Lecture 1 Math 2

1. Antiderivatives

Given a function f(x), we would like to find another
function F(x) such that
F'(x) =f(x), Vxel=[a,b] SR

we call such a function F(x) an antiderivative of f(x).
EX.1.1 (Finding several Antiderivatives of a given function)
Find an antiderivative of f(x) = x?

Solution Notice that

d /1
L (2.3) = .2
dx(3x) *

i(le + 5) = x?
dx \3

In fact, for any constant c, we have

d (1
—(—x3+c) = x?2
dx \3

1

Thus, F(x) =§x3, H(x) =§x3 +5, G(x) =§x3 +c

are all antiderivatives of f(x) =
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In general, observe that if F(x)is any antiderivative of

f(x) and c is any constant, then

d
—[F) +c]=F'@+0=f®)

Thus, G(x) = F(x) + ¢ is also an antiderivative of f(x).
for any constant c. At this point, you might ask if there
any other antiderivatives of f(x) besides G(x) = F(x) + ¢

The answer, as provided in the foﬂowing theorem, is no.

THEOREM 1.1 Suppose that F and G both

antiderivatives of f on an interval I =[a,b] , then

G(x)=F()+c,vx el for some constant c.

Proof setting H(x) =G(x) — F(x); Yx €1, we get

HxX)=Gx)—-F'(x)=f—f=0 = 3c; H=c
G—F=c>G=F+c
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Definition1.1 (Indefinite Integral)

Let F be any antiderivative of f.The indefinite integral

of f(x) w.r.t.x (with respect to x), is defined by

ff(x)dx =F(x)+c

Where ¢ is an arbitrary constant (the constant of

integration )
EX.1.2 Evaluate [x5dx

Solution we know that

d
6) — (a5
T (x°) = 6x
d 1 6\ _ 5
and so, — (—x ) = x

gl
FO) f()

Therefore

fx5dx=%x6+c 1
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We should point out that every differentiation rule gives

rise to corresponding integration.

For instance, recall that for every number, I,

d

r
— X
dx

=rx" 1

Likewise, we have

i r+1 _ r
X =(r+1x

This proves the following result.

THEOREM 1.2 (Power Rule)

For any real number r# -1,

r+1

x"dx =2
J

r+1

+c
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EX.1.3 (Using the Power Rule)

x17+1 18

17+1 18

e [x'7dx=

1 _3 =341 =2 _
e [Sdt=[t3dt= +tc=—+c=—-t?+c
t ~3+1 -2
1 1+1 3 3
= y2 y2 2 =
¢ f\/ydy=fy2dy=1+1+c=?+c=§yz+c
2 2
1 2
1 _1 x 311 x3 3 2
. fﬁdx—fx3dx—_§+1+c—?+0—5x3+c

: : d , .
Notice that since = (sinx) = cosx , we have

jcosx dx =sinx +c¢

Again, by reversing any derivative formula, we get a

corresponding integration formula.

The foﬂowing tables contain Review of Differentiation,

and Brief Table of Integrals0

If —(F(x)=f (or F(x)=f(x)),then

[f(x)dx=F(x)+c

where c is the integral constant
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The derivative formula The integration formula
Power rule:
i(xrﬂ) =(r+Dx" jx”dx = ;x’”r1 +c:r+—1
dx r+1 ’
Six trigonometric functions:

d , .

— (sinx) = cosx
i( ) = —si

— (cosx) = —sinx
2 (tanx) = sec®x
dx

i(cotx) = —csc?x
dx

d
— (secx) = secx .tanx
dx

i(cscx) = —(cscx .cotx
dx
Exponential functions:
LA XN ox
For any a >0 —(a*) =a*.Ina

d
a(ex) =e*.lne

%(ex) =e*; Ine=1

[cosx =sinx + ¢

[ sinx dx = — cosx + ¢

[sec’x =tanx + ¢

[csc®x

[secx .

[cscx .

