

Welcome to
 Chem. 110
 General Chemistry

- Grade:

30\% First midterm exam
30\% Second midterm exam
40\% Final exam

Important notice

If your absence percentage was more than 25% you will be banned from final exam and fail the course.

- Grade system

- Chemistry by Raymond Chang, Tenth Edition.
 Edition.
- Chemistry by Mortimer, Sixth Edition.
- General Chemistry System by Marwani and Albar.
- Any General Chemistry text book.
- Required chapters:

$$
\begin{aligned}
& 1-2-3-4-5-7-8-9-14-15-16- \\
& 24-25
\end{aligned}
$$

Curriculum

- Chapter one: Chemical Foundations
- Units of Measurement
- The Fundamental SI Units
- The Prefixes Used in SI System
- Chapter two: Atoms, Molecules and lons
- The Atomic Theory
- The Structure of the Atom
- Atomic Number, Mass Number and Isotopes
- The Periodic Table
- Molecules and Ions
- Chemical Formulas
- Naming Compounds
- Chapter Three: Mass Relationships in Chemical Reaction
- Stoichiometric Calculations: Amount of Reactants and Products
- Avogadro’s Number and Molar Mass of an element
- Chemical Equations and Reactions, Balancing Chemical Equations
- Percent Composition of Compounds
- Determining the Formula of a Compound: Empirical, Molecular and Structural Formulas
- Calculation Involving Limiting Reagents
- Molecular Mass
- Atomic Mass
- Reaction Yield

Curriculum

- Chapter Four: Reaction in Aqueous Solutions
- Concentration of Solutions: The Molarity, Mole Fraction and Dilution
- Chapter Five: Gases
- Substance That Exist as Gasses
- Pressure of a Gas
- The Gas Laws of Boyle, Charles and Avogadro
- The Ideal Gas Equation
- Dalton's Law of Partial Pressure
- Chapter Seven: Quantum Theory and the Electronic Structure of Atoms
- From Classical Physics to Quantum Theory
- Bohr's Theory of the Hydrogen Atom
- The Dual Nature of the Electron
- Quantum Numbers Electromagnetic Radiation
- Atomic Orbitals
- Electron Configuration
- The Building-up Principle
- Chapter Eight: Periodic Relationships Among the Elements
- Development of the Periodic Table
- Periodic Classification of the Elements
- Periodic Variation in Physical Properties
- Ionization Energy
- Electron Affinity
- Chapter Nine: Bonding: General Concepts
- Lewis Dot Symbols
- The Ionic Bond
- Types of Chemical Bonds: Ionic and Covalent Bonds
- Electronegative
- Writing Lewis Structures
- Formal Charge Lewis Structures
- The Concept of Resonance
- Exceptions to the Octet Rule
- Chapter Fourteen: Chemical Equilibrium
- The Concept of Equilibrium and the Equilibrium Constant
- Writing Equilibrium Constant Expressions
- The Relationship Between Chemical Kinetics and Chemical Equilibrium
- What Does the Equilibrium Constant Tell Us
- Factors That Affect Chemical Equilibrium

Curriculum

- Chapter Fifteen: Acids and Bases
- The Acid-Base Properties of Water
- pH-A Measure of Acidity
- Weak Acids and Acid Ionization Constants
- Chapter Sixteen: Acid-Base Equilibria and Solubility Equilibria
- The Common Ion Effect
- Buffer Solutions
- Solubility Equilibria
- Chapter Twenty-four: Organic Chemistry
- Aliphatic Hydrocarbons (Alkane, Cycloalkanes, Alkene, Cycloalkenes and Alkynes, Including the NOMENCLATURE)
- Classes of Organic Compounds
- Geometrical Structures Isomerism FOR ALKENES ONLY cis-trans isomers
- Aromatic Hydrocarbons (Including the NOMENCLATURE and o, m, p)
- Chemistry of the Functional Groups (Functional Group Only)
- Chapter Twenty-five: Synthetic and Natural Organic Polymers
- Proteins
- Nucleic Acids

How To Get A+ In This Course

- Find the lectures in website , print, bring
- In Lectures listen, write , ask
- Practice with old exams and on university websit as much as you can

Thank You

Chapter One

Introduction

Chapter 1 Chemical Foundations (p15-20)

- Chemistry: An overview
- Units of Measurement
- The Fundamental SI Units
- The Prefixes Used in SI System

- What is Chemistry?
- Chemistry is the study of Matter's composition, structure, and properties and changes it undergoes.
- Matter is anything that occupies space and has mass
- Thus Matter is everything around us.

Chapter One / Introduction

Element

Heterogeneous mixture

compound

Homogeneous mixture

States of matter

Chapter One / Introduction

Measurement in chemistry

- In every measurement there is a number followed by a unit.
- Units are essential to stating measurements correctly.
- The international system of units $(S I)$ is used world wide to reports result.
- There are seven SI base units as following:

Base Quantity	Name of unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electrical current	ampere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

Chapter One / Introduction

Measurement in chemistry

- Derived units are unit made up of combination of SI base units such as:

Properties	unit	symbol	Definition
force	Newton	N	$\mathrm{Kg} \mathrm{m} / \mathrm{s}^{2}$
Pressure	Pascal	pa	$\mathrm{N} / \mathrm{m}^{2}$ or
$\mathrm{Kg} / \mathrm{m} \mathrm{s}^{2}$			
Energy	Joule	J	$\mathrm{Kg} / \mathrm{m}^{2} \mathrm{~s}^{2}$ or N
m			

- SI units are modified in decimal fashion by a series of prefixes.
- A prefix may be added to a unit to produce a multiple of the original unit.

Chapter One / Introduction

Measurement in chemistry

Prefix	Symbol	Meaning	Example
tera-	T	$1,000,000,000,000$ or 10^{12}	1 terameter $(\mathrm{Tm})=$ $1 \times 10^{12} \mathrm{~m}$
giga-	G	$1,000,000,000$ or 10^{9}	1 gigameter $(\mathrm{Gm})=$ $1 \times 10^{9} \mathrm{~m}$
mega-	M	$1,000,000$ or 10^{6}	1 megameter (Mm) $=1 \times 10^{6} \mathrm{~m}$
kilo-	K	1,000 or 10^{3}	1 kilometer $(\mathrm{km})=$ $1 \times 10^{3} \mathrm{~m}$
deci-	d	$1 / 10$ or 10^{-1}	1 decimeter $(\mathrm{dm})=$ $1 \times 10^{-1} \mathrm{~m}$
centi-	c	$1 / 100$ or 10^{-2}	1 centimeter $(\mathrm{cm})=$ $1 \times 10^{-2} \mathrm{~m}$
milli-	m	$1 / 1,00$ or 10^{-3}	1 millimeter (mm) $=1 \times 10^{-3} \mathrm{~m}$
micro-	μ	$1 / 1,000,000$ or 10^{-6}	1 micrometer $(\mu \mathrm{m})$ $=1 \times 10^{-6} \mathrm{~m}$
nano-	n	$1 / 1,000,000,000$ or 10^{-9}	1 nanometer $(\mathrm{nm})=$ $1 \times 10^{-9} \mathrm{~m}$
pico-	p	$1 / 1,000,000,000,000$ or 10^{-12}	1 picometer (pm) $=1 \times 10^{-12} \mathrm{~m}$

Chapter One / Introduction

Measurement in chemistry

Unit conversion:
1- prefix to Base unit eg. $\mathrm{Km}=====>\mathrm{m}$

2- Base unit to prefix
eg. $m==========>\mathrm{km}$
3- prefix to prefix
eg. km ==========>nm

Chapter One / Introduction

Measurement in chemistry

1- prefix to Base unit

- To remove a prefix from a value, insert the numerical value of the prefix in place of the symbol.
Example : convert 8.53 pm to meters?
Replace p with $\times 10^{-12}$, therefore the answer is $8.53 \times 10^{-12} \mathrm{~m}$
2- Base unit to prefix
- To insert a prefix into a value, insert both the prefix and the inverse of its numerical number.

Example: convert 0.000462 g to milligrams ?
$0.000462 \times 10^{3} \mathrm{mg}=0.462 \mathrm{mg}$

3- prefix to prefix

Example : convert 6 km to nm ?
First convert km to m
Replace k with $\times 10^{3}$, therefore the answer is $6 \times 10^{3} \mathrm{~m}$
Then convert m to nm
$6 \times 10^{3} \times 10^{+9}=6 \times 10^{12} \mathrm{~nm}$

How many second are in a microseconds ?
(a) 1×10^{-1}
(b) 1×10^{-6}
(c) 1×10^{-15}
(d) 1×10^{6}

Which of the following is the smallest

distance?

(a) 21 m
(b) $2.1 \times 10^{2} \mathrm{~cm} \quad$ Put all of them in the same unit
(c) 21 mm
(d) $2.1 \times 10^{4} \mathrm{pm}$

Measurement in chemistry

The diameter of an atom is approximately 1×10^{-7} mm . What is this diameter when expressed in nanometers?
(a) $1 \times 10^{-18} \mathrm{~nm}$
(b) $1 \times 10^{-15} \mathrm{~nm}$
(c) $1 \times 10^{-9} \mathrm{~nm}$
(d) $1 \times 10^{-1} \mathrm{~nm}$

Which of these quantities represents the largest mass?
(a) $2.0 \times 10^{2} \mathrm{mg}$
(b) 0.0010 kg

Put all of them in the same unit
(c) $1.0 \times 10^{5} \mu \mathrm{~g}$
(d) $2.0 \times 10^{2} \mathrm{cg}$

Chapter One / Introduction

Measurement in chemistry

- There is also a set of non-SI units accepted for use with SI such as litter.
- One common unite of volume is litter (L). A litter is the volume occupied by one cubic decimeter.
$1 \mathrm{dm}=10 \mathrm{~cm}$
$1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$
$1 \mathrm{dm}^{3}=1 \mathrm{~L}$
$1000 \mathrm{~cm}^{3}=1 \mathrm{~L}$
$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$

$$
\begin{aligned}
& 1 \mathrm{~L}=1000 \mathrm{ml} \\
& 1 \mathrm{~mL}=10^{-3} \mathrm{~L}
\end{aligned}
$$

$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
$1 \mathrm{~L}=1 \mathrm{dm}^{3}$

Chapter One / Introduction

- Density = mass / volume

$$
d=m / V
$$

- Example:

A student determines that a piece of an unknown material has a mass of 5.854 g and a volume of $7.57 \mathrm{~cm}^{3}$. What is the density of the material?

$$
\begin{aligned}
\mathrm{d} & =\mathrm{m} / \mathrm{V} \\
& =5.854(\mathrm{~g}) / 7.57\left(\mathrm{~cm}^{3}\right) \\
& =0.773 \mathrm{~g} / \mathrm{cm}^{3} \\
& =0.773 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

- Example

A piece of silver (Ag) metal weighing 194.3 g is placed in a graduated cylinder containing 242.0 mL of water. The volume of water now reads 260.5 mL . From these data calculate the density of silver?
volume of silver = volume of water (after) - volume of water (before) = 260.5-242.0=18.5 ml
$d=m / V$
$=194.3 / 18.5$
$=10.5 \mathrm{~g} / \mathrm{ml}$

Thank you

Chapter Two

Atoms, molecules and Ions

- Chapter 2 Atoms, Molecules and Ions (p42-68)
- 2.1 The Atomic Theory
- 2.2 The Structure of the Atom
- 2.3 Atomic Number, Mass Number and Isotopes
- 2.4 The Periodic Table
- 2.5 Molecules and Ions
- 2.6 Chemical Formulas
- 2.7 Naming Compounds

Chapter Two / Atoms, molecules and Ions

The Atomic Theory

- Dalton's atomic theory has four assumptions:

1. Atoms are the building blocks of elements.
2. For the same element all atoms are identical. The atoms for one element are different from the atoms of all other elements.
3. Atoms combine in definite ratio to makes compound.
4. A chemical reaction involves only the separation, combination and rearrangement of atoms. It dos not result in their creation or destruction.

$$
\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}+\mathrm{O}
$$

What is atom?
Atom is the basic unit of an element that can enter into chemical combination.

Structure of atom

Neutron
Electron

Chapter Two / Atoms, molecules and Ions

Structure of atom

- Protons and neutrons are together in the nucleus of an atom, whereas electrons are in motion in orbits around the central nucleus.
- Protons carry a positive electrical charge, electrons carry a negative charge, and neutrons carry no charge.
- Most atoms are electrically neutral, meaning that they have an equal number of protons and electrons

Particle	Symbol	Charge	Mass
Electron	e^{-}	-1	0.0005486 amu
$-2-a$	-		
Proton	p^{+}	+1	1.007276 amu
Neutron	n^{0}	0	1.008665 amu

- J.J. Thomson is the scientist who determine the ratio between electronic charge to the mass of an electron using a cathode ray tube experiment

Cathode Ray Tube

Fluorescent screen

Chapter Two / Atoms, molecules and Ions

- What is amu?
amu is atomic mass unit
$1 \mathrm{amu}=1.66053886 \times 10^{-27}$ kilograms

Chapter Two / Atoms, molecules and Ions

```
Atomic Number and Mass Number
```

- All atoms can be identified by the number of proton and neutrons they contain.
- Atomic number is the number of proton in the nucleus.
- In neutral atom the number of proton is equal to the number of electron thus the atomic number also refer to the number of electron.
- The chemical identity of an atom can be determined solely by the atomic number.
- Example: the atomic number of Fluorine is 9 this means that each fluorine atom have 9 protons and 9 electrons.
Any atom have 9 proton is Fluorine.
- Mass number is the total number of neutrons and protons present in the nucleus of an atom of an element.
- Thus, number of neutrons = atomic mass - atomic number
- Isotopes are atoms that have the same atomic number (proton number) but different mass numbers.
- This mean the number of neutrons is the only difference between isotopes. For example there are 3 isotopes for hydrogen
${ }^{1} \mathrm{H}$

Hydrogen
${ }^{2} \mathrm{H}$

Deuterium

Tritium

Chapter Two / Atoms, molecules and Ions

Structure of atom

$$
\begin{array}{rl}
\text { Mass Number } \longrightarrow \mathrm{A} \\
\text { Atomic Number } \longrightarrow \mathrm{Z} & \mathrm{X} \text { Element Symbol }
\end{array}
$$

- Example: Carbon (atomic number 6) has three natural isotopes with atomic weights of 12,13 and 14.

isotope	\#p $==$	\#n =====
C-12	6	6
C-13	6	7
C-14	6	8

- With exception of hydrogen, which has different names for each of its Isotopes, isotopes of element are identified by their mass number. For example carbon isotopes are called : carbon-12, carbon 13 and carbon 14

Chapter Two / Atoms, molecules and Ions

Structure of atom

- Important notice : as chemical properties of element determine by the number of proton and electron. Thus isotopes of the same element have similar chemistries, forming the same type of compound and displaying similar reactivity.
- Do you understand Isotopes?
- How many protons, neutrons, and electrons are in ${ }_{6}^{14} \mathrm{C}$?

6 protons, 8 (14-6) neutrons, 6 electrons

- Between 1800 and 1900 more than half the elements were discovered.
- Scientist tried to organize all the elements based on similarities which led to the porn of the periodic table.
- The periodic table is a chart in which elements having similar chemical and physical properties are grouped together.

Modern Periodic Table

\square Metals
Metalloids

$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathbf{P r} \end{aligned}$	$\begin{gathered} 60 \\ \mathrm{Nd} \end{gathered}$	$\begin{aligned} & 61 \\ & \mathbf{P m} \end{aligned}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{gathered} 64 \\ \mathbf{G d} \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \end{gathered}$	$\begin{aligned} & 66 \\ & \mathbf{D y}^{2} \end{aligned}$	67 Ho	$\begin{aligned} & 68 \\ & \mathbf{E r} \end{aligned}$	$\stackrel{69}{\mathbf{T m}}$	70 $\mathbf{Y b}$	71 $\mathbf{L a}$
$\begin{aligned} & 90 \\ & \mathbf{T h} \end{aligned}$	$\begin{aligned} & 91 \\ & \mathbf{P a} \end{aligned}$	92 4	P3 Np	94 Pu	95 Am	${ }_{\mathbf{C m}}^{96}$	97 $\mathbf{B k}$	${ }^{98}$	Es	${ }_{1} 100$	101 Md	102 No	[103

Nonmetals

Elements in the periodic table are divided into three categories: Metal: (in green colour, Most elements) is a good conductor of heat and electricity
Nonmetal: (in blue colour, 17 elements) is a poor conductor of heat and electricity
Metalloid: (in brown colour, 8 elements) has properties that are intermediate between those of metals and nonmetals

Modern Periodic Table

Chapter Two / Atoms, molecules and Ions

Molecules

- Molecules : is an aggregate of at least two atoms or more in a definite arrangement held together by chemical forces.
- What is the difference between molecule and compound?

Molecules may contain two atoms of the same element or atoms of different elements.
Compound only contain two or more elements
Thus all compounds are molecules but not all molecules are compounds.
Molecules or compounds?
$\mathrm{H}_{2} \mathrm{O}, \mathrm{I}_{2}, \mathrm{NaCl}, \mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{NaOH}$
compound
$\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}, \mathrm{NaOH}$
All molecules

Molecules

Molecules contain only two atoms. Example: $\mathrm{H}_{2}, \mathrm{O}_{2} \mathrm{~N}_{2}$, $\mathrm{HCl}, \mathrm{CO}$

Molecules contain more than two atoms. Example: $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{NH}_{3}, \mathrm{O}_{3}$

Ion is an atom or a group of atoms that has a net of positive or negative charge.

An ion with positive charge
If a neutral atom loses one or more electrons it becomes a cation.

17 protons
17 electrons

An ion with negative charge
If a neutral atom gains one or more electrons it becomes an anion.

11 protons 10 electrons

Do You Understand Ions?

How many protons and electrons are in ${ }_{13}^{27} \mathrm{Al}^{3^{+}}$?
Proton $=13$, electron $=13-3=10$
Neutron $=27-13=14$

How many protons and electrons are in ${ }_{34}^{78} \mathrm{Se}^{2-}$?
Proton $=34$, electron $=34+2=36$
Neutron $=78-34=44$

Chapter Two / Atoms, molecules and Ions

Chemical Formula

Molecular Formula

It's a formula shows the exact number of atoms of each elements in the smallest unit of a substance

- $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$
$-\mathrm{CN}_{2} \mathrm{H}_{4}$
- 3
$-\mathrm{Cl}_{2} \mathrm{C}_{2} \mathrm{H}_{4}$
- $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{4}$
- $\mathrm{Al}_{2} \mathrm{O}_{3}$
- $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
- NH_{2}
- O
- ClCH_{2}
- $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}$
- $\mathrm{Al}_{2} \mathrm{O}_{3}$

Standard Types of Formulas and Models

Formula of Ionic Compounds

- lonic compound consist of a cation and an anion
- the formula is always the same as the empirical formula
- the sum of the charges on the cation and anion in each formula unit must equal zero

The ionic compound NaCl

Chapter Two / Atoms, molecules and Ions

Formula of Ionic Compounds

- The subscript of the cation is numerically equal to the charge on the anion, and the subscript on the anion is numerically equal to the charge on the cation

Examples:

	Metals
	Metalloids
	Nonmetals

Chapter Two / Atoms, molecules and Ions

 containing carbon are also considered as inorganic such as $\mathrm{CO}_{2}, \mathrm{CO}_{3}^{-} \mathrm{HCO}_{3}^{-}, \mathrm{CS}_{2}, \mathrm{CO}, \mathrm{CN}^{-}$

Chapter Two / Atoms, molecules and Ions

Ionic Compounds

- Mostly metals cation + nonmetal anion
- Rule: Name the metal first, then the nonmetal as -ide.

Example :
NaCl Sodium chloride
$\mathrm{ZnI}_{2} \quad$ Zinc iodide
$\mathrm{Al}_{2} \mathrm{O}_{3}$ Aluminum oxide
$\mathrm{Na}_{3} \mathrm{~N}$ Sodium nitride
$\mathrm{KBr} \quad$ Potassium bromide

CaO Calcium oxide
MgS Magnesium sulfide

	Metals
	Metalloids
Nonmetals	

Chapter Two / Atoms, molecules and Ions

Ionic Compounds

- Metal cation can be devided into two catagrories :

1- metal form one type of cation. Example: Alkali group and alkali earth group.
2- metal form more than one type of cation. Example: transient metals. (Fe^{+2}, Fe^{+3}).

- Rule Exceptions:

If have a variable charged metal, then give its charge in the middle with a Roman Numeral in parenthesis. This called stock system.
Example:
$\mathrm{FeCl}_{2}=\operatorname{Iron}$ (II) Chloride.
$\mathrm{FeCl}_{3}=$ Iron (III) chloride

Chapter Two / Atoms, molecules and Ions

Ionic Compounds

- Nonmetal anion can be divided into two groups:

1- monoatomic anion. Example : Cl^{-}chloride , Br^{-}bromide, O^{-2} Oxide.
2- Polyatomic anion. Example : OH^{-}hydroxide , CN^{-}cyanide.

- Common names for some anions:
$\mathrm{CO}_{3}{ }^{-2}$ Carbonate, PO_{4}^{-3} Phosphate, SO_{4}^{-2} Sulphate
HCO_{3}^{-}Bicarbonate, $\mathrm{NO}_{3}{ }^{-}$Nitrate, SO_{3}^{-2} Sulphite

```
Ionic Compounds
```

TABLE 2.2	The "-ide" Nomenclature of Some Common Monatomic Anions According to Their Positions in the Periodic Table		
Group 4A	Group 5A	Group 6A	Group 7A
C carbide $\left(\mathrm{C}^{4-}\right)^{*}$	N nitride $\left(\mathrm{N}^{3-}\right)$	O oxide $\left(\mathrm{O}^{2-}\right)$	F fluoride $\left(\mathrm{F}^{-}\right)$
Si silicide $\left(\mathrm{Si}^{4-}\right)$	P phosphide $\left(\mathrm{P}^{3-}\right)$	S sulfide $\left(\mathrm{S}^{2-}\right)$	Cl chloride $\left(\mathrm{Cl}^{-}\right)$
		Se selenide $\left(\mathrm{Se}^{2-}\right)$	Br bromide $\left(\mathrm{Br}^{-}\right)$
		Te telluride $\left(\mathrm{Te}^{2-}\right)$	I iodide $\left(\mathrm{I}^{-}\right)$

*The word "carbide" is also used for the anion C_{2}^{2-}.

