. It is followed by a Ford with mass 1600
kg moving at 60 km/h. How fast is the center of mass of the two
cars moving?

95 In the arrangement of Fig. 9-21, billiard ball 1 moving at a
speed of 2.2 m/s undergoes a glancing collision with identical bil-
liard ball 2 that is at rest. After the collision, ball 2 moves at speed
1.1 m/s, at an angle of u2 ! 60°.What are (a) the magnitude and (b)
the direction of the velocity of ball 1 after the collision? (c) Do the
given data suggest the collision is elastic or inelastic?

96 A rocket is moving away from the solar system at a speed of
6.0 & 103 m/s. It fires its engine, which ejects exhaust with a speed
of 3.0 & 103 m/s relative to the rocket. The mass of the rocket at
this time is 4.0 & 104 kg, and its acceleration is 2.0 m/s2. (a) What is
the thrust of the engine? (b) At what rate, in kilograms per second,
is exhaust ejected during the firing?

97 The three balls in the overhead view of Fig. 9-76 are identical.
Balls 2 and 3 touch each other and are aligned perpendicular to the
path of ball 1. The velocity of ball 1 has magnitude v0 ! 10 m/s and
is directed at the contact point of balls 1 and 2. After the collision,
what are the (a) speed and (b) direction of the velocity of ball 2,
the (c) speed and (d) direction of the velocity of ball 3, and the (e)
speed and (f) direction of the velocity of ball 1? (Hint: With fric-
tion absent, each impulse is directed along the line connecting the
centers of the colliding balls, normal to the colliding surfaces.)

SSM

SSM
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î
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86 Speed amplifier. In Fig. 9-75, block 1 of mass m1 slides
along an x axis on a frictionless floor with a speed of v1i 4.00 m/s.
Then it undergoes a one-dimensional elastic collision with station-
ary block 2 of mass m2 ! 0.500m1. Next, block 2 undergoes a one-
dimensional elastic collision with stationary block 3 of mass m3 !
0.500m2. (a) What then is the speed of block 3? Are (b) the speed,
(c) the kinetic energy, and (d) the momentum of block 3 greater
than, less than, or the same as the initial values for block 1? 

!

87 A ball having a mass of 150 g strikes a wall with a speed of 5.2
m/s and rebounds with only 50% of its initial kinetic energy. (a) What
is the speed of the ball immediately after rebounding? (b) What is the
magnitude of the impulse on the wall from the ball? (c) If the ball is
in contact with the wall for 7.6 ms, what is the magnitude of the aver-
age force on the ball from the wall during this time interval?

88 A spacecraft is separated into two parts by detonating the ex-
plosive bolts that hold them together. The masses of the parts are
1200 kg and 1800 kg; the magnitude of the impulse on each part
from the bolts is 300 N # s. With what relative speed do the two
parts separate because of the detonation?

89 A 1400 kg car moving at 5.3 m/s is initially traveling north
along the positive direction of a y axis.After completing a 90° right-

SSM

Fig. 9-76 Problem 97.
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Fig. 9-73 Problem 84.
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98 A 0.15 kg ball hits a wall with a velocity of (5.00 m/s) " (6.50
m/s) " (4.00 m/s) . It rebounds from the wall with a velocity of
(2.00 m/s) (3.50 m/s) ( 3.20 m/s) . What are (a) the change
in the ball’s momentum, (b) the impulse on the ball, and (c) the im-
pulse on the wall?

99 In Fig. 9-77, two identical containers of sugar
are connected by a cord that passes over a friction-
less pulley. The cord and pulley have negligible
mass, each container and its sugar together have a
mass of 500 g, the centers of the containers are
separated by 50 mm, and the containers are held
fixed at the same height. What is the horizontal
distance between the center of container 1 and the
center of mass of the two-container system (a) ini-
tially and (b) after 20 g of sugar is transferred from
container 1 to container 2? After the transfer and
after the containers are released, (c) in what direction and (d) at
what acceleration magnitude does the center of mass move?

