

## Dr. George Karraz, Ph. D.

## 3D Object Representations

## Outline

- How objects are modelled in 3D
- Polyhedra
- Quadric surfaces
- Sweep representations
- Constructive Solid Geometry (CSG)
- Quadtree


## Polyhedra

- Objects are simply a set of surface polygons that enclose an object interior
- Simplest and fastest way to render objects
- Often referred to as standard graphics objects
- In many cases packages allow us to define objects as curved surfaces etc but actually convert these to polygon meshes for display
- To define polyhedra we simply define the vertices of the polygons required


## Polyhedra (contd.)



## Quadric Surfaces

- A frequently used class of objects are quadric surfaces
- These are 3D surfaces described using quadratic equations
- Quadric surfaces include:
- Spheres
- Ellipsoids
- Tori
- Paraboloids
- Hyperboloids


## Quadric Surfaces - Spheres

- A spherical surface with radius $r$ centred on the origin is defined as the set of points $(x, y, z)$ that satisfy the equation

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

- This can also be done in parametric form using latitude and longitude angles

$$
\begin{aligned}
& x=r \cos \phi \cos \theta \\
& y=r \cos \phi \sin \theta \\
& z=r \sin \phi
\end{aligned}
$$

$$
\begin{gathered}
-\pi / 2 \leq \phi \leq \pi / 2 \\
-\pi \leq \theta \leq \pi
\end{gathered}
$$

## Quadric Surfaces - Spheres (Contd.)



## Sweep Representations

- Sweep representations are useful for constructing 3 dimensional objects that possess translational, rotational or other symmetries
- Objects are specified as a 2 dimensional shape and a sweep that moves that shape through a region of space


## Sweep Representations - Examples



Axis of
Rotation


## Constructive Solid Geometry Methods

- Constructive Solid Geometry (CSG) performs solid modeling by generating a new object from two three dimensional objects using a set operation
- Valid set operations include
- Union
- Intersection
- Difference


## Constructive Solid Geometry Methods



## Constructive Solid Geometry Methods

- CSG usually starts with a small set of primitives such as blocks, pyramids, spheres and cones
- Two objects re initially created and combined using some set operation to create a new object
- This object can then be combined with another primitive to make another new object
- This process continues until modeling complete


## Constructive Solid Geometry Methods



## Constructive Solid Geometry Methods



## Ray-Casting

- Ray-casting is typically used to implement CSG operators when objects are described with boundary representations
- Ray casting is applied by determining the objects that are intersected by a set of parallel lines emanating from the xy plan along the $z$ axis
- The xy plan is referred to as the firing plane


## Ray-Casting (Cont...)



## Ray-Casting (Cont...)

- Surface intersections along each ray are calculated and these are sorted according to distance from the firing plane
- The surface limits for the composite object are then determined by the specified set operation


## Ray Casting Example



## Outline

- How objects are modelled in 3D
- Polyhedra
- Quadric surfaces
- Sweep representations
- Constructive Solid Geometry (CSG)
- Octree \& Quadtree


## Octrees

Octrees are hierarchical tree structures used to represent solid objects


Octrees are particularly useful in applications that require cross sectional views - for example medical applications
Octrees are typically used when the interior of objects is important

## Octrees \& Quadtrees

- Octrees are based on a two-dimensional representation scheme called quadtree encoding
- Quadtree encoding divides a square region of space into four equal areas until homogeneous regions are found
- These regions can then be arranged in a tree


## Quadtree Example



## Octrees

- Quadtree encodings provide considerable savings in storage when large colour areas exist in a region of space
- An octree takes the same approach as quadtrees, but divides a cube region of 3D space into octants
- Each region within an octree is referred to as a volume element
- Division is continued until homogeneous regions are discovered


## Octrees (cont...)



| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Data Elements in the Representative Octree Node

Region of a<br>Three-Dimensional<br>Space

## Octrees (cont...)

- In 3 dimensions regions can be considered to be homogeneous in terms of color, material type, density or any other physical characteristics


## Octree Examples