Chapter Two / Atoms, molecules and Ions

TABLE 2.3

Names and Formulas of Some Common Inorganic Cations

 and Anions| Cation | Anion |
| :---: | :---: |
| aluminum (Al^{3+}) | bromide (Br^{-}) |
| ammonium (NH_{4}^{+}) | carbonate (CO_{3}^{2-}) |
| barium $\left(\mathrm{Ba}^{2+}\right)$ | chlorate (ClO_{3}^{-}) |
| cad $\left(\mathrm{Cd}^{2}\right.$ | chloride (Cl^{-}) |
| calc Ca^{2+} | chromate (CrO_{4}^{2-}) |
| cesit | cyanide (CN^{-}) |
| chron II thromic (Cr^{3+}) | dichromate ($\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$) |
| cobalt tous (Co^{2+}) | dihydrogen phosphate ($\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$) |
| copper fous (Cu^{+}) | fluoride (F^{-}) |
| copper fric (Cu^{2+}) | hydride (H^{-}) |
| hydroge | hydrogen carbonate or bicarbonate (HCO_{3}^{-}) |
| iron(II) \quad us $\left(\mathrm{Fe}^{2+}\right)$ | hydrogen phosphate (HPO_{4}^{2-}) |
| iron(III) ic (Fe^{3+}) | hydrogen sulfate or bisulfate (HSO_{4}^{-}) |
| lead(II) bbous (Pb^{2+}) | hydroxide (OH^{-}) |
| lithium | iodide (I^{-}) |
| magnes $\quad{ }^{+}$) | nitrate (NO_{3}^{-}) |
| manga manganous (Mn^{2+}) | nitride (N^{3-}) |
| merce A curous $\left(\mathrm{Hg}_{2}^{2+}\right)^{\text {w }}$ | nitrite $\left(\mathrm{NO}_{2}^{-}\right)$ |
| merc s curic (Hg^{2+}) | oxide (O^{2-}) |
| potas | permanganate (MnO_{4}^{-}) |
| rubi (Rb | peroxide (O_{2}^{2-}) |
| sily g^{+}) | phosphate (PO_{4}^{3-}) |
| sodium (Na^{+}) | sulfate (SO_{4}^{2-}) |
| strontium (Sr^{2+}) | sulfide (S^{2-}) |
| tin(II) or stannous (Sn^{2+}) | sulfite (SO_{3}^{2-}) |
| zinc (Zn^{2+}) | thiocyanate (SCN^{-}) |

Chapter Two / Atoms, molecules and Ions

Ionic Compounds

- Example 1:

Name the following compounds:
a) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
b) $\mathrm{KH}_{2} \mathrm{PO}_{4}$
C) $\mathrm{NH}_{4} \mathrm{ClO}_{3}$
b) Cu from transition metal then it have more than one form of cation, $\mathrm{NO}_{3}{ }^{-1}$ has common name nitrate thus
copper (II) nitrate
b) Potassium from group 1A thus it form only one type of cation, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}$ has common name dihydrogen phosphate thus
Potassium dihydrogen phosphate.
C) $\mathrm{NH}_{4}{ }^{+1}$ has common name ammonium, $\mathrm{ClO}_{3}{ }^{-1}$ has common name chlorate thus
Ammonium chlorate

```
Ionic Compounds
```

- Example 2:

Write the chemical formula of the following compounds :
a) Mercury(II) nitrite,
b) cesium sulfide
c) calcium phosphate.
a) $\mathrm{Hg}^{+2} \mathrm{NO}_{2}{ }^{-1}=====\mathrm{Hg}\left(\mathrm{NO}_{2}\right)_{2}$
b) $\mathrm{Cs}^{+1} \mathrm{~S}^{-2}=======\mathrm{Cs}_{2} \mathrm{~S}$
c) $\mathrm{Ca}^{+2} \quad \mathrm{PO}_{4}^{-3}========\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Chapter Two / Atoms, molecules and Ions

Molecular Compounds

- Mostly nonmetal + nonmetal or
nonmetal + metalloid

Rule: Name the first element, then the second element as -ide.
Example:
HCl Hydrogen chloride
HBr Hydrogen bromide
SiC silicon carbide

- Its common that one pair of element can form different compounds. Example:

$$
\begin{array}{lll}
\mathrm{CO} & \mathrm{SO}_{2} & \mathrm{NO}_{2} \\
\mathrm{CO}_{2} & \mathrm{SO}_{3} & \mathrm{~N}_{2} \mathrm{O}_{4}
\end{array}
$$

Chapter Two / Atoms, molecules and Ions

Molecular Compounds

CO carbon monoxide
CO_{2} carbon dioxide
SO_{2} sulfur dioxide
SO_{3} sulfur trioxide
$\mathrm{N}_{2} \mathrm{O}_{4}$ dinitorgen tetraoxide
TABLE 2.4

Greek Prefixes Used in
Naming Molecular
Compounds

Prefix Meaning

mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

- Name as before and add the number of atom before each hepta- 7 elements.
- Note that for the first element the prefix mono can be omitted.
- Compounds containing hydrogen are exception from this rule. Example:
$\mathrm{B}_{2} \mathrm{H}_{6}$ diborane, CH_{4} methane, NH_{3} ammonia, SiH_{4} silane, PH_{3} phosphine $\mathrm{H}_{2} \mathrm{O}$ water, $\mathrm{H}_{2} \mathrm{~S}$ hydrogen sulfide
- Example1:

Name the following compounds:
a) $\mathrm{PCl}_{3} \quad$ b) CCl_{4} c) $\mathrm{P}_{2} \mathrm{Cl}_{5}$
a) Phosphorus trichloride
b) Carbon tetrachloride
c) diphosphorus pentachloride

Chapter Two / Atoms, molecules and Ions

Molecular Compounds

- Example2:

Write the chemical formula of the following compounds:
a) Carbon disulfide
b) disilicon hexabromide
c) sulfur tetrafluoride
a) CS_{2}
b) $\mathrm{Si}_{2} \mathrm{Br}_{6}$
c) SF_{4}

Chapter Two / Atoms, molecules and Ions

homework

- Name these compounds:
a) $\mathrm{Na}_{2} \mathrm{CrO}_{4}$
j) Cdl_{2}
b) $\mathrm{K}_{2} \mathrm{HPO}_{4}$
k) SrSO_{4}
c) HBr
d) $\mathrm{Li}_{2} \mathrm{CO}_{3}$
e) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ l) $\mathrm{Al}(\mathrm{OH})_{3}$
m) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
n) FeCl_{2}
f) $\mathrm{NH}_{4} \mathrm{NO}_{2}$
o) FeO
g) PF_{3}
h) PF_{5}
i) $\mathrm{P}_{4} \mathrm{O}_{6}$

Chapter Two / Atoms, molecules and Ions

homework

- Write the chemical formula for the following compound:
a) Rubidium nitrite
b) potassium sulphide
c) magnesium phosphate
d) calcium hydrogen phosphate
e) potassium dihydrogen phosphate
f) iodine heptaflouride
g) ammonium sulphate
h) silver perchlorate
i) boron trichloride
j) copper (I) cyanide
k) copper (II) cyanide
I) lead (II) carbonate
m) lead (IV) carbonate

Thank you

Chapter Three

Mass Relationships in Chemical Reactions

Chapter 3 Mass Relationships in Chemical Reaction(p78-107)

- 3.1 Atomic Mass
- 3.2 Avogadro's Number and Molar Mass of an element
- 3.3 Molecular Mass
- 3.5 Percent Composition of Compounds
- 3.6 Determining the Formula of a Compound: Empirical, Molecular and Structural Formulas
- 3.7 Chemical Equations and Reactions, Balancing Chemical Equations
- 3.8 Stoichiometric Calculations: Amount of Reactants and Products
- 3.9 Calculation Involving Limiting Reagents
- 3.10 Reaction Yield

Chapter Three / Mass relationships in Chemical Reactions

Atomic mass

- Atomic mass = protons + neutrons
- The atom is too small to be weighted.
- However, we can determine the mass of one atom relative to another.
- Atomic mass = the mass of atom in amu
- amu is the mass that exactly equal to one-twelfth the mass of one carbon$12\left({ }^{12} \mathrm{C}\right)$ atom.
- By definition: 1 atom ${ }^{12} \mathrm{C}$ weight 12 amu .
- Setting the atomic mass of carbon-12 at 12 amu provied the standard for measuring the atomic mass for the other elements.

Average atomic mass

- Most element in nature have more than one isotopes. This mean when calculating the atomic mass we should calculated for all isotopes then take the average this called Average atomic mass.
- Natural abundance is the abundance of isotopes in nature.

Chapter Three / Mass relationships in Chemical Reactions

Average atomic mass

- Average atomic mass= sum of (natural abundance x atomic mass) for each isotope
Example: calculate the average atomic mass of carbon?
C-12 natural abundance $=98.90 \%$, atomic mass $=12 \mathrm{amu}$
$\mathrm{C}-13$ natural abundance $=1.10 \%$, atomic mass $=13 \mathrm{amu}$
Note that $98.9 \%=98.9=0.989$
100

$$
1.10 \%=\frac{1.10}{100}=0.011
$$

Average atomic mass $=(\text { natural abundance } x \text { atomic mass })_{c-12}+($ natural abundance x atomic mass $)_{\mathrm{C}-13}$

Chapter Three / Mass relationships in Chemical Reactions

Average atomic mass

Average atomic mass for $\mathrm{C}=(0.989 \times 12)+(0.011 \times 13)$

1					12	01	$a \mathrm{~m}$										18
$\begin{gathered} \hline \mathbf{1} \\ \mathbf{H} \\ 1.008 \end{gathered}$	2											13	14	15	16	17	$\begin{gathered} \stackrel{2}{\mathrm{He}} \\ 4.0026 \end{gathered}$
$\begin{gathered} 3^{3} \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathbf{B e} \\ 9.0122 \end{gathered}$											$\begin{gathered} 5 \\ \hline \mathbf{B} \\ 10.81 \end{gathered}$	$\stackrel{6}{\mathrm{C}}$	$\stackrel{7}{\mathbf{N}} \underset{14.007}{ }$	$\begin{gathered} \stackrel{8}{\mathrm{O}} \\ 15.999 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 18.998 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.180 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.990 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.305 \end{gathered}$	3	4	5	6	7	8	9	10	11	12	$\begin{array}{\|c\|} \hline 13 \\ \mathbf{A l} \\ 26.982 \end{array}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.085 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.974 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \mathbf{C l} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.948 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.098 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ \mathbf{4 0 . 0 7 8} \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.956 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.867 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{v} \\ 50.942 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 51.996 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M m} \\ 54.938 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.845 \end{gathered}$	27 Co 58.933	$\begin{gathered} 28 \\ \mathbf{N i} \\ \mathbf{N B} .693 \end{gathered}$	$\stackrel{2.9}{\stackrel{\mathrm{Clu}}{63.546}}$	$\begin{gathered} 30 \\ \text { Zn1 } \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.723 \end{gathered}$	$\begin{gathered} 32 \\ \mathrm{Ge} \\ 72.63 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.922 \end{gathered}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$ 78.96	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.904 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K} \\ 83.798 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.468 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S I} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.906 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z \mathbf { I }} \\ 91.2 .24 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.906 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.96 \end{gathered}$	$\begin{gathered} 43 \\ \mathbf{T c} \\ (98) \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \mathbf{P d} \\ 106.42 \end{gathered}$		$\begin{gathered} 48 \\ \text { Cd } \\ 112.41 \end{gathered}$	$\begin{gathered} 49 \\ \mathbf{I n} \\ \mathbf{1 1 4 . 8 2} \end{gathered}$	$\begin{array}{r} 50 \\ \text { Sin } \\ 118.71 \end{array}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.76 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathrm{Xe} \\ 131.29 \end{gathered}$
$\begin{gathered} 55 \\ \mathrm{Cs} \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.33 \end{gathered}$	57.71	$\begin{gathered} 72 \\ \text { Hf } \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{T a} \\ 180.95 \end{gathered}$	$\begin{array}{\|c} \hline 74 \\ w \\ 1 * 3.84 \end{array}$	$\begin{gathered} 75 \\ \operatorname{Re} \\ 186.21 \end{gathered}$	76 Os 190.23			$\begin{gathered} 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{array}{\|c\|} \hline 81 \\ \text { T1 } \\ 204.38 \end{array}$	32 Pb 207.2	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (209) \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89-103 \\ \# \end{gathered}$	$\begin{gathered} 104 \\ \text { Rf } \\ (265) \\ \hline \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \\ (268) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ (271) \\ \hline \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \\ (270) \end{gathered}$	$\begin{gathered} 108 \\ \text { Hs } \\ (277) \end{gathered}$	$\begin{gathered} 109 \\ \text { Mt } \\ (276) \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \\ (281) \\ \hline \end{gathered}$	$\begin{gathered} 111 \\ \mathbf{R g} \\ (280) \\ \hline \end{gathered}$	$\begin{gathered} 112 \\ \text { Cn } \\ (285) \\ \hline \end{gathered}$	$\begin{gathered} 113 \\ \text { Uut } \\ (284) \end{gathered}$	$\begin{gathered} 114 \\ \text { F1 } \\ (2.89) \\ \hline \end{gathered}$	115 Uup (288)	$\begin{gathered} 116 \\ \mathbf{L V} \\ (293) \\ \hline \end{gathered}$	$\begin{gathered} 117 \\ \text { Uus } \\ \text { (294) } \end{gathered}$	118 Uuo (294)
* Lanthanide series			$\begin{gathered} 57 \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \end{gathered}$	$\begin{gathered} 59 \\ \text { Pr } \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \text { Nd } \\ 144.24 \end{gathered}$	$\stackrel{61}{\text { PM }}$ (145)	$\begin{gathered} 62 \\ \text { Sm } \\ 150.36 \end{gathered}$	$\begin{gathered} 63 \\ \mathbf{E u} \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \text { Tb } \\ 158.93 \end{gathered}$	$\begin{array}{\|c} 66 \\ \text { Dy } \\ 162.50 \end{array}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \text { EI } \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \text { TmL } \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.05 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$
\# Actinide series			$\begin{gathered} 89 \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \\ \hline \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \\ \hline \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \\ \hline \end{gathered}$	$\stackrel{93}{\mathbf{N} \mathbf{p}}$	$\begin{gathered} 94 \\ \mathbf{P u} \\ (244) \end{gathered}$	$\begin{gathered} 95 \\ \text { AM1 } \\ (243) \\ \hline \end{gathered}$	$\begin{gathered} 96 \\ \text { Cim } \\ (247) \\ \hline \end{gathered}$	$\begin{gathered} 97 \\ \mathbf{B k} \\ (247) \end{gathered}$	98 Cf (251)	$\begin{gathered} 99 \\ \mathbf{E s} \\ (2.52) \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ \text { FH1 } \\ (257) \end{gathered}$	$\begin{gathered} 101 \\ \text { Md } \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (262) \\ \hline \end{gathered}$

Chapter Three / Mass relationships in Chemical Reactions

Average atomic mass

- Example 2:

Calculate the average atomic mass for $\mathrm{Li}\left({ }^{6} \mathrm{Li}(7.42 \%),{ }^{7} \mathrm{Li}(92.58 \%)\right)$?
Li-6 natural abundance $=7.42 \%$, atomic mass $=6 \mathrm{amu}$
Li-7 natural abundance $=92.58 \%$, atomic mass $=7 \mathrm{amu}$
Note that $7.42 \%=\frac{7.42}{100}=0.0742$.

$$
92.58 \%=\frac{92.58}{100}=0.9258
$$

Average atomic mass $=$ (natural abundance x atomic mass $)_{\mathrm{Li}-6}+$ (natural abundance x atomic mass $)_{\text {Li-7 }}$
Average atomic mass for $\mathrm{Li}=(0.0742 \times 6)+(0.9258 \times 7)$

$$
=6.94 \mathrm{amu} .
$$

Avogadro's number

- The mole (mol) is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of $\mathrm{C}-12$.
- They calculate this number and it was found to be $6.022 \times 10^{+23}$.
- This number was called Avogadro's number (N_{A}) (after Italian scientist Amedeo Avogadro).
- 1 dozen of $\mathrm{H}_{2} \mathrm{O}=12 \mathrm{H}_{2} \mathrm{O}$
- 1 mole of $\mathrm{H}_{2} \mathrm{O}=6.022 \times 10^{+23} \mathrm{H}_{2} \mathrm{O}$ atom
- 1 mole of $\mathrm{CO}_{2}=6.022 \times 10^{+23} \mathrm{CO}_{2}$ atom
- 1 mole of cars $=6.022 \times 10^{+23}$ of cars
- 1 mole of shoes $=6.022 \times 10^{+23}$ of shoes

```
Molar Mass
```

- Molar mass $(M)=$ the mass (in gram) of 1 mole of a substance.

For any element atomic mass (amu) $=$ molar mass (grams/mole)

- Example:

Atomic mass of Na is 22.99 amu then Molar mass is $22.99 \mathrm{~g} / \mathrm{mol}$ Atomic mass of P is 30.97 amu then Molar mass is $30.97 \mathrm{~g} / \mathrm{mol}$

- To calculate number of particle (atoms or molecules) :

Number of particle =Avogadro's number x number of moles.

Example1:

Calculate the number of atoms in 2 mole of hydrogen?
Number of atoms $=6.022 \times 10^{+23} \times 2=12.044 \times 10^{+23}$.

Example 2 :

Calculate the number of moles in $6 \times 10^{+20}$ atom of helium (He)?
Number of mole $=$ number of atom $/$ avogadro's number

$$
\begin{aligned}
& =6 \times 10^{+20} / 6.022 \times 10^{+23} \\
& =0.99 \times 10^{-3} \text { mole } .
\end{aligned}
$$

Molar Mass

- Relationships between mole and molar mass:
- n (number of moles)= mass (g) / molar mass (g/mole)
- Example 1:

How may grams of Zn in 0.356 mole of Zn ?
First find the molar mass of Zn from periodic table
$65.39 \mathrm{~g} / \mathrm{mole}$
Number of mole = mass / molar mass
Mass $=$ number of mole \times molar mass
$=0.356$ (mole) $\times 65.39$ ($\mathrm{g} / \mathrm{mole}$)
$=23.3 \mathrm{~g}$.

Molar Mass

- Example 2 :

Calculate the number of atoms in 6.46 grams of helium (He)? The molar mass of He is $4 \mathrm{~g} / \mathrm{mole}$ First calculate number of moles of He :
$\mathrm{n}=6.46(\mathrm{~g}) / 4(\mathrm{~g} / \mathrm{mole})$
$=1.62$ mole

Number of atom $=$ avogadro's number x number of mole

$$
\begin{aligned}
& =6.022 \times 10^{+23} \times 1.62 \\
& =9.73 \times 10^{23} \text { atoms }
\end{aligned}
$$

Chapter Three / Mass relationships in Chemical Reactions

Molecular Mass

- The molecular mass (also called molecular weight) of compound is the sum of all molar mass of each of it elements.

Example1:

what is the Molecular mass for NaOH ?
NaOH consist of $\mathrm{Na}, \mathrm{O}, \mathrm{H}$
Then molecular mass $(\mathrm{NaOH})=$ molar mass of $\mathrm{Na}+$ molar mass of $\mathrm{O}+$ molar mass of H

$$
=23+16.00+1=40 \mathrm{amu}
$$

Example 2:

What is the Molecular mass of SO_{2}
Then molecular mass $\left(\mathrm{SO}_{2}\right)=$ molar mass of $\mathrm{S}+2 \mathrm{X}($ molar mass of O$)$

$$
\begin{aligned}
& =32+2(16) \\
& =64 \mathrm{amu}
\end{aligned}
$$

Molecular Mass

Example 3:

What is the molecular mass of $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$?
Then molecular mass $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}\right)=3 \mathrm{X}($ molar mass of C$)+4 \mathrm{X}($ molar mass of H$)+$ 2X(molar mass of O)

$$
\begin{aligned}
& =3 \mathrm{X} 12+4 \mathrm{X} 1+2 \times 16 \\
& =72 \mathrm{amu}
\end{aligned}
$$

- Molecular mass (amu) = molar mass (g/mole).