100 In a game of pool, the cue ball strikes another ball of the
same mass and initially at rest. After the collision, the cue ball
moves at 3.50 m/s along a line making an angle of 22.0° with the cue
ball’s original direction of motion, and the second ball has a speed
of 2.00 m/s. Find (a) the angle between the direction of motion of
the second ball and the original direction of motion of the cue ball
and (b) the original speed of the cue ball. (c) Is kinetic energy (of
the centers of mass, don’t consider the rotation) conserved?

101 In Fig. 9-78, a 3.2 kg box of running shoes slides on a hori-
zontal frictionless table and collides with a 2.0 kg box of ballet slip-
pers initially at rest on the edge of the table, at height h ! 0.40 m.
The speed of the 3.2 kg box is 3.0 m/s just before the collision. If
the two boxes stick together because of packing tape on their sides,
what is their kinetic energy just before they strike the floor?

k̂%ĵ "î "
k̂ĵ

î velocity after block 2 has collided once with block 1 and once with
the wall. Assume all collisions are elastic (the collision with the
wall does not change the speed of block 2).

Fig. 9-77
Problem 99.

1 2

h

Fig. 9-78 Problem 101.

Fig. 9-79
Problem 102.

102 In Fig. 9-79, an 80 kg man is on a lad-
der hanging from a balloon that has a total
mass of 320 kg (including the basket passen-
ger). The balloon is initially stationary rela-
tive to the ground. If the man on the ladder
begins to climb at 2.5 m/s relative to the lad-
der, (a) in what direction and (b) at what
speed does the balloon move? (c) If the man
then stops climbing, what is the speed of the
balloon?

103 In Fig. 9-80, block 1 of mass m1 ! 6.6
kg is at rest on a long frictionless table that
is up against a wall. Block 2 of mass m2 is
placed between block 1 and the wall and
sent sliding to the left, toward block 1, with
constant speed v2i . Find the value of m2 for
which both blocks move with the same

v2i

1
2

Fig. 9-80 Problem 103.

104 The script for an action movie calls for a small race car (of
mass 1500 kg and length 3.0 m) to accelerate along a flattop boat
(of mass 4000 kg and length 14 m), from one end of the boat to the
other, where the car will then jump the gap between the boat and a
somewhat lower dock. You are the technical advisor for the movie.
The boat will initially touch the dock, as in Fig. 9-81; the boat can
slide through the water without significant resistance; both the car
and the boat can be approximated as uniform in their mass distrib-
ution. Determine what the width of the gap will be just as the car is
about to make the jump.

A45678SF

Dock Boat

Fig. 9-81 Problem 104.

105 A 3.0 kg object moving at 8.0 m/s in the positive direc-
tion of an x axis has a one-dimensional elastic collision with an ob-
ject of mass M, initially at rest. After the collision the object of
mass M has a velocity of 6.0 m/s in the positive direction of the
axis.What is mass M?

106 A 2140 kg railroad flatcar, which can move with negligible
friction, is motionless next to a platform. A 242 kg sumo wrestler
runs at 5.3 m/s along the platform (parallel to the track) and then
jumps onto the flatcar.What is the speed of the flatcar if he then (a)
stands on it, (b) runs at 5.3 m/s relative to it in his original direc-
tion, and (c) turns and runs at 5.3 m/s relative to the flatcar oppo-
site his original direction?

107 A 6100 kg rocket is set for vertical firing from the
ground. If the exhaust speed is 1200 m/s, how much gas must be
ejected each second if the thrust (a) is to equal the magnitude of
the gravitational force on the rocket and (b) is to give the rocket an
initial upward acceleration of 21 m/s2?

108 A 500.0 kg module is attached to a 400.0 kg shuttle craft,
which moves at 1000 m/s relative to the stationary main spaceship.
Then a small explosion sends the module backward with speed
100.0 m/s relative to the new speed of the shuttle craft. As mea-
sured by someone on the main spaceship, by what fraction did the
kinetic energy of the module and shuttle craft increase because of
the explosion?

109 (a) How far is the center of mass of the Earth–Moon
system from the center of Earth? (Appendix C gives the masses of
Earth and the Moon and the distance between the two.) (b) What
percentage of Earth’s radius is that distance?