J

dx = —cotx +c

tanx dx =secx + ¢

—CSCx +c¢

cotx dx

a*dx=—.a* +c¢
Ina

fexdx=ex+c
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Logarithmic Functions:

d 1
a(lnx) ==
Generally:
d f(x)
— (1 -1
dx(nf(x)) 5
Inverse Functions:
d (si 1 ) = 1
7y (SinTx) = —
d ( _1) B 1
7 (cos™) = —
1
il -1y —
dx (tan™") 1+ x2
d ( t_l) B 1
dx o 14 x2
4 (seci) = — 1 x> 1
e sec x_lxl. xz—l'x
d . -1
—(csc™'x) = x> 1

dx x| VxZ — 1

| =

dx =lnx + ¢

dx =In|f(x)| + ¢

dx =sin"1x + ¢

V1 —x?

dx = cos™1x + ¢

V1 — x?2

dx =tan™1x + ¢

+ x2

dx =cot™1x +¢

dx =sec™x + ¢

lx|. Vx2 —1

d
Vvx2 —1

x=csc lx +c
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The following Theorem says that we can easily compute
integrals of sums, differences and constant multiples of
functions. However, it turns out that the integral of a
product (or a quotient) is not generally the product (or

quotient) of the integrals.

THEOREM.1.3 Suppose that f(x) and g(x) have

antiderivatives, then for any constants a and b we have:

j laf () + bg(0)]dx = a j F()dx + b j g0 dx

Proof we have

= Feodx = £(0)

£ [ g()dx = g(x)
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It then follows that

%[ajf(x)dxi bjg(x)dx] =

agef FO)dx £ b [ g()dx = af (x) + b g(x)
= flaf () £ bg()]dx = a [ f)dx £ b [ g(x)dx m

Note: [ f(x).gx)dx # [ f(x)dx. [ g(x)dx

fx [ f(x)dx
fg(x) dx # Jg(x)dx

EX.14

Find  [(3cosx + 4x8)dx

Solution
[(3cosx +4x®)dx =3 [cosxdx+ 4 [ xBdx
= 3(sinx + ¢;) + LL(X—g9 + C,)
= 3sinx +§x9+c
; € =3¢ + 4cy
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EX.1.5

2

X _
compute [(3e ——)dx
Solution
2 1
JBe* ———=)dx =3 [e*dx =2 [ —dx

= 3(e* +¢;) — 2(tan"1x + ¢,)
=3e* —2tan"x +c¢; ¢ =3c¢c; — 2c,

By the chain rule, for any constant a # 0, we have
d

P sin(a x) = a cos(a x)
or d% E sin(ax)] = cos(ax)
Therefore [ cos(ax)dx = %sin(ax)

In fact, we have the general result

THEOREM.14

If [f(x)dx=F(x)+c then for any constant a # 0

(i) ff(ax)dx=%F(ax)+c

(ii) |ff(ax+ b)dx = 2F(ax +b) +c|; b is constant
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with practice, working problems like those in the

following example will become automatic.
EX.1.6
(Indefinite Integrals of Functions of the form f(ax))
Evaluate
(a) [sin(3x)dx , (b) [5e**dx ,(c) [8sec? (5x)dx ,

(&) 2 (o) S22,

Solution

(a) [sin(3x)dx = —%cos(Sx) +c

(b) f5€4xdx=5fe4xdx=5(ie4x+c)=Ze4x+c
C 8 sec?(5x)dx = 8 [ sec?(5x)dx = 8.=tan 5x + ¢
(c) J ;

1
1o 1|@x+5)72 .
(d) fW [(2x +5) de_E[ = ]-l-C—
(2x + 5)5 +c

(&) Jemm=1 fm= f(2)+x =1 (F) e (5F) +¢

= Ztan™1 (E) +c
a

a
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e The indefinite Integral of a Fraction of
the form 7((;‘))

THEOREM.1.5 I ((’“)) dx = In|f ()| + ¢

Provided f(x)#0

EX.1.7
2 /
o [=—d f(tanx) dx =In|tanx| + ¢
tanx tanx

[ dx=f(x +11)’ dx =In(x>+1) +c¢

x2+1 X2+

Where weE Can remove the absolute Value Sigl’lS since

(x2+1) >0 for all x.

[ =3 =X —f(4x 3)' x =>Inl4x? — 3| + ¢
4x2 3 8 8

fxlnx

[tanx dx = [ 22X gx = —f((;zss’;) dx = — In|cosx| + ¢

COoOSs X

1

— 3 ( _x_ _ ¢ Unx)r —
f dx—f —dx =In|lnx| + ¢

Inx

= In|secx| + ¢
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" Evaluate [secxdx

Notice that

secx (secx +tanx) sec’x + secxtanx

secx =
secx + tanx (secx + tanx)

But (secx)’ = secxtanx

(tanx)’ = sec?x

secx+tanx)/
Thus fsecxdx=f( ) dx = In|tanx + secx| + ¢
secx+tanx

THE END
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