Molecular Mass

Example 4:

How many molecules of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ are present in 0.334 g of $\mathrm{C}_{2} \mathrm{H}_{6}$?
Molar mass $=(2 \times 12)+(6 \times 1)=30 \mathrm{~g} / \mathrm{mole}$
First we should calculate the number of mole
Number of mole $=$ mass $/$ molar mass
Number of mole $=0.334 / 30=0.011$ mole
We know that
Number of molecules $=$ Avogadro's number \times number of mole

$$
=6.022 \times 10^{23} \times 0.011
$$

$$
=6.624 \times 10^{21} \text { molecules } .
$$

Chapter Three / Mass relationships in Chemical Reactions

Molecular Mass

- Example 5:

How many hydrogen atoms are present in 25.6 g of urea $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\right.$. The molar mass of urea is $60.06 \mathrm{~g} / \mathrm{mol}$?
First we calculate the number of mole
Number of mole $=$ mass $/$ molar mass

$$
=25.6 / 60.06=0.426 \text { mole }
$$

Number of molecules $=$ avogadro's number x number of mole

$$
=6.022 \times 10^{23} \times 0.426
$$

$$
=2.57 \times 10^{23} \text { molecules }
$$

From the chemical formula of urea $\left(\mathrm{N}+\mathrm{H}_{2} 2_{2} \mathrm{O} \mathrm{O}\right.$

1 molecules of urea $=4$ atom of H
2.567×10^{23} molecules $=$? Atom oh H
$4 \times 2.567 \times 10^{23}=1.03 \times 10^{24}$ atoms

Molecular Mass

- Example 6:

What is the mass, in grams, of one copper atom?
I know that
1 mole of $\mathrm{Cu}======6.022 \times 10^{23}$ atom of Cu
Molar mass of $\mathrm{Cu}=63.55 \mathrm{~g} / \mathrm{mol}$
That mean 63.55 g of $\mathrm{Cu}=======1 \mathrm{~mole}$ of Cu
Thus
1 mole of $\mathrm{Cu}=====\frac{1}{\mathrm{~T}} 6.022 \times 10^{23}$ atom of Cu
1 mole of $\mathrm{Cu}===== \pm 63.55 \mathrm{~g}$ of Cu
Then

6.022×10^{23} atom of $\mathrm{Cu}=====63.55 \mathrm{~g}$ of Cu

$6.22 \times 10^{23} \times ?$ g $=63.55 \times 1$
grams of $\mathrm{Cu}=\frac{1 \times 63.55}{6.022 \times 10^{23}}=\frac{10.55}{10^{23}}=10.55 \times 10^{-23} \mathrm{~g}$
Mass of one atom = molar mass $/$ Avogadro numbegr

Chapter Three / Mass relationships in Chemical Reactions

Percent Composition of a Compounds

- Percent composition by mass is the percent by mass of each element in a compound.
- This can be obtained from this formula:

$$
\frac{n \times \text { molar mass of element }}{\text { molar mass of compound }} \times 100 \%
$$

- Where n is the number of moles of the element in 1 mole of compound

Chapter Three / Mass relationships in Chemical Reactions

Percent Composition of a Compounds

Example 1:

Calculate the percentage of each element in $\mathrm{H}_{2}(2)$
First we calculate the molar mass of the compound
$(2 \times 1)+(2 \times 16)=34 \mathrm{~g} / \mathrm{mol}$
$\%$ of $\mathrm{H}=\frac{2 \times 1}{34} \times 100 \%=5.88 \%$
$\%$ of $\mathrm{O}=\frac{2 \times 16}{34} \times 100 \%=94.12 \%$

THE SUM SHOULD BE 100
$5.88+94.12=100 \%$

Percent Composition of a Compounds

Example 2:
Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is a colorless, syrupy liquid used in detergents, fertilizers, toothpastes, and in carbonates beverages for a "tangy" flavor. Calculate the percent composition by mass of H, P, and O in this compound?
First we calculate the molar mass of the compound
$(3 \times 1)+31+(4 \times 16)=98 \mathrm{~g} / \mathrm{mol}$
$\%$ of $\mathrm{H}=\frac{3 \times 1}{98} \times 100 \%=3.06 \%$
$\%$ of $\mathrm{P}=\frac{1 \times 31}{98} \times 100 \%=31.63 \%$
$\%$ of $\mathrm{O}=\frac{4 \times 16}{98} \times 100 \%=65.31 \%$
THE SUM SHOULD BE 100
$3.06+65.31+31.63=100 \%$

Chapter Three / Mass relationships in Chemical Reactions

Percent Composition of a Compounds

- Example 3:

Which of these is the richest source of nitrogen on a mass percentage basis?
A- Urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ b- Ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C- Guanidine, $\mathrm{HNC}\left(\mathrm{NH}_{2}\right)_{2}$ d- Ammonia, $\mathrm{NH}_{3}{ }^{+}$
We have to calculate the percentage of Nitrogen in each compound then compare between them, the one who have the highest percentage of nitrogen is the richest source of nitrogen.

Chapter Three / Mass relationships in Chemical Reactions

Percent Composition of a Compounds

- It possible to determine the empirical formula from the percentage of elements in the compound.
1- change \% to g
2 - change g to mole (remember the triangle).
3 - divide by the smallest number of moles.
4 - if there was fraction after division change to integer subscripts (multiply by 1 or 2 or 3 etc until reach integer.

Chapter Three / Mass relationships in Chemical Reactions

Percent Composition of a Compounds

Example 1:

Determine the empirical formula of Vitamin C. it is compose of 40.92% of C, 4.58% of H , and 54.50% of O by mass?

1 - change from $\%$ to g
40.92 g of $\mathrm{C}, 4.58 \mathrm{~g}$ of $\mathrm{H}, 54.50 \mathrm{~g}$ of O

2 - change from g to mole using

$$
\begin{aligned}
n_{c} & =\frac{40.92}{12}=3.41 \mathrm{~mol} \text { of } \mathrm{C} \\
\mathrm{n}_{\mathrm{H}} & =\frac{4.58}{1}=4.58 \mathrm{~mol} \text { of } \mathrm{H} \\
\mathrm{n}_{\mathrm{O}} & =\frac{54.50}{16}=3.406 \mathrm{~mol} \text { of } \mathrm{O}
\end{aligned}
$$

Divided by the smallest number of mole which is 3.406

Chapter Three / Mass relationships in Chemical Reactions

Percent Composition of a Compounds

C: $\frac{3.41}{3.406} \approx 1$
$H: \frac{4.58}{3.406}=1.34$
o: $\frac{3.406}{3.406}=1$

4- Because number of hydrogen is 1.33 then we start to multiply until we reach integer, this is trail and error procedure:
$1 \times 1.34=1.34$
$2 \times 1.34=2.68$
$3 \times 1.34=4.02 \approx 4$
Then we multiply all element with the same number we stopped at (which is 3 in this example).
$\mathrm{C}: 1 \times 3=3, \quad \mathrm{O}: 1 \times 3=3, \quad \mathrm{H}=4$
Thus the empirical formula is $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$

Chapter Three / Mass relationships in Chemical Reactions

Percent Composition of a Compounds

- Example 2 :

Allicin is the compound responsible of characteristic smell of garlic. an analysis of the compound gives the following percent composition by mass: $\mathrm{C}: 44.4 \%, \mathrm{H}: 6.21 \%, \mathrm{~S}: 39.5 \%, \mathrm{O}: 9.86 \%$. Calculate its empirical formula?

1- change from \% to g
44.4 g of $\mathrm{C}, 6.21 \mathrm{~g}$ of $\mathrm{H}, 39.5 \mathrm{~g}$ of $\mathrm{S}, 9.86 \mathrm{~g}$ of O .

2 - change from g to mole using

$$
\begin{array}{rlr}
n_{C}=\frac{44.4}{12}=3.70 \mathrm{~mol} \text { of } C & n_{H}=\frac{6.21}{1}=6.21 \mathrm{~mol} \text { of } \mathrm{H} \\
n_{S}=\frac{39.5}{32}=1.23 \mathrm{~mol} \text { of } S & n_{O}=\frac{9.86}{16}=0.62 \mathrm{~mol} \text { of } O
\end{array}
$$

3 - Divide by the smallest number of mole which is 0.62

Percent Composition of a Compounds

$$
\begin{array}{ll}
C: \frac{3.70}{0.62} \approx 6 & H: \frac{6.21}{0.62} \approx 10 \\
S: \frac{1.32}{0.62} \approx 2 & O: \frac{0.62}{0.62}=1
\end{array}
$$

Because all the numbers are integer then we do not need to do anything else and we just write the formula as following :
The empirical formula is $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O} \mathrm{S}_{2}$

Chapter Three / Mass relationships in Chemical Reactions

Percent Composition of a Compounds

- It also possible to determine the molecular formula from the percentage of elements in the compound.
1-determin the empirical formula (as before)
a-change \% to g
b - change g to mole (remember the triangle).
c- divide by the smallest number of moles.
d - if there was fraction after division change to integer subscripts (multiply by 1 or 2 or 3 etc until you reach integer.
2- calculate the molecular mass of empirical formula
3 - calculate the ratio between molecular formula and empirical formula as following:

$$
\text { Ratio }=\frac{\text { molar mass of compound known form the quesition }}{\text { empirical molar mass }}
$$

4-Then multiply the empirical formula with that ratio number

Chapter Three / Mass relationships in Chemical Reactions

Percent Composition of a Compounds

Example 1:
1-Determine the molecular formula of Vitamin C. it is compose of 40.92% of C, 4.58% of H , and 54.50% of O by mass and the molar mass of vitamin C is $176 \mathrm{~g} / \mathrm{mol}$?

First we determine the Empirical formula as seen before for this compound
Empirical formula $=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
2- calculate the molar mass of empirical formula:
$3 \times 12+4 \times 1+3 \times 16=88 \mathrm{~g} / \mathrm{mol}$
3 - calculate the ratio
Ratio $=\frac{\text { molar mass of compound }}{\text { empirical molar mass }}$

$$
\text { Ratio }=\frac{176}{88}=2
$$

4- molecular formula $=$ ratio \times empirical formula

$$
=2 \times \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}
$$

Chapter Three / Mass relationships in Chemical Reactions

Percent Composition of a Compounds

Example 2:

Allicin is the compound responsible of characteristic smell of garlic. an analysis of the compound gives the following percent composition by mass: $\mathrm{C}: 44.4 \%, \mathrm{H}: 6.21 \%, \mathrm{~S}$: 39.5%, O: 9.86\%. Calculate its molecular formula if you know that the molar mass of the compound is $162.27 \mathrm{~g} / \mathrm{mol}$?
First we determine the empirical formula as seen before for this compound
Empirical formula $=\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O} \mathrm{S}_{2}$
2- calculate the molar mass of empirical formula:
$6 \times 12+10 \times 1+16+2 \times 32=162 \mathrm{~g} / \mathrm{mol}$
3 - calculate the ratio

$$
\begin{aligned}
\text { Ratio } & =\frac{\text { molar mass of compound }}{\text { empirical molar mass }} \\
\text { Ratio } & =\frac{162.27}{162}=1
\end{aligned}
$$

4- molecular formula $=$ ratio \times empirical formula

$$
=1 \times \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{OS}_{2}=\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O} \mathrm{~S}_{2}
$$

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

- Often chemist also indicate the physical state of the reactants and products by using the letters g, l, s. and when chemical is dissolved in water the symbol $(a q)$ is used.

$$
\begin{gathered}
\mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
\mathrm{KBr}_{(\mathrm{aq})}+\mathrm{AgNO}_{3(\mathrm{aq})} \longrightarrow \mathrm{KNO}_{3(\mathrm{aq})}+\mathrm{AgBr}_{(\mathrm{s})}
\end{gathered}
$$

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

- Chemical reaction is a process in which a substance (or substances) is changed into one or more new substances.
- Chemical equation uses chemical symbols to show what happens during a chemical reaction.
- Remember in chemical reaction we don't create new elements.
- The chemicals that react with each other called reactant, and the chemicals produced from the reaction is called product.
- To write a chemical equation we always put the reactants on left side and the products on the wright side

Reactants \longrightarrow products

Chemical Reactions and Chemical Equations

There are 3 wav to represent the reaction between hydrogen and oxygen:

Two hydrogen molecules + One oxygen molecule \longrightarrow Two water molecules
$2 \mathrm{H}_{2}$
$+$
O_{2}
\longrightarrow
$2 \mathrm{H}_{2} \mathrm{O}$

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

- How to read chemical equations

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}
$$

a) 2 atom of $\mathrm{Mg}+1$ molecules of O_{2} makes 2 molecules of MgO
b) 2 mole of $\mathrm{Mg}+1$ mole of O_{2} makes 2 mole of MgO
C) From perodic table
48.6 g of $\mathrm{Mg}+32 \mathrm{~g}$ of O_{2} makes 80.6 g of MgO

Molar mass ($\mathrm{g} / \mathrm{mol}$)
d) 2 g of $\mathrm{Mg}+1 \mathrm{~g}$ of O_{2} makes 2 g of MgO

Chapter Three / Mass relationships in Chemical Reactions

Balancing Chemical Equation

1. Identify all reactants and products and write their correct formula on the left side and right side of the equation.
2. Begin balancing by Change the numbers in front of the formulas (coefficients) to make the number of atoms in each element the same on both sides of the equation. Do not change the subscripts. NO_{2} when multiply by $2=======2 \mathrm{NO}_{2}$ not $\mathrm{N}_{2} \mathrm{O}_{4}$
3. Start by balancing those elements that appear in only one reactant and one product.
4. Balance those elements that appear in two or more reactants or products.
5. Check to make sure that you have the same number of each type of atom on both sides of the equation.

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

- Example1:

Balance the following equation:

$$
\mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

1. Identify all reactants and products and write their correct formula on the left side and right side of the equation.

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

2. Start by balancing those elements that appear in only one reactant and one product.
So we should start with C or H but not with O

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

3. Balance those elements that appear in two or more reactants or products

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \quad \text { Multiply } \mathrm{O}_{2} \text { by } \\
& \uparrow \quad \uparrow \quad 8 \\
& 2 \text { oxygen } 5 \times 2 \text { oxygen } 6 \text { oxygen }=16 \text { oxygen } \\
& \text { on left } \\
& \text { on right } \\
& \text { on right } \\
& \text { on right } \\
& \mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

4. Check to make sure that you have the same number of each type of atom on both sides of the equation.

$$
\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

C 5

C $5 \times 1=5$
H 12
H 6X2 =12
O 8X2=16
O $5 \times 2+6=16$

Reactants	Products
5 C	5 C
12 H	12 H
16 O	16 O

- Example2:

Balance the following equation:

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

1. Identify all reactants and products and write their correct formula on the left side and right side of the equation.

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

2. Start by balancing those elements that appear in only one reactant and one product.
So we should start with C or H but not with O

$$
\begin{aligned}
& \underset{\uparrow}{\mathrm{C}_{2} \mathrm{H}_{6}}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}^{2}+\mathrm{H}_{2} \mathrm{O} \underset{\substack{\text { Multiply } \mathrm{CO}_{2} \\
\text { by 2 }}}{ } \\
& 2 \text { carbon } \\
& \text { on left } \\
& 6 \text { hydrogen } \\
& \text { on left } \\
& \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

3. Balance those elements that appear in two or more reactants or products

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

remove fraction by multiply both sides by 2

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

4. Check to make sure that you have the same number of each type of atom on both sides of the equation.

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

C $2 \times 2=4$
C $4 \times 1=4$
H 2X6=12
O 7X2=14

Reactants
4 C
4 C
12 H
12 H
140
140

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

- Example3:

Balance the following equation:

$$
\mathrm{Al}+\mathrm{O}_{2} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}
$$

1. Identify all reactants and products and write their correct formula on the left side and right side of the equation.

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

2. Start by balancing those elements that appear in only one reactant and one product.
All two element $(\mathrm{Al}, \mathrm{O})$ appear only once on each side so we can start with any one.

Multiply Al by 2

Multiply O_{2} by
3/2
2 oxygen 3 oxygen

$$
2 \mathrm{Al}+\frac{3}{2} \mathrm{O}_{2} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}
$$

Chapter Three / Mass relationships in Chemical Reactions

Chemical Reactions and Chemical Equations

$$
2 \mathrm{Al}+\frac{3}{2} \mathrm{O}_{2} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3} \begin{aligned}
& \text { remove fraction by } \\
& \text { multiply both sides by } 2
\end{aligned}
$$

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

4. Check to make sure that you have the same number of each type of atom on both sides of the equation.

Amount of Reactants and Products

- A basic question in chemical laboratory is How much product will be formed from specific amounts of starting materials (reactant)? Or how much starting materials must be used to obtain a specific amount of product?
- To do that you have to follow the following rules.

1- write the balanced equation for the reaction
2 - convert the given amount of reactant to moles
3 - use the mole ratio from the balanced equation to calculate the number of moles of product.
4- convert the number of moles of product to grams.

Chapter Three / Mass relationships in Chemical Reactions

Amount of Reactants and Products

Example 1:

The food we eat is degraded, or broken down, in our bodies to provide energy for growth and function. A general overall equation for this very complex process represents the degradation of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ to carbon dioxide and water:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

If 856 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is consumed by a person over a certain period, what is the mass of CO_{2} produced?
First we make sure that the equation is balanced

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} & 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{C} 6 & \mathrm{C} 6 \\
\mathrm{H} 12 & \mathrm{H} 6 \times 2=12 \\
\mathrm{O} 6+6 \mathrm{X} 2=18 & \mathrm{O} 6 \mathrm{X} 2+6=18
\end{array}
\end{array}
$$

Chapter Three / Mass relationships in Chemical Reactions

Amount of Reactants and Products

2- convert g to mole of glucose

$$
n=\frac{\operatorname{mass}(g)}{\operatorname{molar} \operatorname{mass}(\mathrm{g} / \mathrm{mol})}
$$

Then we have to calculate the molar mass of glucose from periodic table

$$
6 \times 12+12 \times 1+6 \times 16=180 \mathrm{~g} / \mathrm{mol}
$$

$$
n=\frac{856 g}{180(g / m o l)}=4.76 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

3- from the equation

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=======6 \mathrm{~mole}$ of CO_{2} 4.76 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \xlongequal[=======]{ }$? mole of CO_{2}
$1 \times ?=4.76 \times 6$

$$
M O L E S \mathrm{OF} \mathrm{CO}_{2}=\frac{4.76 \times 6}{1}=28.56 \mathrm{~mol} \text { of } \mathrm{CO}_{2}
$$

Chapter Three / Mass relationships in Chemical Reactions

Amount of Reactants and Products

4- convert mole to g

$$
\operatorname{mass}(\mathrm{g})=\operatorname{mole} \mathrm{x} \text { molar mass }
$$

Then we have to calculate the molar mass of CO_{2} from periodic table $1 \times 12+2 \times 16=44 \mathrm{~g} / \mathrm{mol}$

$$
\text { mass }=28.56 \times 44=1.256 \times 10^{3} \mathrm{~g} \text { of } \mathrm{CO}_{2}
$$

Chapter Three / Mass relationships in Chemical Reactions

Amount of Reactants and Products

Example 2 :

All alkali metals reacts with water to produce hydrogen gas and the corresponding alkali metal hydroxide. A typical reaction is that between lithium and water:

$$
2 \mathrm{Li}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{LiOH}+\mathrm{H}_{2}
$$

How many grams of Li are needed to produced 9.89 g of H_{2} ?
First we make sure that the equation is balanced

$$
\begin{array}{ll}
2 \mathrm{Li}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow & 2 \mathrm{LiOH}+\mathrm{H}_{2} \\
\mathrm{Li} 2 & \mathrm{Li} 2 \\
\mathrm{H}_{4} & \mathrm{H} 2+2=4 \\
\mathrm{O}_{2} & \mathrm{O}_{2}
\end{array}
$$

Chapter Three / Mass relationships in Chemical Reactions

Amount of Reactants and Products

2- convert g to mole of glucose

$$
n=\frac{\operatorname{mass}(g)}{\operatorname{molar} \operatorname{mass}(\mathrm{g} / \mathrm{mol})}
$$

Then we have to calculate the molar mass of hydrogen from periodic table $2 \times 1=2 \mathrm{~g} / \mathrm{mol}$

$$
n=\frac{9.89}{2}=4.94 \mathrm{~mol} \text { of } \mathrm{H}_{2}
$$

3 - from the equation

$$
\begin{aligned}
& \quad 2 \mathrm{Li}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{LiOH}+\mathrm{H}_{2} \\
& 2 \text { mole Li }=======1 \text { mole } \mathrm{H}_{2} \\
& \text { ? mole Li }=======4.94 \text { mole of } \mathrm{H}_{2}
\end{aligned}
$$

$2 \times 4.94=? \times 1$

$$
\text { mole of } \mathrm{Li}=\frac{2 \times 4.94}{1}=9.88 \mathrm{~mol} \text { of } \mathrm{Li}
$$

```
Amount of Reactants and Products
```

4- convert mole to g

$$
\text { mass }=\text { mole } \mathrm{x} \text { molar mass }
$$

Then we have to calculate the molar mass of Li from periodic table which is $6.941 \mathrm{~g} / \mathrm{mole}$
Mass of $\mathrm{Li}=9.88 \times 6.941=68.6 \mathrm{~g}$ of Li

Limiting Reagents

$$
A+B \longrightarrow C+D
$$

- What is limiting reagents

Limiting reagents is the reactant used up first in a reaction.
Excess reagents is the reactant present in quantities greater than necessary to react with the quantity of the limiting reagent (the one that is left at the end of the reaction).
By knowing the limiting reagent we can determine the amount of product.

Always take the smallest number

Chapter Three / Mass relationships in Chemical Reactions

Limiting Reagents

Example :
Urea is $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\right]$ is prepared by reacting ammonia with carbon dioxide:

$$
2 \mathrm{NH}_{3}+\mathrm{CO}_{2} \longrightarrow\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

In one process, 637.2 g of NH_{3} are treated with $1142 \mathrm{~g}^{\text {of } \mathrm{CO}_{2}}$.
a) Which of the two reactants is the limiting reagent ?
b) Calculate the mass of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ formed?
c) How much excess reagent (in grams) is left at the end of the reaction?
a) We should calculate how much product each reactant produced and the one with the smallest number is the limiting reagents.
to do so, we have to use the previous method of calculation.

Limiting Reagents

$$
2 \mathrm{NH}_{3}+\mathrm{CO}_{2} \longrightarrow\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

- First start with NH_{3}

1-Convert g to mole :
$\mathrm{n}=637.2 / 17=37.48 \mathrm{~mol}$
2- from equation
2 mole $\mathrm{NH}_{3}========1 \mathrm{~mole}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
$37.48 \mathrm{~mole}^{\mathrm{NH}} \mathrm{N}_{3}===$? Mole $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$

- second start with CO_{2}

1-Convert g to mole :
$\mathrm{n}=1142 / 44=25.95 \mathrm{~mol}$
2 - from equation
1 mole $\mathrm{CO}_{2}========1 \mathrm{~mole}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ $25.95 \mathrm{~mole} \mathrm{CO}_{2}====?$? Mole $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ $1 \times 25.95=1 \times$?
Mole of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}=25.95 \perp 1$ $\mathrm{I}=25.95$ mole of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$

Chapter Three / Mass relationships in Chemical Reactions

Limiting Reagents

b) Calculate the mass of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ formed? Always take the smallest number

We take the number of mole of product formed from the limiting reagent and then converted to grams
The limiting reagent here is NH_{3} and it produce 18.74 mole of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
Molar mass of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}=2 \times 14+4 \times 1+12+16=60 \mathrm{~g} / \mathrm{mol}$
Mass $=$ mole x molar mass

$$
=18.74 \times 60=1124.4 \mathrm{~g} \text { of }\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO} .
$$

Limiting Reagents

c) How much excess reagent (in grams) is left at the end of the reaction?