110 A 140 g ball with speed 7.8 m/s strikes a wall perpendicularly
and rebounds in the opposite direction with the same speed. The

SSM
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–1.50 m 0
x

1 2

Fig. 9-83 Problem 119.

collision lasts 3.80 ms. What are the magnitudes of the (a) impulse
and (b) average force on the wall from the ball?

111 A rocket sled with a mass of 2900 kg moves at 250 m/s
on a set of rails. At a certain point, a scoop on the sled dips into a
trough of water located between the tracks and scoops water into
an empty tank on the sled. By applying the principle of conserva-
tion of linear momentum, determine the speed of the sled after 920
kg of water has been scooped up. Ignore any retarding force on the
scoop.

112 A pellet gun fires ten 2.0 g pellets per second with a
speed of 500 m/s. The pellets are stopped by a rigid wall. What are
(a) the magnitude of the momentum of each pellet, (b) the kinetic
energy of each pellet, and (c) the magnitude of the average force
on the wall from the stream of pellets? (d) If each pellet is in con-
tact with the wall for 0.60 ms, what is the magnitude of the average
force on the wall from each pellet during contact? (e) Why is this
average force so different from the average force calculated in (c)?

113 A railroad car moves under a grain elevator at a constant
speed of 3.20 m/s. Grain drops into the car at the rate of 540
kg/min. What is the magnitude of the force needed to keep the car
moving at constant speed if friction is negligible?

114 Figure 9-82 shows a uniform square plate of edge length 
6d ! 6.0 m from which a square piece of edge length 2d has been
removed.What are (a) the x coordinate and (b) the y coordinate of
the center of mass of the remaining piece?

SSM

SSM

system. (a) What is the speed of the center of mass of P and Q when
the separation is 0.50 m? (b) At what distance from P’s original posi-
tion do the particles collide?

117 A collision occurs between a 2.00 kg particle traveling with
velocity and a 4.00 kg particle
traveling with velocity . The colli-
sion connects the two particles. What then is their velocity in (a)
unit-vector notation and as a (b) magnitude and (c) angle?

118 In the two-sphere arrangement of Fig. 9-20, assume that
sphere 1 has a mass of 50 g and an initial height of h1 ! 9.0 cm, and
that sphere 2 has a mass of 85 g. After sphere 1 is released and col-
lides elastically with sphere 2, what height is reached by (a) sphere
1 and (b) sphere 2? After the next (elastic) collision, what height is
reached by (c) sphere 1 and (d) sphere 2? (Hint: Do not use
rounded-off values.)

119 In Fig. 9-83, block 1 slides along an x axis on a frictionless
floor with a speed of 0.75 m/s. When it reaches stationary block 2,
the two blocks undergo an elastic collision. The following table
gives the mass and length of the (uniform) blocks and also the lo-
cations of their centers at time t ! 0.Where is the center of mass of
the two-block system located (a) at t ! 0, (b) when the two blocks
first touch, and (c) at t ! 4.0 s?

Block Mass (kg) Length (cm) Center at t ! 0

1 0.25 5.0 x ! %1.50 m
2 0.50 6.0 x ! 0

(%2.00 m/s)ĵv:2 ! (6.00 m/s)î "
v:1 ! (%4.00 m/s)î " (%5.00 m/s)ĵ

115 At time t 0, force N acts on an
initially stationary particle of mass 2.00 10%3 kg and force

N acts on an initially stationary particle of
mass 4.00 10%3 kg. From time t 0 to t 2.00 ms, what are the
(a) magnitude and (b) angle (relative to the positive direction of
the x axis) of the displacement of the center of mass of the two-
particle system? (c) What is the kinetic energy of the center of
mass at t ! 2.00 ms?

116 Two particles P and Q are released from rest 1.0 m apart. P has
a mass of 0.10 kg, and Q a mass of 0.30 kg. P and Q attract each other
with a constant force of 1.0 & 10%2 N. No external forces act on the

!!&
F
:

2 ! (2.00î % 4.00ĵ )
&

F
:

1 ! (%4.00î " 5.00ĵ )!SSM

120 A body is traveling at 2.0 m/s along the positive direction of
an x axis; no net force acts on the body. An internal explosion sepa-
rates the body into two parts, each of 4.0 kg, and increases the total
kinetic energy by 16 J. The forward part continues to move in the
original direction of motion. What are the speeds of (a) the rear
part and (b) the forward part?