We need to know how much excess reagent (in this case CO_{2}) remain after the reaction.

Excess reagent = initial amount of CO_{2} - Reacted amount of CO_{2}

The initial amount of CO_{2} we know it from the question ($1142 \mathrm{~g}=25.95 \mathrm{~mole}$)
We need to know how much reacted and we can do this by comparing CO_{2} with product $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$

Always take the smallest number
We know that there are 18.74 mole of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
From equation
1 mole $\mathrm{CO}_{2}========1 \mathrm{~mole}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$.
? Mole of $\mathrm{CO}_{2}===== \pm==18.74$ mole of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$.
Then the number of mole of reacted CO_{2} is 18.74 mole
Then excess reagents $=25.95-18.74=7.21$ mole

$$
=7.21 \times 44=317.24 \mathrm{~g} \text { of } \mathrm{CO}_{2}
$$

Chapter Three / Mass relationships in Chemical Reactions

Yield

- For any reaction there are theoretical yield and actual (practical) yield.
- Theoretical yield : the amount of product that would result if all the limiting reagent reacted.
- Actual yield : the amount of product actually obtained from a reaction.
- Normally the actual yield is less than theoretical yield.
- To determine how efficient a given reaction is, we calculate the percent yield.

$$
\% \text { Yield }=\frac{\text { Actual yield }}{\text { Theoretical yield }} \mathrm{X} 100
$$

- Normally actual yield is given in the question
- We calculate the theoretical yield from the limiting reagent.

Chapter Three / Mass relationships in Chemical Reactions

Example 1:

Titanium is a strong, lightweight, corrosion-resistance metal that is used in rockets, aircraft, jet engines, and bicycle frames. Its prepared by the reaction of titanium (IV) chloride with molten magnesium between $950^{\circ} \mathrm{C}$ and $1150^{\circ} \mathrm{C}$:

$$
\mathrm{TiCl}_{4}+2 \mathrm{Mg} \longrightarrow \mathrm{Ti}+2 \mathrm{MgCl}_{2}
$$

In a certain industrial operation $3.54 \times 10^{7} \mathrm{~g}$ of TiCl_{4} are reacted with 1.13 x $10^{7} \mathrm{~g}$ of Mg .
a) Calculate the theoretical yield of Ti in grams.
b) Calculate the percent yield if $7.91 \times 10^{6} \mathrm{~g}$ of Ti are actually obtained.

Chapter Three / Mass relationships in Chemical Reactions

Grams of	convert	MOLE OF	From balanced	MOLE OF product	convert	Grams of product
reagent		reagent	chemical equation			

a) Calculate the theoretical yield of Ti
in grams. $\quad \mathrm{TiCl}_{4}+2 \mathrm{Mg} \longrightarrow \mathrm{Ti}+2 \mathrm{MgCl}_{2}$
First we have to determine the limiting second start with Mg reagent:
First start with TiCl_{4} :
1-Convert g to mole :
1-Convert g to mole :
$\mathrm{n}=3.54 \times 10^{7} / 189.7=1.87 \times 10^{5} \mathrm{~mol}$
2 - from equation
$1 \mathrm{~mole} \mathrm{TiCl}_{4}=========1 \mathrm{~mole} \mathrm{Ti}$

$$
n=1.13 \times 10^{7} / 24.31=4.65 \times 10^{5} \mathrm{~mol}
$$

2 - from equation
$2 \mathrm{~mole} \mathrm{Mg}=========1 \mathrm{~mole} \mathrm{Ti}$
$1.87 \times 10^{5} \mathrm{~mole} \mathrm{TiCl}_{4}========$? Mole Ti $1 \times 4.65 \times 10^{5}=2 \times$?
$1 \times 1.87 \times 10^{5}=1 \times ?$
IMole of $\mathrm{Ti}=1.87 \times 10^{5}$ mole,
mole of $\mathrm{Ti}=\frac{1 \times 4.65 \times 10^{5}}{2}=2.32 \times 10^{5} \mathrm{~mol}$

Thus the limiting reagent is TiCl_{4} because it produced the least amount of product.
Now we take the number of mole of Ti that produced by the limiting reagent (which is in this example TiCl_{4})
1.87×10^{5} mole of Ti
Convert the mole of TI to g which will be the theoretical yield of Ti
grams of $\mathrm{Ti}=$ mole of $\mathrm{Ti} \times$ molar mass of Ti

$$
=1.87 \times 10^{5} \times 47.88=8.95 \times 10^{6} \mathrm{~g} \text { of } \mathrm{Ti} .
$$

Chapter Three / Mass relationships in Chemical Reactions

Yield

b) Calculate the percent yield if $7.91 \times 10^{6} \mathrm{~g}$ of Ti are actually obtained.

$$
\begin{aligned}
& \% \text { Yield }=\frac{\text { Actual yield }}{\text { Theoretical yield }} \mathrm{X} 100 \\
& \% \text { Yield }=\frac{7.91 \times 10^{6}}{8.95 \times 10^{6}} \times 100=88.4 \%
\end{aligned}
$$

Thank you

Chapter Four

Reactions in Aqueous Solutions

- Solution is a homogenous mixture of two or more substances.
- When water is the solvent, we called the solution aqueous solution.
- Concentration of a solution is the amount of solute present in a given amount of solvent.
- The concentration of a solution can be expressed in many different ways.
- MOLARITY (M): is the number of moles of solute per liter of solution.

$$
\begin{aligned}
& \text { Molarity }=\frac{\text { moles of solute }}{\text { liters of solution }} \\
& \qquad \begin{aligned}
M=\frac{\mathrm{n}}{\mathrm{~V}}
\end{aligned} \\
& \begin{aligned}
\text { where } \mathrm{M} & =\text { molarity } \quad \text { Unit of molarity is mol } / \mathrm{l} \\
& \mathrm{n} \\
\quad \mathrm{~V} & \text { number of moles }
\end{aligned}
\end{aligned}
$$

Chapter Four / Reactions in Aqueous Solutions

Solutions and concentrations

- Steps to prepare a solution of known molarity :

(a)

(c)
(d)

Chapter Four / Reactions in Aqueous Solutions

Solutions and concentrations

Example1:

How many grams of potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ are required to prepare a 250 ml solution whose concentration is 2.16 M .?

$$
\begin{aligned}
& M=\frac{\mathrm{n}}{\mathrm{~V}} \\
& \text { where } \mathrm{M}=\text { molarity } \\
& \\
& \quad \mathrm{n}=\text { number of moles } \\
& \mathrm{V}=\text { volume of solution in liters }
\end{aligned}
$$

$\mathrm{M}=2.16, \mathrm{~V}=250 \mathrm{~mL}=250 / 1000=0.25 \mathrm{~L}$
$\mathrm{n}=\mathrm{MXV}$
$=2.16 \times 0.25=0.54 \mathrm{~mol}$
$\mathrm{n}=$ mass $/$ molar mass
Molar mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=294.2 \mathrm{~g} / \mathrm{mol}$
Mass = $\mathrm{n} \times$ molar mass

$$
=0.54 \times 294.2=158.9 \mathrm{~g}
$$

Example 2:

In a biochemical assay, a chemist needs to add 3.81 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ to a reaction mixture. Calculate the volume in milliteres of a 2.53 M glucose solution he should use for the addition.
$\mathrm{M}=\mathrm{n} / \mathrm{V}$
Molar mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}=$ mass $/$ molar mass
$=3.81 / 180$
$=0.021 \mathrm{~mol}$

$$
\begin{aligned}
& M=n / V \\
& V=n / M \\
& =0.021 / 2.53=8.30 \times 10^{-3} \mathrm{~L} \\
& =8.36 \times 10^{-3} \times 10^{3} \mathrm{~L}=8.30 \mathrm{~mL}
\end{aligned}
$$

FOR IONIC COMPOUNDS

$$
\mathrm{NaCl} \longrightarrow \mathrm{Na}+\mathrm{Cl}
$$

$1 \mathrm{~mol} \mathrm{NaCl}, 1$ mole $\mathrm{Na}^{+}, 1 \mathrm{~mole} \mathrm{Cl}^{-1}$ $1 \mathrm{M} \mathrm{NaCl}, 1 \mathrm{M} \mathrm{Na}^{+}, 1 \mathrm{M} \mathrm{Cl}^{-1}$

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Ba}^{+2}+2 \mathrm{NO}_{3}^{-}
$$

1 mole $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}, 1 \mathrm{~mole} \mathrm{Ba}{ }^{+2}$, 2 mole NO_{3}^{-}
$1 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}, 1 \mathrm{M} \mathrm{Ba}+2,2 \mathrm{M} \mathrm{NO}_{3}{ }^{-}$

Chapter Four / Reactions in Aqueous Solutions

Dilution

Dilution : is the procedure for preparing a less concentrated solution from a more concentrated one.

$$
\begin{gathered}
M_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
\text { BEFORE } \quad \text { AFTER }
\end{gathered}
$$

Example 1 :

How you would prepare $5.00 \times 10^{2} \mathrm{~mL}$ of a $1.75 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution, starting with an 8.61 M stock solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
$\mathrm{M}_{1}=8.61, \mathrm{~V}_{1}=$?, $\mathrm{M}_{2}=1.75, \mathrm{~V}_{2}=5.00 \times 10^{2}$
$M_{1} V_{1}=M_{2} V_{2}$
$8.61 \times V_{1}=1.75 \times 5.00 \times 10^{2}$
$V_{1}=1.75 \times 5.00 \times 10^{2} / 8.61=101.6 \mathrm{ml}$.

Dilution

Example 2:

How would you prepare 60.0 mL of $0.200 \mathrm{M} \mathrm{HNO}_{3}$ from a stock solution of $4.00 \mathrm{M} \mathrm{HNO}_{3}$?
$\mathrm{M}_{1}=4, \mathrm{~V}_{1}=$?, $\mathrm{M}_{2}=0,2, \mathrm{~V}_{2}=60$
$M_{1} V_{1}=M_{2} V_{2}$
$4 \times V_{1}=0.2 \times 60$
$\mathrm{V}_{1}=0.2 \times 60 / 4=3 \mathrm{ml}$.

Thank you

Chapter Five

Gases

Chapter Five / Gases

Substances That Exist as Gases

	2A																8A
												3A	4A	5A	6A	7A	He
Li	Be											B	C	N	0	F	Ne
Na	Mg	3B	4B	5B	6B	7B		8 B		1B	2B	Al	Si	P	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	P_{0}	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							

- Element in blue are Gases
- Noble gases are monatomic
- All other gases $\left(\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}\right)$ diatomic molecules.

Chapter Five / Gases

Substances That Exist as Gases

TABLE 5.1 Some Substances Found as Gases at 1 atm and $25^{\circ} \mathrm{C}$

Elements	Compounds
H_{2} (molecular hydrogen)	HF (hydrogen fluoride)
N_{2} (molecular nitrogen)	HCl (hydrogen chloride)
O_{2} (molecular oxygen)	HBr (hydrogen bromide)
O_{3} (ozone)	HI (hydrogen iodide)
F_{2} (molecular fluorine)	CO (carbon monoxide)
Cl_{2} (molecular chlorine)	CO_{2} (carbon dioxide)
He (helium)	NH_{3} (ammonia)
Ne (neon)	$\mathrm{NO}^{\text {(nitric oxide) }}$
Ar (argon)	NO_{2} (nitrogen dioxide)
Kr (krypton)	$\mathrm{N}_{2} \mathrm{O}$ (nitrous oxide)
Xe (xenon)	SO_{2} (sulfur dioxide)
Rn (radon)	$\mathrm{H}_{2} \mathrm{~S}$ (hydrogen sulfide)
	$\mathrm{HCN}^{\text {(hydrogen cyanide)* }}$

[^0]
Chapter Five / Gases

Substances That Exist as Gases

Physical characteristics of Gases :

- Gases assume the volume and shape of their containers.
- Gases are the most compressible of the states of matter.
- Gases will mix evenly and completely when confined to the same container.
- Gases have much lower densities than liquids and solids.

- Gas particles are in constant moving thus they collide with objects in their bath.
- The gases push against the walls of their containers with a force.
- These collisions produce what we called Gas pressure.

Chapter Five / Gases

Gas pressure

- Pressure can be defined as :

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

- SI unite of pressure is pascal (Pa)
- 1 pascal $=1 \mathrm{~N} / \mathrm{m}^{2}$. where $\mathrm{N}=$ newton, $m=m e t e r$
- Atmospheric pressure is the pressure exerted by Earth's atmosphere.
- We can measure the atmospheric pressure by barometer.
- Standard atmospheric pressure (1atm) is the equal to the pressure that supports a column of a mercury exactly 760 mm (or 76 cm) high at $0^{\circ} \mathrm{C}$ at sea level.
- 1 atm equal a pressure of 760 mmHg .

Chapter Five / Gases

Unites of pressure:
Pascal (Pa), atm, mmHg, torr

1 torr $=1 \mathrm{mmHg}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}$
$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$.
Example1:
convert the pressure of 688 mmHg to atmospheric pressure?
$1 \mathrm{~atm} \overline{\bar{x}} 760 \mathrm{mmHg}$
? $\mathrm{atm}=688 \mathrm{mmHg}$
$760 \times$? $=1 \times 688$
Pressure $=688 / 760=0.905$ atm .

Monometer

$$
P_{\text {gas }}=P_{h}
$$

Gas pressure is less than atmospheric pressure

$$
P_{\text {gas }}=P_{h}+P_{\text {atm }}
$$

Gas pressure is grater than atmospheric pressure

Chapter Five / Gases
Gas Laws

- For every gas there are :

P (pressure), T (Temperature) V (volume), n (mole number).

The Pressure - Volume Relationships Boyle's Law

- Boyles's law study the relationship between the pressure and volume of gas.
- Boyel's law stated that the pressure of a fixed amount of gas at a constant temperature in inversely proportional to the volume of the gas.

$$
P \alpha \frac{1}{V}
$$

Chapter Five / Gases

Gas Laws- Boyle’s Law

$V=1 \mathrm{~L}$
$T=298 \mathrm{~K}$

$V=0.50 \mathrm{~L}$
$T=298 \mathrm{~K}$
$P=4 \mathrm{~atm}$

$$
V=0.25 \mathrm{~L}
$$

$$
T=298 \mathrm{~K}
$$

Chapter Five / Gases

Chapter Five / Gases

Gas Laws- Boyle's Law

Example 1 :

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL ?
$P_{1}=726 \mathrm{mmHg}, \mathrm{V}_{1}=946 \mathrm{ml}, \mathrm{P}_{2}=$?, $\mathrm{V}_{2}=154 \mathrm{~mL}$.
$P_{1} V_{1}=P_{2} V_{2}$
$726 \times 946=P_{2} \times 154$
$\mathrm{P}_{2}=\frac{726 \times 946}{154}$
$=4459.7 \mathrm{mmHg}$

Chapter Five / Gases

> The Temperature - Volume Relationships
> Charle's and Gay-Lussac's Law

- Charle's and Gay-Lussac's law study the relationship between the temperature and volume of gas.
- Charle's and Gay-Lussac's law stated that the volume of a fixed amount of gas at a constant pressure is directly proportional to the absolute temperature of the gas.

(a)

(b)

Chapter Five / Gases

Gas Laws- Charle's Law
$T \alpha V$

$$
\mathrm{T}_{1} \alpha \mathrm{~V}_{1} \Rightarrow \mathrm{~T}_{1}=\mathrm{kxV}_{1} \Rightarrow \mathrm{~K}_{1}
$$

$$
\frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}}
$$

Tin Kelvin

Chapter Five / Gases

Gas Laws- Charle's Law

Example:

A sample of carbon monoxide gas occupies 3.20 L at $125^{\circ} \mathrm{C}$. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant?

$$
\begin{aligned}
& \frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}} \\
& \frac{125+273}{3.2}=\frac{T_{2}}{1.54} \\
& \mathrm{~T}_{2} \times 3.2=398 \times 1.54 \\
& \mathrm{~T}_{2}=612.92 / 3.2 \\
& \quad=191.5 \mathrm{~K}
\end{aligned}
$$

Chapter Five / Gases

\square
Gas Laws

The Volume - Amount Relationships Avogadro's Law

- Avogadro's law study the relationship between the volume and number of mole of gas.
- Avogadro's law stated that at constant pressure and temperature, the volume is directly proportional to the number of moles of the gas

Chapter Five / Gases

Gas Laws- Avogadro's Law

(a)

(b)

(c)

Chapter Five / Gases

Gas Laws- Avogadro's Law

$$
\begin{gathered}
\mathrm{n} \alpha \mathrm{~V} \\
\mathrm{n}_{1} \alpha \mathrm{~V}_{1} \Rightarrow \mathrm{n}_{1}=\mathrm{kxV}_{1} \Rightarrow \mathrm{k} \frac{n_{1}}{V_{1}} \\
\mathrm{n}_{2} \alpha \mathrm{~V}_{2} \Rightarrow \mathrm{n}_{2}=\mathrm{kx} \mathrm{~V}_{2} \xlongequal{\mathrm{k}=\mathrm{k}_{2}} \frac{n_{2}}{V_{2}}
\end{gathered}
$$

$$
\frac{n_{1}}{V_{1}}=\frac{n_{2}}{V_{2}}
$$

Avogadro’s Law

Chapter Five / Gases

$P_{1} V_{1}=P_{2} V_{2}$	Boyle's Law Constant T and n

$$
\frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}}
$$

Charle's Law
Constant P and n

$$
\frac{n_{1}}{V_{1}}=\frac{n_{2}}{V_{2}}
$$

Avogadro's Law
Constant P and T

Chapter Five / Gases

Ideal Gas Equation

We know that

$V \alpha \frac{1}{\mathrm{P}}$	Boyle's law
$\mathrm{V} \alpha \mathrm{T}$	Charle's law
$\mathrm{V} \alpha \mathrm{n}$	A vogadro law

Then
$\mathrm{V} \alpha \frac{\mathrm{nT}}{\mathrm{P}}$
$V=\frac{n R T}{P}$
Ideal Gas Equation

$\mathrm{PV}=\mathrm{nRT}$	$\mathrm{P}=$ pressure (atm), $\mathrm{V}=$ volume $(\mathrm{L}), \mathrm{n}=$ moles $\mathrm{R}=$ gas constant, $\mathrm{T}=$ temperature (K)

Chapter Five / Gases

Ideal Gas Equation

- Ideal gas is a hypothetical gas whose pressure-volume-temperature behavior can be completely accounted for by the ideal gas equation.
- STP : standard Temperature and pressure
- Standard Temperature $=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
- Standard Pressure $=1 \mathrm{~atm}$.
- At STP 1mole of an ideal gas occupies 22.414L.
- R (gas constant) $=0.0821$ L.atm / K.mol

Chapter Five / Gases

```
Ideal Gas Equation
```

Example 1:
Calculate the pressure (in atm) exerted by 1.82 moles of the sulphur hexaflouride in a steel vessel of volume 5.43 L at $69.5^{\circ} \mathrm{C}$.?

$$
\begin{aligned}
P V & =n R T \\
P & =n R T / V \\
& =1.82 \times 0.0821 \times(69.5+273) / 5.43 \\
& =9.41 \mathrm{~atm} .
\end{aligned}
$$

Chapter Five / Gases

Example 2:
Calculate the volume (in liters) occupied by 7.40 g of NH_{3} at STP condition.?
PV=nRT
$\mathrm{n}=$ mass $/$ molar mass
$\mathrm{n}=7.40 / 17=0.435 \mathrm{~mol}$
$\mathrm{V}=\mathrm{nRT} / \mathrm{P}$
$\mathrm{V}=0.435 \times 0.082 \times 273 / 1$
$=9.74 \mathrm{~L}$

Chapter Five / Gases

Ideal Gas Equation

- We can use the ideal gas law if we know three out of four variable namely: $\mathrm{P}, \mathrm{T}, \mathrm{V}, \mathrm{n}$. we can calculate one unknown if we know the other three from the equation of ideal gas.
- However, sometime we have to deal with two conditions, this means we have two P , two V , two T , and two n . thus we need to apply some modification into the equation of ideal gas that take into account the initial and final conditions.

$$
\begin{array}{rr}
P V=n R T \quad R=\frac{P V}{n T} & \text { Normally } n_{1}=n_{2} \\
R=\frac{P_{1} V_{1}}{n_{1} T_{1}} \text { befor change } & \text { And the law become } \\
R=\frac{P_{2} V_{2}}{n_{2} T_{2}} \text { after change } & \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
\end{array}
$$

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{n}_{1} \mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{n}_{2} \mathrm{~T}_{2}}
$$

Chapter Five / Gases

Ideal Gas Equation

Example 1:
A small bubble rises from the bottom of a lake, where the temperature and pressure are $8{ }^{\circ} \mathrm{C}$ and 6.4 atm , to the water surface, where the temperature $25^{\circ} \mathrm{C}$ and the pressure is 1 atm . Calculate the final volume (in mL) of the bubble if its initial volume was 2.1 mL .

Initial condition	Final condition
$\mathrm{P}_{1} 6.4 \mathrm{~atm}$	$\mathrm{P}_{2} 1 \mathrm{~atm}$
$\mathrm{~T}_{1} 8{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{2} 25^{\circ} \mathrm{C}$
$\mathrm{V}_{1} 2.1 \mathrm{ml}$	$\mathrm{V}_{2} ?$

We assume that air amount in the bubble remains constant $\left(\mathrm{n}_{1}=\mathrm{n}_{2}\right)$

Chapter Five / Gases

Ideal Gas Equation

Example 1:
A small bubble rises from the bottom of a lake, where the temperature and pressure are $8{ }^{\circ} \mathrm{C}$ and 6.4 atm , to the water surface, where the temperature $25^{\circ} \mathrm{C}$ and the pressure is 1 atm . Calculate the final volume (in mL) of the bubble if its initial volume was 2.1 mL ?

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1} \\
V_{2}=\frac{6.4 \times 2.1 \times(25+273)}{1 \times(8+273)} \\
V_{2}=14.25 \mathrm{~mL}
\end{gathered}
$$

Chapter Five / Gases

Ideal Gas Equation

Example 2:

An inflated helium balloon with a volume of 0.55 L at sea level (1 atm) is allowed to rise to a high of 6.5 km . where the pressure is about 0.40 atm . Assuming that the temperature remains constant. What is the final volume of the balloon?

We assume that $n_{1}=n_{2}$ and $T_{1}=T_{2}$

$$
\begin{aligned}
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{n}_{1} \mathrm{~T}_{1}} & =\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{n}_{2} \mathrm{~T}_{2}} \\
\mathrm{P}_{1} \mathrm{~V}_{1} & =\mathrm{P}_{2} \mathrm{~V}_{2} \\
1 \times 0.55 & =0.4 \times \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =0.55 / 0.4 \\
= & 1.4 \mathrm{~L}
\end{aligned}
$$

Chapter Five / Gases

$$
\begin{gathered}
P V=n R T \\
P=\frac{n}{V} R T \\
\frac{n}{V}=\frac{P}{R T}
\end{gathered}
$$

I know that $\mathrm{n}=$ mass $/$ molar mass
$\frac{m}{M M V}=\frac{P}{R T}$
I know d= mass/volume

$$
\frac{d}{M M}=\frac{P}{R T}
$$

$P M M=d R T$

$$
\mathrm{d}=\frac{\mathrm{P} \mathrm{MM}}{\mathrm{R} \mathrm{~T}}
$$

Unite for gas density is g / L
$\mathrm{d}=$ density $(\mathrm{g} / \mathrm{L}), \mathrm{P}=$ pressure (atm) $\mathrm{MM}=$ molar mass ($\mathrm{g} / \mathrm{mol}$), $\mathrm{R}=$ gas constant, $\mathrm{T}=$ temperature (K)

Chapter Five / Gases

Example 1:

Calculate the density of CO_{2} in g / L at 0.990 atm and $55^{\circ} \mathrm{C}$?

$$
\begin{gathered}
d=\frac{P M M}{R ~ T} \\
M M\left(C O_{2}\right)=40 \mathrm{~g} / \mathrm{mol} \\
d=\frac{0.99 \times 40}{0.0821 \times(55+273)} \\
d=1.47 \mathrm{~g} / \mathrm{L}
\end{gathered}
$$

Chapter Five / Gases

The molar mass of a gaseous substance

- Normally we can determine the molar mass of a compound from the chemical formula.
- However, sometime we work with unknown compound or partially known compound. If the unknown substance is gaseous, its molar mass can be determine from the ideal gas equation. All needed is the density of the gas (or mass and volume of the gas).

$$
\begin{gathered}
d=\frac{P M M}{R T} \\
d R T=P M M \\
M M=\frac{d R T}{P}
\end{gathered}
$$

Chapter Five / Gases

```
The molar mass of a gaseous substance
```


Example 1:

A chemist has synthesised a green-yellow gaseous compound of chlorine and oxygen and finds that its density is $7.71 \mathrm{~g} / \mathrm{L}$ at $36^{\circ} \mathrm{C}$ and 2.88 atm . Calculate the molar mass of the compound?

$$
\begin{gathered}
\mathrm{MM}=\frac{\mathrm{dR} \mathrm{~T}}{\mathrm{P}} \\
\mathrm{MM}=\frac{7.71 \times 0.0821 \times(36+273)}{2.88} \\
\mathrm{MM}=67.9 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Chapter Five / Gases

The molar mass of a gaseous substance

Example 2:

Chemical analysis of a gaseous compound showed that it contained 33.0 percent Si and 67.0 percent F by mass. At $35^{\circ} \mathrm{C}, 0.210 \mathrm{~L}$ of the compound exerted a pressure of 1.70 atm . If the mass of 0.210 L of the compound was 2.38 g , calculate the molar mass and determine the molecular formula of the compound?
$\mathrm{Si}=33 \%, \mathrm{~F}=67 \%, \mathrm{~T}=35^{\circ} \mathrm{C}, \mathrm{V}=0.210 \mathrm{~L}, \mathrm{P}=1.7 \mathrm{~atm}$, mass $=2.38 \mathrm{~g}$,
$\mathrm{MM}=$?, Molecular formula ??

$$
\begin{array}{rlr}
\mathrm{MM}=\frac{\mathrm{d} \mathrm{R} \mathrm{~T}}{\mathrm{P}} & \mathrm{~d}=11.33 \mathrm{~g} / \mathrm{L} \\
\mathrm{~d} & =\frac{\mathrm{m}}{\mathrm{~V}} & \mathrm{MM}=\frac{11.33 \times 0.0821 \times(35+273)}{1.70} \\
\mathrm{~d}=\frac{2.38}{0.210} & M M=168.5 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

Chapter Five / Gases

The molar mass of a gaseous substance

1- change from \% to g 33 g of $\mathrm{Si}, 67 \mathrm{~g}$ of F ,
2 - change from g to mole using

$$
\begin{aligned}
n_{5 i} & =\frac{33}{28.09}=1.17 \mathrm{~mol} \text { of } \mathrm{Si} \\
n_{\mathrm{F}} & =\frac{67}{19}=3.53 \mathrm{~mol} \text { of } \mathrm{F}
\end{aligned}
$$

Divided by the smallest number of mole which is 1.17

Thus the empirical formula is SiF_{3} Then we calculate the molar mass of the empirical formula
$\mathrm{SiF}_{3}=85.09 \mathrm{~g} / \mathrm{mol}$

$$
\text { Ratio }=\frac{\text { molar mass of compound }}{\text { empirical molar mass }}
$$

$$
\text { Ratio }=\frac{168.5}{85.09} \approx 2
$$

Molecular formula $=$ empirical formula x ratio

$$
=\mathrm{SiF}_{3} \times 2=\mathrm{Si}_{2} \mathrm{~F}_{6}
$$

Chapter Five / Gases

Gas Stoichiometry

- In chapter 3 we learned how to calculate the product amount if we know the amount of reactant or how to calculate the amount of reactant if know the amount of product.
- The relationship was between n and m .
- In gases we can do the same however the relationship is between V and n .

We can use the volume only when the product and reactant are gases. And when T and P are constant

Chapter Five / Gases

Gas Stoichiometry

Example 1:

Calculate the volume of O_{2} (in L) required for the complete combustion of $7.64 L$ of $\mathrm{C}_{2} \mathrm{H}_{2}$ measured at the same temperature and pressure.?

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

From equation
$2 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2} \longrightarrow 5 \mathrm{~mol} \mathrm{O}_{2}$
$2 \mathrm{LC}_{2} \mathrm{H}_{2} \longrightarrow$
$7.64 \mathrm{LC}_{2} \mathrm{H}_{2} \xrightarrow{\mathrm{X}} \mathrm{LOO}_{2}$
$? \mathrm{LO}_{2}$
$5 \times 7.64=2 \times$?
Volume of $\mathrm{O}_{2}=5 \times 7.64 / 2=19.1 \mathrm{~L}$

Chapter Five / Gases

Gas Stoichiometry

Example 2:

Sodium azide $\left(\mathrm{NaN}_{3}\right)$ is used in some automobile air bags. The impact of a collision triggers the decomposition of NaN_{3} as follows:

$$
2 \mathrm{NaN}_{3}(s) \rightarrow 2 \mathrm{Na}(s)+3 \mathrm{~N}_{2}(g)
$$

The nitrogen gas produced quickly inflates the bag between the driver and the windshield and dashboard. Calculate the volume of N_{2} generated at $80^{\circ} \mathrm{C}$ and 823 mmHg by the decomposition of $60 \mathrm{~g} \mathrm{NaN}{ }_{3}$?
$\mathrm{T}=80^{\circ} \mathrm{C}=80+273=353 \mathrm{~K}$
$\mathrm{P}=823 \mathrm{mmHg}$
1 atm $=760 \mathrm{mmHg}$
?atm $=823 \mathrm{mmHg}$
$823 \times 1=760 \times ?=823 / 760=1.083 \mathrm{~atm}$ $\mathrm{m}=60 \mathrm{~g}$.
First convert g to mole
$n=m / M M$
$=60 / 65.02=0.923 \mathrm{~mol}$

From equation
$2 \mathrm{~mol} \mathrm{NaN} 3 \longrightarrow 3 \mathrm{~mol} \mathrm{~N}_{2}$ $0.923 \mathrm{~mol} \mathrm{NaN}_{3} \xrightarrow{X}$? mol N_{2} $3 \times 0.923=2 \times$?
Mole of $\mathrm{N}_{2}=3 \times 0.923 / 2$
Mole of $\mathrm{N}_{2}=1.38 \mathrm{~mol}$

Gas Stoichiometry

$$
\begin{aligned}
& P V=n R T \\
& V=\frac{n R T}{P} \\
& V=\frac{1.38 \times 0.0821 \times 353}{1.083} \\
& V=36.9 \mathrm{~L}
\end{aligned}
$$

Chapter Five / Gases

Dalton's Law of Partial Pressure

- If we have a mixture of gases the total pressure is related to partial pressures of each gas.
- Partial pressure is the pressures of individual gas components in the mixture of gases.
Dalton's law of partial pressures: the total pressure of a mixture of gases is just the sum of the pressures that each gas would exert if it were present alone.

P_{1}

$$
\begin{aligned}
& P_{A}=\frac{n_{A} R T}{V} \\
& P_{B}=\frac{n_{B} R T}{V} \\
& P_{T}=P_{A}+P_{B} \\
& P_{T}=\frac{n_{A} R T}{V}+\frac{n_{B} R T}{V} \\
& P_{T}=\frac{R T}{V}\left(n_{A}+n_{B}\right) \\
& P_{T}=\frac{n R T}{V} \quad \text { Where } n=n_{A}+n_{B}
\end{aligned}
$$

Chapter Five / Gases

Dalton's Law of Partial Pressure

- Mole fraction: is a dimensionless quantity that expresses the ratio of the number of moles of one component to the number of moles of all components present.
$P_{A}=n_{A} R T / V \quad$ Divided by P_{T}

$$
\frac{P_{A}}{P_{T}}=\frac{n_{A} R T / V}{\left(n_{A}+n_{B} / R T / V\right.}
$$

$$
\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{T}}}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}}
$$

$$
=X_{A}
$$

$$
X_{i}=\frac{\mathrm{n}_{i}}{\mathrm{n}_{\mathrm{T}}} \quad \frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{T}}}=X_{i} \quad P_{i}=X_{i} P_{T}
$$

If we have gas mixture consist of two gases (A and B)

Then the sum of all mole fraction for the same mixture is 1

$$
X_{A}+X_{B}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{B}}+\mathrm{n}_{\mathrm{A}}}+\frac{\mathrm{n}_{\mathrm{B}}}{\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}}=1
$$

Chapter Five / Gases

Dalton's Law of Partial Pressure

Example:
A mixture of gasses contains 4.46 moles of $\mathrm{Ne}, 0.74$ mole of Ar , and 2.15 moles of Xe . Calculate the partial pressures of the gases if the total pressure is 2.00 atm at a certain temperature.?
First we have to determine the molar fraction of each gas

$$
\begin{gathered}
X_{i}=\frac{\mathrm{n}_{i}}{\mathrm{n}_{\mathrm{T}}} \\
X_{N e}=\frac{4.46}{4.46+0.74+2.15}=0.607 \\
X_{A r}=\frac{0.74}{4.46+0.74+2.15}=0.1 \\
X_{X e}=\frac{2.15}{4.46+0.74+2.15}=0.293
\end{gathered}
$$

$$
\begin{aligned}
& P_{N e}=X_{N e} P_{T}=0.607 \times 2=1.214 \mathrm{~atm} \\
& P_{A r}=X_{A r} P_{T}=0.1 \times 2=0.2 \mathrm{~atm} \\
& \quad P_{X e}=X_{X e} P_{T}=0.293 \times 2=0.586 \mathrm{~atm}
\end{aligned}
$$

Chapter Five / Gases

Dalton's Law of Partial Pressure

- We can use Dalton's Law of partial pressure to calculate the volume of gases over water.
- We can use this method as long as the gas we are collecting do not react with water and do not dissolve in water.
- Therefore this method is suitable for oxygen but not suitable for NH_{3}.
- We need to remember that above water there is always water vapor which have pressure
- Therefore if we want to collect oxygen gas:

$$
P_{T}=P_{O_{2}}+P_{H_{2} \mathrm{O}}
$$

Chapter Five / Gases

Dalton's Law of Partial Pressure

Example:
Oxygen gas generated by the decomposition of potassium chlorate is collected. The volume of oxygen collected at $24^{\circ} \mathrm{C}$ and atmospheric pressure of 762 mmHg is 128 ml . Calculate the mass (in g) of oxygen gas obtained. The pressure of the water vapour at $24^{\circ} \mathrm{C}$ is 22.4 mmHg .?
$\mathrm{T}=24{ }^{\circ} \mathrm{C}=24+273=297 \mathrm{~K}, \mathrm{~V}_{\mathrm{O} 2}=128 \mathrm{ml}=128 / 1000=0.128 \mathrm{~L}, \mathrm{~m}=$? ?
$\mathrm{P}_{\mathrm{T}}=762 \mathrm{mmHg}$,
$1 \mathrm{~atm}=760 \mathrm{mmHg}$
?atm $=762 \mathrm{mmHg}$
$762 \times 1=$? 760
762 /760 =1.002atm
$\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=22.4 \mathrm{mmHg}$,
$1 \mathrm{~atm}=760 \mathrm{mmHg}$
?atm $=22.4 \mathrm{mmHg}$
$22.4 \times 1=$? 760
$22.4 / 760=0.029 \mathrm{~atm}$

Chapter Five / Gases

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
\mathrm{n} & =\mathrm{PV} / \mathrm{RT} \\
\mathrm{P}_{\mathrm{T}} & =\mathrm{P}_{\mathrm{O} 2}+\mathrm{P}_{\mathrm{H} 20} \\
\mathrm{P}_{\mathrm{O} 2} & =\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}} \\
& =1.002-0.029=0.973 \mathrm{~atm} \\
n & =\frac{0.973 \times 0.128}{0.0821 \times 297}=0.005 \mathrm{~mol}
\end{aligned}
$$

Mass $=n \times$ molar mass

$$
\begin{aligned}
& =0.005 \times 32 \\
& =0.16 \mathrm{~g}
\end{aligned}
$$

Thank you

Chapter Seven

Quantum Theory and the
Electronic Structure of Atoms

- Chapter 7: Quantum Theory and the Electronic Structure of Atoms (268-272-274-279-286-301)
- 7.1 From Classical Physics to Quantum Theory
- 7.2 Bohr's Theory of the Hydrogen Atom
- 7.4 The Dual Nature of the Electron
- 7.6 Quantum Numbers and Electromagnetic Radiation
- 7.7 Atomic Orbitals
- 7.8 Electron Configuration
- 7.9 The Building-up Principle

From Classical Physics to Quantum Theory

We have to understand something about the nature of wave before talking about
Quantum theory.

- Wave: a vibrating disturbance by which energy is transmitted.
- Wavelength (λ) lambda: is the distance between identical points on successive waves.
- Frequency (v) nu: is the number of waves that pass through a particular point in 1 second.
- Amplitude : is the vertical distance from the midline of a wave to the
 peak.

From Classical Physics to Quantum Theory

- Wave speed (u): depend on type of wave and the nature of the medium through which the wave is traveling.

$$
u=\lambda v
$$

- Wavelength usually expressed in units of meter, centimeter, or nanometer.
- Frequency is measured in hertz (Hz)

$$
1 \mathrm{~Hz}=1 \mathrm{cycle} / \mathrm{s}
$$

Normally the word cycle is left out and we say and we expressed frequency as for example 25/s

```
From Classical Physics to Quantum Theory
```

Example:
The wavelength of the green light from a traffic signal is centered at 522 nm .
What is the frequency of this radiation?

$$
\begin{aligned}
& u=\lambda v \\
& v=u / \lambda
\end{aligned}
$$

The speed of light is known as $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Because the speed of light is in m we have to change the wavelength to m $\lambda=522 \times 10^{-9} \mathrm{~m}$

$$
\begin{aligned}
v= & 3 \times 10^{8} / 522 \times 10^{-9} \\
= & 5.75 \times 10^{14} \mathrm{~Hz} .
\end{aligned}
$$

From Classical Physics to Quantum Theory

- There are many type of waves, such as water waves, sound waves and light waves.
- Clerk Maxwell proposed in 1873 that visible light consists of electromagnetic wave has an electric field component and a magnetic filed component. The two components have the same wavelength and frequency, and hence the speed.
- Electromagnetic radiation is the emission and transmission of energy in the form of electromagnetic waves.
- for all electromagnetic radiation

$$
c=\lambda v
$$

Where c is the speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Chapter Seven / Quantum Theory and the Electronic Structure of Atoms

Copyright © The MoGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)

(b)

Example:
A photon has a frequency of $6.0 \times 10^{4} \mathrm{~Hz}$. Convert this frequency into wavelength (nm) ?

$$
\begin{gathered}
c=\lambda v \\
\lambda=c / v \\
=3 \times 10^{8} / 6 \times 10^{4} \\
=5 \times 10^{3} \mathrm{~m} \\
=5 \times 10^{12} \mathrm{~nm}
\end{gathered}
$$

Planck's Quantum Theory

- When solid are heated they emit electromagnetic radiation over a wide range of wavelength. Example is the dull red glow of an electric heater and the bright white light of tungsten light bulb.
- the amount of radiant energy emitted by an object at a certain temperature depends on the wavelength
- according to Plank the atoms and molecules could emit (or adsorb) energy only in discrete quantities (quantum).
- Quantum is the smallest quantity of energy that can be emitted (or absorbed) in the form of electromagnetic radiation.
- The energy of a signal quantum (E):

$$
\begin{aligned}
& \mathrm{E}=\mathrm{h} v \\
& v=\frac{c}{\lambda}
\end{aligned} \quad \square E=h \frac{c}{\lambda} \quad \begin{aligned}
& \text { Where } \mathrm{h} \text { is } \\
& \text { planck's } \\
& \text { constant }
\end{aligned}
$$

Planck's Quantum Theory

- According to the quantum theory energy is always emitted in integral multiples of hv, for example hv, $2 h v, 3 h v$, \qquad but never for exmaple 1.67 hv .

Example:
Calculate the energy (in J) of:
(a) a photon with a wavelength of $5.00 \times 10^{4} \mathrm{~nm}$ (IR region)
(b) a photon with a wavelength of $5.00 \times 10^{-2} \mathrm{~nm}$ (X-ray region)

$$
\begin{array}{cc}
\begin{array}{c}
\text { a- } \lambda=5 \times 10^{4} \mathrm{~nm}=5 \times 10^{4} \times 10^{-9} \\
=5 \times 10^{-5} \mathrm{~m} \\
E=h \frac{c}{\lambda}
\end{array} & \begin{array}{r}
\text { b- } \lambda=5 \times 10^{-2} \mathrm{~nm}=5 \times 10^{-2} \times 10^{-9} \\
\\
5 \times 10^{-11} \mathrm{~m} \\
E=h \frac{c}{\lambda}
\end{array} \\
E=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5 \times 10^{-5}}=3.98 \times 10^{-21} J & E=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5 \times 10^{-11}}=3.98 \times 10^{-15} \mathrm{~J}
\end{array}
$$

Bohr's Theory of the Hydrogen Atom

- Bohr's greatest contribution to science was in building a simple model of the atom.
- It was based on understanding the SHARP LINE SPECTRA of excited atoms.

Niels Bohr (1885-1962)
(Nobel Prize, 1922)

```
Bohr's Theory of the Hydrogen Atom
```

- Emission spectra is either continuous or line spectra of radiation emitted by substances.
- Continuous is a common feature to the emission spectra of the sun and of a heated solid; that is, all wavelengths of visible light are represented in the spectra.

Bohr's Theory of the Hydrogen Atom

- Emission spectra is either continuous or line spectra of radiation emitted by substances.
- Continuous is a common feature to the emission spectra of the sun and of a heated solid; that is, all wavelengths of visible light are represented in the spectra.
- The emission spectra of atoms in the gas phase do not show a continuous spread of wavelengths from red to violet; rather, the atoms produce bright lines in different parts of the visible spectrum.
- Line spectra is the light emission only at specific wavelengths.
- Excited atoms emit light of only certain wavelengths
- The wavelengths of emitted light depend on the element.

Bohr's Theory of the Hydrogen Atom

- Emission spectrum of any atom is a finger print (lines appeared at specific wavelengths)

Bohr's Theory of the Hydrogen Atom

- Bohr postulated that the electron is allowed to occupy only certain orbits of specific energies and the energies of the electron are quantized.
- According to Bohr the emission spectrum of the H atom results from the following: the hydrogen atom is energised then electron excited to higher energy orbit and then drop to a lower-energy orbit and emitting a quantum of energy (a photon) in the form of light.

Bohr's Theory of the Hydrogen Atom

The equation that represent the energies that an electron in hydrogen atom can occupy are given by:

$$
E_{n}=-R_{H}\left(\frac{1}{n^{2}}\right)
$$

R_{H} is the Rodberg constant $\left(2.18 \times 10^{-18} \mathrm{~J}\right), \mathrm{n}$ is an integer called the principle quantum number ($n=1,2,3, \ldots .$.).
when $n=1$ this is refer to as ground state or the ground level. Which refer to the lowest energy state of a system.
$n=2,3,4 \ldots$. Is called an excited state or excited level, which is higher in energy than the ground state.