121 An electron undergoes a one-dimensional elastic collision
with an initially stationary hydrogen atom. What percentage of the
electron’s initial kinetic energy is transferred to kinetic energy of
the hydrogen atom? (The mass of the hydrogen atom is 1840 times
the mass of the electron.)

122 A man (weighing 915 N) stands on a long railroad flatcar
(weighing 2415 N) as it rolls at 18.2 m/s in the positive direction of
an x axis, with negligible friction. Then the man runs along the flat-
car in the negative x direction at 4.00 m/s relative to the flatcar.
What is the resulting increase in the speed of the flatcar?

3d

3d

x

y

0 
d

d

2d

2d

3d 3d

Fig. 9-82 Problem 114.
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10-1  As we have discussed, one focus of physics is motion.
However, so far we have examined only the motion of translation, in
which an object moves along a straight or curved line, as in Fig. 10-1a.
We now turn to the motion of rotation, in which an object turns about an
axis, as in Fig. 10-1b.

You see rotation in nearly every machine, you use it every time you
open a beverage can with a pull tab, and you pay to experience it every
time you go to an amusement park. Rotation is the key to many fun ac-
tivities, such as hitting a long drive in golf (the ball needs to rotate in or-
der for the air to keep it aloft longer) and throwing a curveball in base-
ball (the ball needs to rotate in order for the air to push it left or right).
Rotation is also the key to more serious matters, such as metal failure in
aging airplanes.

We begin our discussion of rotation by defining the variables for the
motion, just as we did for translation in Chapter 2. As we shall see, the
variables for rotation are analogous to those for one-dimensional mo-
tion and, as in Chapter 2, an important special situation is where the ac-
celeration (here the rotational acceleration) is constant. We shall also
see that Newton’s second law can be written for rotational motion, but
we must use a new quantity called torque instead of just force. Work and
the work–kinetic energy theorem can also be applied to rotational mo-
tion, but we must use a new quantity called rotational inertia instead of
just mass. In short, much of what we have discussed so far can be applied
to rotational motion with, perhaps, a few changes.

10-2 The Rotational Variables
We wish to examine the rotation of a rigid body about a fixed axis. A
rigid body is a body that can rotate with all its parts locked together and
without any change in its shape. A fixed axis means that the rotation oc-
curs about an axis that does not move. Thus, we shall not examine an ob-
ject like the Sun, because the parts of the Sun (a ball of gas) are not locked
together. We also shall not examine an object like a bowling ball rolling
along a lane, because the ball rotates about a moving axis (the ball’s mo-
tion is a mixture of rotation and translation).

R O TAT I O N 10
C H A P T E R

W H AT  I S  P H YS I C S ?

241

(a)

(b)

Fig. 10-1 Figure skater Sasha Cohen in motion of (a) pure translation
in a fixed direction and (b) pure rotation about a vertical axis. (a: Mike
Segar/Reuters/Landov LLC; b: Elsa/Getty Images, Inc.)
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Chapter 9
Center of Mass and Linear Momentum
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2
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In this section, we discuss only a single particle. 

in which m is the mass of the particle and v is its velocity. 

Eq. 9-22 tells us that p and v have the same direction. From Eq. 9-22, 

the SI unit for momentum is the kilogram.meter per second (kg . m/s). 



5

Newton expressed his second law of motion in terms of 
momentum:

Answer:

Consider slopes 
and equation 9-
23

(a) 1,3, and then 
2 and 4 tie (zero 
force); 

(b) 3
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7
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Answer: 

No net 
external force, 

(a) 0

(b) no

(c) -x
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Section Exercises

1. We use Eq. 9-5 to solve for 

(a) The x coordinates of the system’s center of mass is:

Solving the equation yields x3 = –1.50 m.

(b) The y coordinates of the system’s center of mass is:

Solving the equation yields y3 = –1.43 m.



11

Chapter 7



12