Bohr's Theory of the Hydrogen Atom

- The journey from a lower step to a higher step is an energy-requiring process.
- Whereas movement from a higher step to a lower step is an energy releasing process.

$$
\begin{aligned}
& \Delta E=E_{f}-E_{i} \\
& E_{f}=-R_{H}\left(\frac{1}{n_{f}^{2}}\right) \\
& E_{i}=-R_{H}\left(\frac{1}{n_{i}^{2}}\right) \\
& \Rightarrow \Delta E=\left(\frac{-R_{H}}{n_{f}^{2}}\right)-\left(\frac{-R_{H}}{n_{i}^{2}}\right) \\
& \Delta E=R_{H}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta E & =R_{H}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right) \\
\Delta E & =h v
\end{aligned}
$$

$$
\Delta E=h v=R_{H}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)
$$

- If $\mathrm{n}_{\mathrm{f}}>\mathrm{n}_{\mathrm{i}} \rightarrow(+\mathrm{ve}) \rightarrow \Delta \mathrm{E}(+\mathrm{ve}) \rightarrow$ Energy is absorbed
- If $n_{i}>n_{f} \rightarrow(-v e) \rightarrow \Delta E(-v e) \rightarrow$ Energy is emitted

Bohr's Theory of the Hydrogen Atom

Example:

What is the wavelength of a photon (in nm) emitted during a transition from the $n_{i}=5$ state to the $n_{f}=2$ state in the hydrogen atom?

$$
\mathrm{n}_{\mathrm{i}}=5, \mathrm{n}_{\mathrm{f}}=2, \lambda=?
$$

$$
\begin{aligned}
\Delta E & =R_{H}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right) \\
\Delta E & =\frac{h c}{\lambda} \Rightarrow \lambda=\frac{h c}{\Delta E} \\
\Delta E & =R_{H}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right) \\
& =2.18 \times 10^{-18} \mathrm{~J}\left(\frac{1}{5^{2}}-\frac{1}{2^{2}}\right)=-4.58 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta E=\frac{h c}{\lambda} \Rightarrow \\
& \begin{aligned}
\lambda & =\frac{h c}{\Delta E}=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{4.58 \times 10^{-19}} \\
& =4.34 \times 10^{-7} \mathrm{~m}=434 \mathrm{~nm}
\end{aligned}
\end{aligned}
$$

The Dual Nature of the Electron

- De Broglie suggested that particles such as electron can posses wave properties.
- According to de Borglie, an electron bond to nucleus behave like a standing wave.
- De Broglie deduced that the particle and wave properities are related by the expression

$$
\lambda=\frac{h}{m u}
$$

Where λ wavelenght of moving particle, m mass (kg), u velocity of moving particle.

(a)

The Dual Nature of the Electron

Example

What is the de Broglie wavelength (in nm) associated with a 2.5 g Ping-Pong ball traveling at $15.6 \mathrm{~m} / \mathrm{s}$?

$$
\lambda=\frac{h}{m u}
$$

$\lambda=$?, $\mathrm{m}=2.5 \mathrm{~g}=2.5 \times 10^{-3} \mathrm{~kg}, \mathrm{u}=15.6 \mathrm{~m} / \mathrm{s}$
$\lambda=\frac{6.63 \times 10^{-34}}{2.5 \times 10^{-3} \times 15.6}$
$\lambda=1.7 \times 10^{-31} \mathrm{~m}=1.7 \times 10^{-22} \mathrm{~nm}$.

Quantum numbers

- Bohr theory did not provide a complete description of electronic behaviour in atoms and it location around the nucleus.
- In 1926 Erwin Schrödinger wrote an equation that specifies the energy states of the electron in a hydrogen atom and identifies the corresponding wave functions Ψ.
- These energy states and wave functions are characterized by a set of Quantum Numbers .
- Quantum numbers may be viewed as an electrons address.
- Schrödinger's equation can only be solved exactly for the hydrogen atom. Must approximate its solution for multi-electron systems.
- Quantum number are a set of four values that define the energy state of an electron in an atom.

1-The Principle Quantum Number (n):
n has integer value ($1,2,3, \ldots$).
n determine the energy of an orbital. Its also related to the distance between the electron and the nucleus. The larger n the grater the distance.

$2 s$

$3 s$

Quantum numbers

2- The Angular Momentum Quantum Number (I)
The value of I depend on the value of $n, l=0,(n-1)$.
If $n=1$ then $I=1-1=0$
If $n=2$ then $I=0,(2-1)=0,1$
If $n=3$ then $I=0,1,(3-1)=0,1,2$
And so on.
I determine the shape of the orbitals.
The value of I is generally designated by the letters s, p, d, \ldots. as follows:

I	0	1	2	3	4
Name of orbital	s	p	d	f	9

3- The Magnetic Number (m_{1})
The value of m_{1} depend on the value of $I . m_{1}=-1, \ldots0, \ldots . . .+1$
If $I=0$ then $m_{l}=0$
If $\mid=1$ then $m_{1}=-1,0,1$
If $\mathrm{I}=2$ then $\mathrm{m}_{\mathrm{l}}=-2,-1,0,1,2$
And so on.
m_{l} describe the orientation of the orbital in space.

4- The Electron Spin Quantum Number $\left(m_{s}\right)$
m_{s} has two value $-1 / 2$ or $+1 / 2$.
m_{s} determine the spin of electron.

Example :
List the values of n, l and $m l$ for orbitals in $4 d$ subshell? What is the total number of orbital in 4d?
$n=4$
for d l=2
$m_{1}=-2,-1,0,1,2$
Number of orbital $=5$

Copyrighto The MoGraw-Hill Companies, ince. Permission required tor reproduction or display.
TABLE 7.2 Relation Between Quantum Numbers and Atomic Orbitals

Atomic Orbitals

Example

What is the total number of orbitals associated with the principal quantum number $\mathrm{n}=3$?
$\mathrm{n}=3$
l=0,1,2
1- $m_{1}=0$ ======> 1 orbital
2- $m_{1}=-1,0,1=====>3$ orbital
2- $m_{1}=-2,-1,0,1,2======>5$ orbital
Total number of orbital 9
Or $(2 \times 0+1)+(2 \times 1+1)+(2 \times 2+1)=1+3+5=9$
OR
Number of orbital $=n^{2}=3^{2}=9$

Atomic Orbitals

- The four quantum number for specific electron can written as ($\mathrm{n}, \mathrm{l}, \mathrm{m}_{1}, \mathrm{~m}_{\mathrm{s}}$).

Example:
Write the four quantum numbers for an electron in a $3 p$ orbital?
$n=3, l=1, m_{l}=-1,0,1, m_{s}=-1 / 2$ or $1 / 2$
(3,1,-1,-1/2)
(3,1,0,-1/2)
(3,1,1,-1/2)
(3,1,-1,1/2)
(3,1,0,1/2)
(3,1,1,1/2)

S orbital
$\mathrm{I}=0$
Spherical

$1 s$

$2 s$

$3 s$

P orbital
 I=1

dumbbell

$2 p_{x}$
$m_{l}=-1$

$2 p_{y}$
$m_{l}=0$

$2 p_{z}$
$m_{l}=1$
227

The Energies of Orbitals

- For hydrogen atom, the energies of hydrogen orbitals increase as following:
- $1 \mathrm{~s}<2 \mathrm{~s}=2 \mathrm{p}<3 \mathrm{~s}=3 \mathrm{p}=3 \mathrm{~d}<4 \mathrm{~s}=4 \mathrm{p}=4 \mathrm{~d}=4 \mathrm{f}<.$.
- Energy only depends on principal quantum number n
- Orbitals on the same energy level have the same energy.
- For atom with multi electron, energy of orbitals depend on n and I . it follow:
- $1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}<3 \mathrm{~d}<4 \mathrm{p}<5 \mathrm{~s}<4 \mathrm{~d}<5 \mathrm{p}<6 \mathrm{~s}$

For multi electron atom

Order of orbitals (filling) in multi-electron atom

$1 s<2 s<2 p<3 s<3 p<4 s<3 d<4 p<5 s<4 d<5 p<6 s<4 f<5 d<6 p<7 s<5 f<6 d<7 p$

Electron configuration: is how the electrons are distributed among the various atomic orbitals in an atom.

The Pauli Exclusion principle

NO two electrons in an atom can have the same set of four quantum numbers

The electrons are added one by one to the atomic orbitals

The electrons are added one by one to the atomic orbitals

The electrons are added one by one to the atomic orbitals

The most stable arrangement of electrons in subshells is the one with the greatest number of parallel spins

Hund's Rule

The most stable arrangement of electrons in subshells is the one with the greatest number of parallel spins

Aufbau principle

The electrons are added one by one to the atomic orbitals

The electrons are added one by one to the atomic orbitals

The electrons are added one by one to the atomic orbitals

Orbital diagram

The electron configuration can also represented by the orbital diagram In the Orbital Diagram:

- Each box represents one orbital.
- Half-arrows represent the electrons.
- The direction of the arrow represents the spin of the electron.

Li

$1 s$
$2 s$

Example:
What is the electron configuration of Mg ?
Mg atom has 12 electrons
(from Periodic table (atomic number))
The Electron Configuration: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
$2+2+6+2=12$ electrons
Orbital Diagram:

What is the electron configuration of K ? K atom has 19 electrons (from Periodic table (atomic number))
The Electron Configuration: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$ $2+2+6+2+6+1=19$ electrons

Orbital Diagram:

What is the electron configuration of K^{+1} ?
Atomic number19
Electron 19-1= 18
K atom has 18 electrons
(from Periodic table (atomic number))
The Electron Configuration: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
$2+2+6+2+6=18$ electrons

Short Notation

Short Notation (abbreviation): To write the electron configuration of an element in short notation, write the symbol of the Noble gas element in the previous period in brackets followed by the symbol of highest filled subshells in the outermost shells.

	Metals
	Metalloids
Nonmetals	

Atomic Orbitals

Example
For Cl atom answer the following questions:
a) Write the electron configuration?
b) Draw the orbital diagram?
c) Write the electron configuration in short notation?
d) What are the possible quantum numbers for the last (outermost) electron in Cl ?

Answer:
a) Cl atom has 17 electrons
(from Periodic table (atomic number))
The Electron Configuration: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
$2+2+6+2+5=17$ electrons
b) Draw the orbital diagram?

Orbital Diagram:

c) Short notation: $[\mathrm{Ne}] 3 s^{2} 3 p^{5}$
d) $n=3$

I= 1
$\mathrm{m}_{1}=0$
$m_{s}=-1 / 2$

Atomic Orbitals

Example

What is The electron configuration of ${ }^{11} \mathrm{Na},{ }^{12} \mathrm{Mg},{ }^{16} \mathrm{~S}$?

- ${ }^{11} \mathrm{Na} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 s^{1} \quad$ (OR) [Ne$] 3 s^{1}$
- ${ }^{12} \mathrm{Mg} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \quad$ (OR) $\quad[\mathrm{Ne}] 3 s^{2}$
- ${ }^{16}$ S $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
(OR) $[\mathrm{Ne}] 3 s^{2} 3 p^{4}$

Chapter Seven / Quantum Theory and the Electronic Structure of Atoms

The Building-Up Principal

$1 s$	Outermost subshell being filled with electrons		$1 s$
$2 s$		$2 p$	
$3 s$		$3 p$	
$4 s$	$3 d$	$4 p$	
$5 s$	$4 d$	$5 p$	
$6 s$	5d	$6 p$	
$7 s$	$6 d$	$7 p$	

$4 f$
$5 f$

TABLE 7.3 The Ground-State Electron Configurations of the Elements*

Atomic Number	Symbol	Electron Configuration	Atomic Number	Symbol	Electron Configuration	Atomic Number	Symbol	Electron Configuration
1	H	$1 s^{1}$	38	Sr	[Kr] $5 s^{2}$	75	Re	[Xe] $6 s^{2} 4 f^{14} 5 d^{5}$
2	He	$1 s^{2}$	39	Y	$[\mathrm{Kr}] 5 s^{2} 4 d^{1}$	76	Os	[Xe] $6 s^{2} 4 f^{14} 5 d^{6}$
3	Li	[He] $2 s^{1}$	40	Zr	$[\mathrm{Kr}] 5 s^{2} 4 d^{2}$	77	Ir	[Xe] $6 s^{2} 4 f^{14} 5 d^{7}$
4	Be	[He] $2 s^{2}$	41	Nb	$[\mathrm{Kr}] 5 s^{1} 4 d^{4}$	78	Pt	[Xe] $6 s^{1} 4 f^{14} 5 d^{9}$
5	B	[He] $2 s^{2} 2 p^{1}$	42	Mo	$[\mathrm{Kr}] 5 s^{1} 4 d^{5}$	79	Au	[Xe] $6 s^{1} 4 f^{14} 5 d^{10}$
6	C	[He] $2 s^{2} 2 p^{2}$	43	Tc	$[\mathrm{Kr}] 5 s^{2} 4 d^{5}$	80	Hg	[Xe] $6 s^{2} 4 f^{14} 5 d^{10}$
7	N	[He] $2 s^{2} 2 p^{3}$	44	Ru	$[\mathrm{Kr}] 5 s^{1} 4 d^{7}$	81	Tl	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{1}$
8	O	[He] $2 s^{2} 2 p^{4}$	45	Rh	$[\mathrm{Kr}] 5 s^{1} 4 d^{8}$	82	Pb	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{2}$
9	F	[He] $2 s^{2} 2 p^{5}$	46	Pd	$[\mathrm{Kr}] 4 d^{10}$	83	Bi	$[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{3}$
10	Ne	[He $22 s^{2} 2 p^{6}$	47	Ag	$[\mathrm{Kr}] 5 s^{1} 4 d^{10}$	84	Po	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{4}$
11	Na	[Ne$] 3 s^{1}$	48	Cd	$[\mathrm{Kr}] 5 s^{2} 4 d^{10}$	85	At	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{5}$
12	Mg	[Ne] $3 s^{2}$	49	In	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{1}$	86	Rn	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{6}$
13	Al	[Ne$] 3 s^{2} 3 p^{1}$	50	Sn	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{2}$	87	Fr	[Rn] $7 s^{1}$
14	Si	[Ne$] 3 s^{2} 3 p^{2}$	51	Sb	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{3}$	88	Ra	[Rn] $7 s^{2}$
15	P	[Ne$] 3 s^{2} 3 p^{3}$	52	Te	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{4}$	89	Ac	[Rn]7s ${ }^{2} 6 d^{1}$
16	S	[Ne] $3 s^{2} 3 p^{4}$	53	I	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{5}$	90	Th	[Rn] $7 s^{2} 6 d^{2}$
17	Cl	[Ne$] 3 s^{2} 3 p^{5}$	54	Xe	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{6}$	91	Pa	[Rn] $7 s^{2} 5 f^{2} 6 d^{1}$
18	Ar	[Ne$] 3 s^{2} 3 p^{6}$	55	Cs	[Xe] $6 s^{1}$	92	U	$[\mathrm{Rn}] 7 s^{2} 5 f^{3} 6 d^{1}$
19	K	[Ar$] 4{ }^{1}$	56	Ba	$[\mathrm{Xe}] 6 s^{2}$	93	Np	[Rn] $7 s^{2} 5 f^{4} 6 d_{252}^{1}$

Atomic Orbitals

- Noble Gases: elements with electron configuration of complete s \& p subshell (He, Ne, Ar, Kr, Xe, Rn), Group 8A

Atomic Orbitals

- Representative Elements: elements with electron configuration of incompletely filled s or p subshell. Elements in Groups 1A-to-7A

Atomic Orbitals

- Transition Elements: elements with electron configuration of incompletely filled d subshells or readily give rise to cations that have incompletely filled d subshells. Elements in Groups 1B-to-7B

Exceptions

The Stability of Half Filled \& Filled d Orbitals
${ }^{29} \mathrm{Cu}: 1 \mathrm{~s} 22 \mathrm{~s} 22 \mathrm{p} 63 \mathrm{~s} 23 \mathrm{p} 64 \mathrm{~s}^{2} 3 \mathrm{~d}^{9}$ [Ar] $4 s^{2} 3 d^{9}$
The stability of Filled d orbital \rightarrow
${ }^{29} \mathrm{Cu}$: [Ar] 4s ${ }^{1} 3 \mathrm{~d}^{10}$

	Metals
	Metalloids

$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \text { Pr } \end{aligned}$	$\begin{aligned} & 60 \\ & \mathbf{N d} \end{aligned}$	$\begin{gathered} 61 \\ \mathbf{P m} \end{gathered}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{gathered} 63 \\ \text { Eu } \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \end{gathered}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & 68 \\ & \text { Er } \end{aligned}$	$\begin{gathered} 69 \\ \mathbf{T m} \end{gathered}$	$\begin{aligned} & 70 \\ & \mathbf{Y b} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathbf{L u} \end{aligned}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Atomic Orbitals

- Paramagnetic substance: is the element that contain net unpaired electrons in the outermost subshell and is attracted by a magnet.
e.g. Paramagnetic unpaired electrons

- Diamagnetic substance: is the element that do not contain net unpaired electrons (all electrons are paired) in the outermost subshell and is repelled by a magnet.
e.g.

Diamagnetic
all electrons paired

Atomic Orbitals

Example

${ }^{19} \mathrm{~K}$

Electronic configuration: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
Short notation:
[Ar] 4s ${ }^{1}$
Orbital diagram:

Net one unpaired electron \rightarrow Paramagnetic substance

Example

$$
{ }^{10} \mathrm{Ne}
$$

Electronic configuration: $1 s^{2} 2 s^{2} 2 p^{6}$
Orbital diagram:

All electrons are paired \rightarrow
Diamagnetic substance

Example
What are the valence electrons of vanadium (V)?
${ }^{23} \mathrm{~V}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$

Example

What are the valence electrons of Gallium (Ga)?
${ }^{31} \mathrm{Ga}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{1}$
The valence electrons are $4 s^{2} 4 p^{1}$

Thank you

Chapter Eight

Periodic Relationships Among the
Elements

Development of the Periodic Table

- Many attempt has been made to arrange the element.
- Russian Chemist Dmitri Mendeleev arrange the element based on the regular, periodic recurrence of properties.
- Mendeleev's classification system was a great improvement for two reasons. First, it grouped the elements together more accurately, according to their properties. Equally important, it made possible the prediction of the properties of several elements that had not yet been discovered.

Dmitri Mendeleev
1834-1907

Development of the Periodic Table

- Mendeleev's classification was based on the atomic weight, however, this resulted in some inconsistency.
- Later on after the discovery of atomic number by Henry Moseley the element were arranged by their atomic number.

Modern Periodic Table

\square Metals
Metalloids

$\begin{gathered} 58 \\ \mathrm{Ce} \end{gathered}$	$\begin{aligned} & 59 \\ & \mathbf{P r} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{aligned} & 61 \\ & \mathrm{Pm} \end{aligned}$	$\begin{gathered} 62 \\ \mathrm{Sm} \end{gathered}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{aligned} & 64 \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & 65 \\ & \mathbf{T b} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & 68 \\ & \text { Er } \end{aligned}$	$\begin{gathered} 69 \\ \mathrm{Tm} \end{gathered}$	$\begin{aligned} & 70 \\ & \mathbf{Y b} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathrm{La} \end{aligned}$
$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathbf{P a} \end{aligned}$	$\begin{aligned} & 92 \\ & \mathrm{U} \end{aligned}$	$\begin{gathered} 93 \\ \mathbf{N p} \end{gathered}$	$\begin{aligned} & 9.4 \\ & \mathrm{Pu} \end{aligned}$	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	$\begin{gathered} 96 \\ \mathbf{C m} \end{gathered}$	$\begin{aligned} & 97 \\ & \mathbf{B k} \end{aligned}$	$\begin{aligned} & 98 \\ & \mathbf{C r} \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \end{aligned}$

Nonmetals

Example:
The element that has the valance electron configuration $3 s^{2} 3 p^{3}$ is:
a)Carbon
b) Nitrogen
c) Phosphorus
d)Neon

Periodic Classification of the Elements

Example 2:

An atom of a certain element has 15 electrons. Without consulting a periodic table, answer the following questions:
(a) What is the ground-state electron configuration of this element?
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
(b) How should be element be classified?

Period 3, group 5A
The element is representative element.
(c) Is the element diamagnetic or paramagnetic paramagnetic

Example:
Which of the following sets of elements is expected to have similar chemical properties?
a) Sulfur and phosphorous
b) Sulfur and oxygen
c) Sulfur and argon

$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
$\stackrel{1}{\mathbf{H}}$	2_{2}^{2}											$\begin{array}{r} 13 \\ 3 \mathrm{~A} \end{array}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \end{array}$	$\begin{array}{r} 15 \\ 5 \mathrm{~A} \end{array}$	$\begin{array}{r} 16 \\ 6 \mathrm{~A} \end{array}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \end{aligned}$	$\mathbf{H e}^{2}$
$\mathbf{L i}^{3}$	$\stackrel{4}{\mathbf{B e}}$											$\begin{aligned} & 5 \\ & \text { B } \end{aligned}$	${ }_{6}^{6}$	$\stackrel{7}{N}$	$\stackrel{8}{\mathbf{8}}$	$\frac{9}{\mathbf{F}}$	$\begin{aligned} & 10 \\ & \text { Ne } \end{aligned}$
$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{gathered} 12 \\ \mathbf{M g} \end{gathered}$	$\begin{gathered} 3 \\ 31 \end{gathered}$	$\begin{gathered} 4 \\ 4 B \end{gathered}$	$\begin{gathered} 5 \\ 5 B \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 6 B \end{gathered}$	$\begin{gathered} 7 \\ 7 B \end{gathered}$	8	$\begin{array}{r} 9 \\ -8 B \\ \hline \end{array}$	$\begin{array}{r} 10 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & 1 B \end{aligned}$	$\begin{aligned} & 12 \\ & 2 B \end{aligned}$	$\begin{aligned} & 13 \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 14 \\ & \text { Si } \end{aligned}$	${ }_{\mathbf{p}}^{15}$	$\stackrel{16}{\mathrm{~S}}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	$\begin{gathered} 18 \\ \mathbf{A r} \end{gathered}$
$\begin{aligned} & 19 \\ & \mathbf{K} \end{aligned}$	$\stackrel{20}{\mathrm{Ca}}$	$\begin{aligned} & 21 \\ & \mathbf{S c} \end{aligned}$	$\frac{22}{\mathbf{T i}}$	$\stackrel{23}{\mathbf{v}}$	$\frac{24}{\mathrm{Cr}}$	$\underset{\mathbf{M n}}{25}$	$\begin{aligned} & 26 \\ & \mathbf{F e} \end{aligned}$	$\stackrel{27}{\mathbf{C o}}$	$\begin{aligned} & 28 \\ & \mathbf{N i} \end{aligned}$	$\stackrel{29}{\mathrm{Cu}}$	$\begin{array}{r} 30 \\ \mathbf{Z n} \end{array}$	$\begin{gathered} 31 \\ \mathbf{G a} \end{gathered}$	32	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{array}{r} 34 \\ \mathbf{S e} \end{array}$	$\begin{aligned} & 35 \\ & \mathbf{B r} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \end{aligned}$
$\begin{aligned} & 37 \\ & \mathbf{R b} \end{aligned}$	$\frac{38}{\mathbf{S r}}$	$\begin{aligned} & 39 \\ & \mathbf{Y} \end{aligned}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \end{aligned}$	$\stackrel{41}{\mathrm{Nb}}$	$\stackrel{42}{\mathbf{M o}}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathbf{R u} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathbf{R h} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathbf{P d} \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathbf{S n} \end{aligned}$	$\stackrel{51}{\mathbf{S b}}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ \mathbf{I} \end{gathered}$	$\begin{aligned} & 54 \\ & \mathrm{Xe} \end{aligned}$
$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 56 \\ & \mathbf{B a} \end{aligned}$	57	$\begin{aligned} & 72 \\ & \mathbf{H Y} \end{aligned}$	$\begin{array}{r} 73 \\ \mathbf{T a} \end{array}$	$\begin{aligned} & 74 \\ & \mathbf{w} \end{aligned}$	$\begin{aligned} & 75 \\ & \text { Re } \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & 77 \\ & \mathbf{I r} \end{aligned}$	$\begin{aligned} & 78 \\ & \mathbf{P t} \end{aligned}$	$\begin{aligned} & 79 \\ & \mathbf{A u} \end{aligned}$	$\begin{aligned} & 80 \\ & \mathrm{Hg} \end{aligned}$	$\begin{aligned} & 81 \\ & \mathbf{T 1} \end{aligned}$	$\begin{aligned} & 82 \\ & \mathbf{P b} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathbf{B i} \end{aligned}$	$\begin{aligned} & 84 \\ & \mathbf{P o} \end{aligned}$	$\begin{aligned} & 85 \\ & \mathrm{At} \end{aligned}$	$\begin{aligned} & 86 \\ & \mathbf{R n} \end{aligned}$
$\begin{aligned} & 87 \\ & \mathrm{Fr} \end{aligned}$	$\begin{aligned} & 88 \\ & \text { Ra } \end{aligned}$	$\begin{aligned} & 89 \\ & \mathbf{A c} \end{aligned}$	$\begin{aligned} & 104 \\ & \text { Rf } \end{aligned}$	$\begin{aligned} & 105 \\ & \text { Db } \end{aligned}$	$\begin{gathered} 106 \\ \mathbf{S g} \end{gathered}$	$\begin{aligned} & 107 \\ & \mathbf{B h} \end{aligned}$	$\begin{aligned} & 108 \\ & \text { Hs } \end{aligned}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$	$\begin{aligned} & 110 \\ & \text { Ds } \end{aligned}$	$\begin{aligned} & 111 \\ & \mathbf{R} \mathbf{2} \end{aligned}$	112	(113)	114	(115)	116	(117)	(118)

	Metals
	Metalloids
Nonmetals	

58	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathbf{N d} \end{aligned}$	$\stackrel{61}{\mathbf{P m}}$	$\begin{gathered} 62 \\ \mathbf{S m} \end{gathered}$	$\begin{aligned} & 63 \\ & \mathbf{E u} \end{aligned}$	$\begin{aligned} & 64 \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & 65 \\ & \mathbf{T b} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & 68 \\ & \mathbf{E r} \end{aligned}$	$\begin{aligned} & 69 \\ & \mathbf{T m} \end{aligned}$	$\begin{aligned} & 70 \\ & \mathbf{Y b} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathbf{L u} \end{aligned}$
90	$\begin{aligned} & 91 \\ & \mathbf{P a} \end{aligned}$	$\frac{92}{\mathbf{U}}$	$\begin{aligned} & 93 \\ & \mathbf{N}_{\mathbf{p}} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathbf{P u} \end{aligned}$	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	96	$\begin{aligned} & 97 \\ & \mathbf{B k} \end{aligned}$	98	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 101 \\ & \mathbf{M d} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \end{aligned}$

Periodic Classification of the Elements

Example

Titanium (Ti) element is found in the periodic table in
s-block
(b) P-block
(c) d-block
(d) f-block

Example
Characteristics of noble gases include:
a. filled s and p subshells.
b. monatomic gases.
c. generally unreactive chemical.
d. all of the above.

Electron Configration of Cation and Anio

Ion derived from representative element

In the formation of a cation from the atom of a representative element, one or more electrons are removed from the highest occupied n shell so that Cation has a noble-gas outer electron configuration. The electron configurations of some atoms and their corresponding cations are as follows:

$\mathrm{Na}:[\mathrm{Ne}] 3 \mathrm{~s}^{1}$	$\mathrm{Na}^{+}[\mathrm{Ne}]$
$\mathrm{Ca}:[\mathrm{Ar}] 4 \mathrm{~s}^{2}$	$\mathrm{Ca}^{2+}[\mathrm{Ar}]$
$\mathrm{Al}:[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{1}$	$\mathrm{Al}^{3+}[\mathrm{Ne}]$

Electron Configration of Cation and Anio

Ion derived from representative element

In the formation of an anion, one or more electrons are added to the highest Partially filled n shell so that anion has a noble-gas outer electron configuration. Consider the following examples:

$$
\begin{array}{ll}
H: 1 s^{1} & H^{-} 1 s^{2} \text { or }[\mathrm{He}] \\
\text { F: } 1 s^{2} 2 s^{2} 2 p^{5} & \mathrm{~F}^{-} 1 s^{2} 2 s^{2} 2 p^{6} \text { or }[\mathrm{Ne}] \\
\text { O: } 1 s^{2} 2 s^{2} 2 p^{4} & \mathrm{O}^{2-} 1 s^{2} 2 s^{2} 2 p^{6} \text { or }[\mathrm{Ne}] \\
\mathrm{N}: 1 s^{2} 2 s^{2} 2 p^{3} & \mathrm{~N}^{3-} 1 s^{2} 2 s^{2} 2 p^{6} \text { or }[\mathrm{Ne}]
\end{array}
$$

Electron Configration of Cation and Anio

Ion derived from representative element
Isoelectronic: Species with the same number of electrons.

Example :

$\mathrm{H}^{-}:[\mathrm{He}], \mathrm{F}^{-}:[\mathrm{Ne}], \mathrm{N}^{-3}:[\mathrm{Ne}], \mathrm{Na}^{+}:[\mathrm{Ne}], \mathrm{Al}^{+3}:[\mathrm{Ne}], \mathrm{O}^{-2}:[\mathrm{Ne}]$
${ }^{11} \mathrm{Na}(11 \mathrm{e}) \rightarrow \mathrm{Na}^{+}$(10 e)
${ }^{13} \mathrm{Al}(13 \mathrm{e}) \rightarrow \mathrm{Al}^{3+}$ (10 e)
${ }^{7} \mathrm{~N}(7 \mathrm{e}) \rightarrow \mathrm{N}^{3-}(10 \mathrm{e})$
${ }^{9} \mathrm{~F}(9 \mathrm{e}) \rightarrow \mathrm{F}^{-}(10 \mathrm{e})$
${ }^{8} \mathrm{O}(8 \mathrm{e}) \rightarrow \mathrm{O}^{2-}(10 \mathrm{e})$

$$
{ }^{10} \mathrm{Ne}(10 \mathrm{e})
$$

THUS: All are isolelctronic to Ne

Chapter Eight/ Periodic Relationships Among the Elements
\square
Electron Configration of Cation and Anio

> Ion derived from representative element

Example:
Which of the following species is isoelectronic with $\mathrm{Cl}^{-} 18$ e
(a) F
(b) O^{2-}
(c) K^{+}
(d) Na^{+}
10 e
10 e
18 e
10 e

Electron Configration of Cation and Anio

> Ion derived from transition element

When a cation is formed from an atom of a transition metal, electrons are always removed first from the ns orbital and then from the ($n-1$)d orbitals.

Example:
$\mathrm{Mn}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$
Mn^{2+} : $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
Fe: $\quad[A r] 4 s^{2} 3 d^{6}$
$\mathrm{Fe}^{2+}:[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
$\mathrm{Fe}^{3+}:[\mathrm{Ar}] 3 \mathrm{~d}^{5}$

Chapter Eight/ Periodic Relationships Among the Elements

> Variation in physical prosperities

Effective nuclear charge

Effective nuclear charge $\left(Z_{\text {eff }}\right)$: the nuclear charge felt by an electron when both the actual nuclear charge (Z) and the repulsive effects (shielding) of the other electrons are taken into account.

$$
Z_{e f f}=Z-\sigma
$$

Where σ (sigma) is called the shielding constant.

Effective nuclear charge

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. -1

19: Potassium $2,8,8,1$

Core electron

The core electrons shield valence electrons MUCH MORE than valence electrons shield one another.

Variation in physical prosperities

Effective nuclear charge

increasing $Z_{\text {eff }}$

\square
Atomic Radius: is one-half the distance between the two nuclei in two adjacent metal atoms or in a diatomic molecule .

(a)

(b)

Variation in physical prosperities

Atomic Radius

Decreasing atomic radius

Atomic Radius

Example

Referring to a periodic table, arrange the following atoms in order of increasing atomic radius: $\mathrm{P}, \mathrm{Si}, \mathrm{N}$?

$$
\mathrm{N}<\mathrm{P}<\mathrm{Si}
$$

${ }_{1 \mathrm{~A}}^{1}$																	18 88
H	$\begin{gathered} 2 \mathrm{~A} \\ \hline \end{gathered}$											$\begin{aligned} & 13 \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 14 \\ & 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \end{aligned}$	$\stackrel{2}{\mathrm{He}}$
$\stackrel{3}{\mathbf{L i}}$	$\stackrel{4}{\mathrm{Be}}$											(${ }_{\text {B }}$	$\stackrel{6}{\text { c }}$	N	$\stackrel{8}{8}$	9	+10
$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{gathered} 12 \\ \mathbf{M g} \end{gathered}$	$\stackrel{3}{3}$	$\underset{4 \mathrm{~B}}{4}$	$\underset{5 B}{5}$	${ }_{6 \mathrm{~B}}^{6}$	$\underset{7 \mathrm{~B}}{7}$	8	$\begin{gathered} 9 \\ -8 \mathrm{~B} \end{gathered}$	10	$\begin{aligned} & 11 \\ & 1 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 12 \\ & 2 B \end{aligned}$	$\begin{aligned} & 13 \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{aligned} & 15 \\ & \mathbf{p} \\ & \hline \end{aligned}$	$\stackrel{16}{16}$	17 $C 1$	18 Ar
$\begin{aligned} & 19 \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	21 $\mathbf{S c}$	${ }_{\mathbf{T i}}^{22}$	$\stackrel{23}{\mathrm{v}}$	${ }_{\mathbf{C r}}^{24}$	${ }_{\mathbf{M n}}^{25}$	$\begin{aligned} & 26 \\ & \mathbf{F e} \end{aligned}$	${ }^{27}$	${ }^{28}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \end{aligned}$	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathbf{G e} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathbf{B r} \end{aligned}$	36 $\mathbf{K r}$
$\begin{aligned} & 37 \\ & \mathbf{R b} \end{aligned}$	Sr	${ }_{\mathbf{Y}}^{39}$	${ }_{\text {Z }}^{40}$	${ }_{\text {N }} \mathrm{N}$	$\begin{aligned} & \text { Mo } \end{aligned}$	$\begin{aligned} & 43 \\ & \mathbf{T c} \end{aligned}$	$\stackrel{44}{\mathrm{Ru}}$	$\begin{aligned} & 45 \\ & \mathbf{R h} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathbf{P d} \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	${ }_{\text {Cd }}^{48}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \text { Sn } \end{aligned}$	$\begin{aligned} & 51 \\ & \mathbf{S b} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathbf{T e} \end{aligned}$	$\begin{gathered} 53 \\ 1 \end{gathered}$	¢ ${ }^{54}$
$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 56 \\ & \text { Ba } \end{aligned}$	$\begin{aligned} & 57 \\ & \mathbf{L a} \end{aligned}$	72 $\mathbf{H r}$	73 13	${ }_{\text {w }}{ }^{74}$	$\begin{aligned} & 75 \\ & \mathbf{R e} \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & 77 \\ & \mathbf{I r} \end{aligned}$	$\begin{aligned} & 78 \\ & \mathbf{P t} \end{aligned}$	$\begin{aligned} & 79 \\ & \mathrm{Au} \end{aligned}$	$\begin{aligned} & 80 \\ & \mathbf{H g} \end{aligned}$	$\begin{aligned} & 81 \\ & \mathbf{7 1} \end{aligned}$	$\begin{aligned} & 82 \\ & \mathbf{P b} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathbf{B i} \end{aligned}$	$\begin{aligned} & 84 \\ & \mathbf{P}_{0} \end{aligned}$	$\begin{array}{r} 85 \\ \mathbf{A t} \\ \hline \end{array}$	86 $\mathbf{R n}$
$\begin{aligned} & 87 \\ & \mathbf{F r} \end{aligned}$	$\begin{aligned} & 88 \\ & \mathbf{R a} \end{aligned}$	$\begin{aligned} & 89 \\ & \mathbf{A c} \end{aligned}$	$\begin{aligned} & 104 \\ & \mathbf{R f} \end{aligned}$	$\begin{aligned} & 105 \\ & \text { Db } \end{aligned}$	$\begin{aligned} & 106 \\ & \mathrm{Sg} \end{aligned}$	$\begin{aligned} & 107 \\ & \mathbf{B h} \end{aligned}$	$\begin{aligned} & 108 \\ & \text { Hs } \end{aligned}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$	$\begin{aligned} & 110 \\ & \text { Ds } \end{aligned}$	$\begin{aligned} & 111 \\ & \mathbf{R g} \end{aligned}$	112	(113)	114	(115)	116	(117)	(118)
	Metals			$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathbf{P r} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{aligned} & 61 \\ & \mathbf{P}_{\mathbf{m}} \end{aligned}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 63 \\ & \text { Eu } \end{aligned}$	$\begin{aligned} & 64 \\ & \mathbf{G d} \end{aligned}$	$\begin{aligned} & 65 \\ & \mathbf{T b} \end{aligned}$	$\begin{aligned} & 66 \\ & \mathbf{D y} \end{aligned}$	$\begin{aligned} & 67 \\ & \mathbf{H o} \end{aligned}$	$\begin{aligned} & 68 \\ & \text { Er } \end{aligned}$	$\begin{gathered} \mathbf{C O}_{\mathbf{T m}} \end{gathered}$	$\begin{aligned} & 70 \\ & \mathbf{y b} \end{aligned}$	71 Lu
	Metalloids			$\begin{aligned} & \text { Th } \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & 92 \\ & \mathbf{U} \end{aligned}$	$\begin{aligned} & 93 \\ & \mathbf{N p} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathbf{P u} \end{aligned}$	$\begin{gathered} 95 \\ \mathbf{A m} \end{gathered}$	$\begin{gathered} 96 \\ \mathbf{C m} \end{gathered}$	$\begin{aligned} & 97 \\ & \mathbf{B k} \end{aligned}$	$\begin{aligned} & 98 \\ & \mathbf{C f} \end{aligned}$	$\begin{aligned} & 99 \\ & \mathbf{E s} \end{aligned}$	$\begin{aligned} & 100 \\ & \mathbf{F m} \end{aligned}$	$\begin{aligned} & 101 \\ & \text { Md } \end{aligned}$	$\begin{aligned} & 102 \\ & \mathrm{No} \end{aligned}$	103 $\mathbf{L r}$
	Nonmetals																

Nonmetals

Variation in physical prosperities

Atomic Radius

Example
Which choice below correctly lists the elements in order of increasing atomic radius?
$a-\mathrm{Na}<\mathrm{Mg}<\mathrm{K}<\mathrm{Rb}$
$\mathrm{c}-\mathrm{Rb}<\mathrm{K}<\mathrm{Na}<\mathrm{Mg}$

$$
\begin{aligned}
& \mathrm{b}-\mathrm{Mg}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb} \\
& \mathrm{~d}-\mathrm{Rb}<\mathrm{K}<\mathrm{Mg}<\mathrm{Na}
\end{aligned}
$$

\square	Metals
	Metalloids
Nonmetals	

${ }_{\text {cesem }}^{\text {se }}$	${ }_{\mathbf{r}}^{\mathbf{5 9}}$	$\stackrel{\text { No }}{ }$	$\stackrel{81}{81}$		${ }_{\text {Ex }}^{\text {E. }}$	$\stackrel{88}{\text { cid }}$	\%	D\%	H\%	Er	$\stackrel{\text { \% }}{\text { mo }}$	${ }_{\text {\% }}^{\text {\% }}$	$\stackrel{71}{20}$
\%	${ }_{P a}^{18}$	$\stackrel{92}{4}$		$\stackrel{9}{\text { Pa }}$	Am	$\stackrel{8}{\text { Cm }}$	${ }_{\text {BK }}$	$\underset{\text { cr }}{\substack{\text { cr }}}$	${ }_{\text {Es }}^{\text {\% }}$	${ }_{\text {F\% }}$	${ }_{\text {Ma }}^{\text {Ma }}$	${ }_{\text {No }}^{102}$	${ }_{\text {din }}^{\substack{103}}$

> Variation in physical prosperities

Ionic Radius

Ionic Radius: is the radius of a cation or an anion.
If the atom forms an anion, its size (or radius) increases, because the nuclear charge remains the same but the repulsion resulting from the additional electron(s) enlarges the domain of the electron cloud
However, If the atom forms an cation, its size (or radius) decreases, because the nuclear charge remains the same but electron-electron repulsion decreases so the electron cloud shrinks.

- Anion is always larger than atom from which its formed.
- Cation is always smaller than atom from which its formed.

Cations< Anions

Variation in physical prosperities

Ionic Radius

- The ionic radius increases from the top to the bottom of the group
- For ions in different groups: they should be isoelectronic
- Isolelectronic ions:
- cations < anions: example $\mathrm{Na}^{+}<\mathrm{F}^{-}$
- Isolelectronic cations: example $\mathrm{Al}^{3+}, \mathrm{Mg}^{2+}, \mathrm{Na}^{+}$

$$
\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}
$$

- Isoelectronic anoins: example $\mathrm{O}^{2-}, \mathrm{F}^{-}$

$$
\mathrm{F}^{-}<\mathrm{O}^{2-}
$$

Ionic Radius

Example

For each of the following pairs, indicate which one is larger:
a. N^{3-} or F^{-}
b- Mg^{2+} or Ca^{2+}
$\mathrm{c}-\mathrm{Fe}^{2+}$ or Fe^{3+}

$$
\text { -Fe²+ or Fe }{ }^{3+}
$$

\square

	Metals
	Metalloids
Nonmetals	

Chapter Eight/ Periodic Relationships Among the Elements

Variation in physical prosperities
\square

- Isoelectronic cations:
> Example: ${ }^{10} \mathrm{Al}^{+3},{ }^{10} \mathrm{Mg}^{+2},{ }^{10} \mathrm{Na}^{+}$
> Arrangement of increasing ionic radius:

$$
{ }^{10} \mathrm{Al}^{+3}<{ }^{10} \mathrm{Mg}^{+2}<{ }^{10} \mathrm{Na}^{+}
$$

- Isoelectronic anions
$>$ Example: ${ }^{10} \mathrm{~F}^{-},{ }^{10} \mathrm{O}^{-2},{ }^{10} \mathrm{~N}^{-3}$
$>$ Arrangement of increasing ionic radius:

$$
{ }^{10} \mathrm{~F}^{-}<{ }^{10} \mathrm{O}^{-2}<{ }^{10} \mathrm{~N}^{-3}
$$

Variation in physical prosperities

Ionic Radius

Example

Order the following according to the increase in atomic/ionic radius.

$$
\mathrm{N}^{3-} \quad \mathrm{Li}^{+} \quad \mathrm{C} \quad \mathrm{O}^{2-}
$$

a- $\mathrm{C}<\mathrm{Li}^{+}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
b- $\mathrm{N}^{3-}<\mathrm{O}^{2-}<\mathrm{C}<\mathrm{Li}^{+}$
c- $\mathrm{Li}^{+}<\mathrm{C}<\mathrm{N}^{3-}<\mathrm{O}^{2-}$
$\mathrm{d}-\mathrm{Li}^{+}<\mathrm{C}<\mathrm{N}^{3-}<\mathrm{O}^{2-}$
$\mathrm{e}-\mathrm{Li}^{+}<\mathrm{C}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
Always
Cation < neutral < anion
For cation the larger the charge the smaller the radius
For anion the smaller the charge the smaller the radius

Ionization Energy : is the minimum energy (in $\mathrm{kJ} / \mathrm{mol}$) required to remove an electron from a gaseous atom in its ground state.
The higher the ionization energy, the more difficult to remove the electron from the atom.

For a many-electron atom, the amount of energy required to remove the first electron from the atom in its ground state, is called the first ionization energy $\left(I_{1}\right)$. To remove the second electron is called he second ionization energy $\left(I_{2}\right)$ and to remove the third electron is called the third ionization energy $\left(I_{3}\right)$.

$$
I_{1}<I_{2}<I_{3} \ldots \ldots .
$$

Ionization Energy

First Ionization energy Increase

Exception

- $2 \mathrm{~A}>3 \mathrm{~A}$
- $5 \mathrm{~A}>6 \mathrm{~A}$

Example
Which atom should have a smaller first ionization energy: oxygen or sulphur?

H	$\stackrel{2}{2}$											$\begin{array}{r} 11 \\ 3 \mathrm{~A} \\ \hline \end{array}$	14 4 A	$\begin{aligned} & 15 \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \end{aligned}$	$\stackrel{2}{\mathrm{He}}$
$\stackrel{3}{4}$	$\stackrel{4}{\text { Be }}$											${ }_{8}^{5}$	${ }_{\text {c }}$	$\stackrel{7}{\mathrm{~N}}$	$\stackrel{8}{8}$	${ }_{\mathbf{F}}^{9}$	10 Ne
$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{gathered} 12 \\ \mathrm{Mg} \end{gathered}$	$\begin{gathered} 3 \\ 3 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 4 \mathrm{~B} \end{gathered}$	$\begin{gathered} 5 \\ S_{1} \\ \hline \end{gathered}$	$\begin{array}{r} 6 \\ 6 \mathrm{~B} \\ \hline \end{array}$	$\begin{gathered} 7 \mathrm{7} \\ \hline \end{gathered}$	8	$\underset{-8 \mathrm{~B}}{9}$	${ }^{10}$	$\begin{aligned} & 11 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 2 B \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & \text { A1 } \end{aligned}$	14 Si	${ }_{1}^{15}$	$\stackrel{16}{8}$	$\begin{aligned} & 17 \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \end{aligned}$
19 \mathbf{K}	$\begin{gathered} 20 \\ \mathbf{C a} \end{gathered}$	$\begin{aligned} & 21 \\ & \mathbf{S c} \end{aligned}$	${ }_{2 i}^{22}$	$\stackrel{23}{\mathrm{v}}$	$\begin{aligned} & 24 \\ & \mathbf{C r} \end{aligned}$	$\underset{\mathrm{Mn}}{25}$	$\begin{aligned} & 26 \\ & \mathbf{F e} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathbf{C o} \end{aligned}$	$\begin{aligned} & 28 \\ & \mathbf{N i} \end{aligned}$	$\stackrel{29}{\mathbf{C u}}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \end{aligned}$	$\begin{gathered} 31 \\ \mathbf{G a} \end{gathered}$	$\begin{aligned} & 32 \\ & \mathbf{G e} \end{aligned}$	$\begin{aligned} & 33 \\ & \mathrm{As} \end{aligned}$	$\begin{aligned} & 34 \\ & \text { Se } \end{aligned}$	$\begin{aligned} & 35 \\ & \mathbf{B r} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \end{aligned}$
$\begin{gathered} 37 \\ \mathbf{R b} \end{gathered}$	$\begin{aligned} & 38 \\ & \mathbf{S}_{\mathbf{r}} \end{aligned}$	${ }^{39}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \end{aligned}$	$\stackrel{41}{\mathrm{Nb}}$	$\begin{aligned} & 42 \\ & \text { Mo } \end{aligned}$	$\begin{aligned} & 43 \\ & \mathbf{T c} \end{aligned}$	$\stackrel{44}{\text { Ru }}$	$\begin{aligned} & 45 \\ & \mathbf{R h} \end{aligned}$	${ }_{\text {Pd }}^{46}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\stackrel{48}{\text { Cd }}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	S0 Sn	$\begin{aligned} & 51 \\ & \text { Sb } \end{aligned}$	$\begin{aligned} & 52 \\ & \mathbf{T e} \end{aligned}$	$\begin{gathered} 53 \\ 1 \end{gathered}$	$\begin{aligned} & 54 \\ & \mathbf{x e} \end{aligned}$
$\begin{aligned} & 55 \\ & \mathbf{C s} \end{aligned}$	$\begin{aligned} & 56 \\ & \text { Ba } \end{aligned}$	-57	$\begin{aligned} & 72 \\ & \mathbf{H F} \end{aligned}$	${ }_{7}^{73}$	$\begin{aligned} & 74 \\ & \mathbf{w} \end{aligned}$	$\begin{aligned} & 75 \\ & \text { Re } \end{aligned}$	$\begin{aligned} & 76 \\ & \mathbf{o s} \end{aligned}$	$\begin{aligned} & 77 \\ & \mathbf{I r} \end{aligned}$	$\begin{aligned} & 78 \\ & \mathbf{P t} \end{aligned}$	$\begin{aligned} & 79 \\ & \mathbf{A u} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 80 } \\ & \mathbf{H g} \\ & \hline \end{aligned}$	$\begin{aligned} & 81 \\ & \mathbf{T 1} \end{aligned}$	$\begin{aligned} & 82 \\ & \mathbf{P b} \end{aligned}$	83 $B i$	$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	$\begin{aligned} & 85 \\ & \mathbf{A t} \\ & \hline \end{aligned}$	$\begin{aligned} & 86 \\ & \mathbf{R n} \end{aligned}$
$\begin{aligned} & 87 \\ & \mathbf{F r} \end{aligned}$	$\begin{aligned} & 88 \\ & \text { Ra } \end{aligned}$	$\begin{aligned} & 89 \\ & \mathbf{A c} \end{aligned}$	$\begin{aligned} & 104 \\ & \mathbf{R f} \end{aligned}$	${ }_{\text {l }}^{\text {D }}$	$\begin{aligned} & 106 \\ & \mathbf{S g} \end{aligned}$	$\begin{aligned} & 107 \\ & \text { Bh } \end{aligned}$	${ }_{\text {l }}^{108}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$	${ }_{\text {ds }}^{110}$	$\begin{aligned} & 111 \\ & \text { Rg } \end{aligned}$	112	(113)	114	(115)	116	(117)	(118)

	Metals
	Metalloids
Nonmetals	

$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathbf{P r} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathbf{N d} \end{aligned}$	$\begin{gathered} 61 \\ \mathbf{P m} \end{gathered}$	$\begin{aligned} & 62 \\ & \mathbf{S m} \end{aligned}$	$\begin{aligned} & 63 \\ & \mathbf{E u} \end{aligned}$	$\begin{gathered} 64 \\ \mathbf{G d} \end{gathered}$	$\begin{aligned} & 65 \\ & \mathbf{T b} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathbf{H o} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathbf{E r} \end{aligned}$	$\stackrel{69}{\mathbf{T m}}$	$\begin{aligned} & 70 \\ & \mathbf{Y b} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathbf{L u} \end{aligned}$
$\mathbf{T h}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & 92 \\ & \mathbf{U} \end{aligned}$	$\begin{aligned} & 93 \\ & \mathbf{N}_{\mathbf{p}} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathbf{P u} \end{aligned}$	$\begin{gathered} 95 \\ \mathbf{A m} \end{gathered}$	$\begin{gathered} 96 \\ \mathbf{C m} \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \end{gathered}$	$\begin{gathered} 98 \\ \mathbf{C f} \end{gathered}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathbf{F m} \end{aligned}$	$\begin{aligned} & 101 \\ & \mathbf{M d} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$	$\begin{aligned} & 103 \\ & \mathbf{L r} \end{aligned}$

Example

Arrange the following in order of increasing first ionization energy: F, K, P, Ca, and Ne.

58 $\mathbf{C e}$	59 $\mathbf{P r}$	60 $\mathbf{N d}$	61 $\mathbf{P m}$	62 $\mathbf{S m}$	63 $\mathbf{E u}$	64 $\mathbf{G d}$	65 $\mathbf{T b}$	66 $\mathbf{D y}$	67 $\mathbf{H o}$	68 $\mathbf{E r}$	69 $\mathbf{T m}$	70 $\mathbf{Y b}$	71 $\mathbf{L u}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\mathbf{T h}$	$\mathbf{P a}$	\mathbf{U}	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$ $\mathbf{M d}$ $\mathbf{N o}$	$\mathbf{L r}$		

Electron Affinity

Electron Affinity : is the negative change of the energy that occurs when an electron is accepted by an atom in the gaseous state to form an anion. The higher electron affinity, the greater affinity to accept the electron. The Electron Affinity for non-metal is higher than metal , EA for metalloid fall between metals and nonmetals.
The Electron Affinity decreases from top to the bottom of the group.
The Electron Affinity increase from left to right in period.

> Exception
> $2 A<1 A$
> $5 A<4 A$

Noble gases have the lowest electron affinities
Halogens have the largest electron affinities

Electron Affinity

Example

Which choice correctly lists the elements in order of decreasing electron affinity?

Electron Affinity

Example

Specify which of the following elements you would expect to have the greatest electron affinity and which have the least:

	Metals
	Metalloids
	Nonmetals

Thank you

Chapter Nine

Chemical Bonding I
Basic Concept

Valence Electrons

Valence electrons: are the outer shell electrons of an atom. The valence electrons are the electrons that participate in chemical bonding.

Group	$\frac{e^{-} \text {configuration }}{\text { 1A }}$	\# of valence e^{-}
2A	$n s^{1}$	1
3A	$n s^{2}$	2
4A	$n s^{2} n p^{1}$	3
5A	$n s^{2} n p^{2}$	4
6A	$n s^{2} n p^{3}$	5
7A	$n s^{2} n p^{5}$	6

Lewis Dot Symbols

- Lawis dot symbol consists of the symbol of an element and one dot for each valence electron in an atom of the element.
- The octet rule: in forming chemical bonds, atoms usually gain, lose or share electrons until they have 8 electrons in the outer shell to reach the same electronic configuration of the noble gasses ($n s^{2} n p^{6}$).
- There are two main types of chemical bonds: ionic bond and covalent bond.

Lewis Dot Symbols

Lewis dot symbol for representative elements and noble gases

There are two type of bonds: lonic bond and covalent bond.
An ionic bond is the electrostatic force that holds ions together in an ionic compound.
lonic bond occurs normally between metal and nonmetal and the electron transfer from element to another element.
Example:

Chapter Nine / Chemical bonding I, Basic Concept

Ionic Bond

Example 2

Use Lewis dot symbol to show formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$

$$
\begin{aligned}
& 2 \text { A! } \quad+3 \stackrel{\bullet 0}{\circ} \cdot \rightarrow \\
& {[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{1} \quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}} \\
& 2 \mathrm{Al}^{3+}+3 \because \because \because 0_{0}^{\circ-2} \quad\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right) \\
& {[\mathrm{Ne}] \quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}[\mathrm{Ne}]}
\end{aligned}
$$

Ionic Bond

Example:
An atom in the ground state has atomic number $Z=5$. Choose the correct electron-dot structure which represents this atom?

The electron configuration $Z=5$
$1 s^{2} 2 s^{2} 2 p^{1}$
Valence electrons are $2 s^{2} 2 p^{1}$
$V E=3 e$

Covalent Bond

Covalent bond, is a bond in which two electrons are shared by two atoms.
Covalent bond occurs normally between nonmetal and nonmetal and the electron only shared between elements (not transfer from element to another element).

Example:

single covalent bond

lone pairs: pairs of valence electrons that are not involved in covalent bond formation.

single covalent bond

A Lewis structure is a representation of covalent bonding in which shared electron pairs are shown either as lines or as pairs of dots between two atoms, and lone pairs are shown as pairs of dots on individual atoms.

Lewis structure of water

or

Double bond - two atoms share two pairs of electrons

Triple bond - two atoms share three pairs of electrons
or
r $\square-7$ FTh

Bond length is defined as the distance between the nuclei of two covalently bonded atoms in a molecule

Polar covalent bond or polar bond is a covalent bond with greater electron density around one of the two atoms

Electronegativity : the ability of an atom to attract toward itself the electrons in a chemical bond.

Elements with high electronegativity have a greater tendency to attract electrons than do elements with low electronegativity.

Electron Affinity - measurable, Cl is highest

$$
\mathrm{X}_{(g)}+e^{-} \longrightarrow \mathrm{X}_{(g)}^{-}
$$

Electronegativity - relative, F is highest

Classification of bonds by difference in electronegativity
Difference Bond Type

0	Covalent
≥ 2	lonic
$0<$ and <2	Polar Covalent
ncreasing difference in electronegativity	

Covalent

share e^{-} \begin{tabular}{c}
Polar Covalent

partial transfer of e^{-}

Ionic

transfer e^{-}
\end{tabular}

Chapter Nine / Chemical bonding I, Basic Concept

Electronegativity

Example

Classify the following bonds as ionic, polar covalent, or covalent
A) $\mathrm{HCl} \quad 3-2.1=0.9$

Polar covalent
b) $\mathrm{KF} \quad 4-0.8=3.2$

Ionic
c) $\mathrm{C}-\mathrm{C} \quad 2.5-2.5=0$
covalent

Example

Classify the following bonds as ionic, polar covalent, or covalent
A) $\mathrm{CsCl} 3-1=2$

Ionic
b) $\mathrm{H}_{2} \mathrm{~S} \quad 2.5-2.1=0.4$
c) $\mathrm{N}-\mathrm{N} \quad 3-3=0$ covalent

Writing Lewis Structures

1. Draw skeletal structure of compound showing which atoms are bonded to each other. Put least electronegative element in the center.
2. Count total number of valence e^{-}. Add 1 for each negative charge. Subtract 1 for each positive charge.
3. Draw single covalent bond between the central atom and each of the surrounding atom, and complete an octet for all the surrounded atoms except hydrogen. Count and Compare it with the number of electrons in step 2 if they are identical stop, if it is less add the remaining electrons to the central atom.
4. If still the central atom has no octet, use lone pair/s on the one of the surrounded atom to form double or triple bond with the central atom.

Example 1

Write the Lewis structure of nitrogen trifluoride $\left(\mathrm{NF}_{3}\right)$.
Step $1-N$ is less electronegative than F, put N in center
Step 2 - Count valence electrons $N-5\left(2 s^{2} 2 p^{3}\right)$ and F-7 $\left(2 s^{2} 2 p^{5}\right)$
$5+(3 \times 7)=26$ valence electrons
Step 3 - Draw single bonds between N and F atoms and complete octets on N and F atoms.

Step 4 - Check, are \# of e^{-}in structure equal to number of valence e^{-}?
3 single bonds $(3 \times 2)+10$ lone pairs $(10 \times 2)=26$ valence electrons

Writing Lewis Structures

Example 2

Write the Lewis structure of the carbonate ion $\left(\mathrm{CO}_{3}{ }^{2-}\right)$.
Step $1-C$ is less electronegative than O, put C in center
Step 2 - Count valence electrons C-4 ($\left.2 s^{2} 2 p^{2}\right)$ and $0-6$ $\left(2 s^{2} 2 p^{4}\right)-2$ charge $-2 e^{-}$

$4+(3 \times 6)+2=24$ valence electrons
2 single bonds $(2 \times 2)=4$
Step 3 - Draw single bonds between C and O atoms and 1 double bond $=4$ complete octet on C and O atoms.

8 lone pairs $(8 \times 2)=16$
Step 4 - Check, are \# of e^{-}in structure equal to number of valence e- ${ }^{-}$
3 single bonds $(3 \times 2)+10$ lone pairs $(10 \times 2)=26$ valence electrons

Step 5 - Too many electrons, form double bond and recheck \# of e^{-}

Writing Lewis Structures

Example 3

Write the Lewis structure for nitric acid $\left(\mathrm{HNO}_{3}\right)$ in which the three O atoms are bonded to the central N and H atom is bonded to one of the O atoms?

Step 1: put N in center , surrounded by 30 atoms, H bonded to one of the O .
Step 2: Count the valence electrons $5+(3 \times 6)+1=24$ valence e^{-}
Step 3: Draw single bonds between N and O atoms and O and H complete octet on O and N atoms. Use all the valence e (step 2)
Step 4: Check, are \# of e^{-}in structure equal to number of valence e^{-}?
4 single bonds (4×2) +9 lone pairs (9×2) = 26 valence electrons
Step 5 - Too many electrons, form double bond and re-check \# of e^{-}

Formal Charges and Lewis Structure

formal charge is the difference between the number of valence electrons in an isolated atom and the number of electrons assigned to that atom in a Lewis structure.

The sum of the formal charges of the atoms in a molecule or ion must equal the charge on the molecule or ion.

Example:
Ozone molecule $\left(\mathrm{O}_{3}\right)$

$6-6-1=-1 \quad 6-2-3=+1 \quad 6-4-2=0$

$$
-1+1+0=0
$$

| formal charge on |
| :---: | :---: | :---: | :---: |
| an atom in a |
| Lewis structure |$=$| total number of |
| :---: |
| valence electrons |
| in the free atom |\quad| total number of |
| :---: |
| nonbonding |
| electrons |$\quad-$| total number of |
| :--- |
| bond |

Example 2

Write the formal charges for the carbonate ion $\left(\mathrm{CO}_{3}{ }^{2-}\right)$
$6-4-2=0$

6-6-1 =-1

$$
4-0-4=0
$$

$$
6-6-1=-1
$$

Formal Charges and Lewis Structure

Sometimes there is more than one acceptable Lewis structure for a given species. In such cases, we can often select the most plausible Lewis structure by using formal charges and the following guidelines:

1. For molecules, a Lewis structure in which there are no formal charges is preferable to one in which formal charges are present.
2. Lewis structures with large formal charges ($+2,+3$, and/or $-2,-3$, and so on) are less plausible than those with small formal charges.
3. Among Lewis structures having similar distributions of formal charges, the most plausible structure is the one in which negative formal charges are placed on the more electronegative atoms.

Example

Draw the most likely Lewis structure for formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$.

The Concept of Resonance

A resonance structure is one of two or more Lewis structures for a single molecule that cannot be represented accurately by only one Lewis structure.
Example
What are the resonance structures of the carbonate $\left(\mathrm{CO}_{3}\right)^{-2}$ ion?

Example

What are the resonance structures of Ozon $\left(\mathrm{O}_{3}\right)$?
$\stackrel{\bullet \bullet}{\bullet \bullet} \stackrel{\bullet}{+}_{\bullet}^{\bullet}=\stackrel{\bullet}{\bullet}$
$\stackrel{\cdot}{\mathrm{O}}=\stackrel{+}{\mathrm{O}}_{\bullet}^{\bullet}-\stackrel{-}{0}^{\circ}$

Example
What are the resonance structures of benzene molecule $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$?

Example
Draw three resonance structures for the molecule nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$ (the atomic arrangement is NNO). Indicate formal charges. Rank the structures

Structure (b) is the most important one because the negative charge is on the more electronegative oxygen atom. Structure (c) is the least important one because it has a larger separation of formal charges. Also, the positive charge is on the more electronegative oxygen atom.

Exceptions to the Octet Rule

Incomplete octet

The number of electrons surrounding the central atom in stable molecule is less than 8.
Example
BeH_{2}

$$
\mathrm{H}=\mathrm{Be}=\mathrm{H}_{-}
$$

coordinate covalent bond
(also referred to as a dative bond),
defined as a covalent bond in which one of the atoms donates both electrons.

The electron configuration of beryllium is $1 s^{2} 2 s^{2}$; it has two valence electrons in the 2 s orbital.

Also group 3A (Al, B).

Exceptions to the Octet Rule

Incomplete octet

Example

Draw the Lewis structure for aluminium triiodide $\left(\mathrm{All}_{3}\right)$

The outer-shell electron configurations of Al and I are $3 s^{2} 2 p^{1}$ and $5 s^{2} 5 p^{5}$ respectively. The total number of valence electrons is $3+3 \times 7$ or 24 .
Because Al is less electronegative than I , it occupies a central position and forms three bonds with the I atoms:

there are only six valence electrons around the Al atom. Thus, All_{3} is an example of the incomplete octet.

Odd-Electron Molecules

molecules contain an odd number of electrons also called radical.
Radical: atom has one electron alone
Example are nitric oxide (NO) and nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$

$$
\ddot{̣}=
$$

$$
\ddot{O}=\stackrel{N}{\mathrm{~N}}-\ddot{O}-
$$

Exceptions to the Octet Rule

The Expanded Octet

$3^{\text {rd }}$ period and beyond (4th, 5 th, 6 th, 7 th) may form molecules in which the central atom is surrounded by more than 8 electrons

Example
The electron configuration of sulfur is [Ne] $3 s^{2} 3 \mathrm{p}^{4}$. In SF_{6}, each of sulfur's six valence electrons forms a covalent bond with a fluorine atom, so there are 12 electrons around the central sulfur atom:

The Expanded Octet
Example
Draw Lewis structure for phosphorus pentaflouridde $\left(\mathrm{PF}_{5}\right)$, in which all five F atoms are bounded to the central P atom.?
Valance electrons $=5+(7 \times 5)=40 e$
$5 \times 6=30$ electron (lone pair)
$5 \times 2=10$ electron (bond)
Total is 40 electron
P has 10 electron (5×2)
Thus it expanded octet

Chapter Nine / Chemical bonding I, Basic Concept

Exceptions to the Octet Rule

Exceptions to the Octet Rule

Example
Draw Lewis structure for sulphate ion $\left(\mathrm{SO}_{4}{ }^{2-}\right)$, in which all four O atoms are bounded to the central S atom.

This structure has an expanded octet on S, BUT it is more correct because, it has less formal charges.

Exceptions to the Octet Rule

Example

When acting as a central atom, which of the following cannot expand its octet?
a- P \qquad $\mathrm{c}-\mathrm{Cl}$
d-Xe
e-S

$\begin{aligned} & 1 \\ & \mathbf{H} \end{aligned}$	$\stackrel{2}{2 \mathrm{~A}}$	
$\stackrel{3}{\mathbf{L i}}$	$\stackrel{4}{\mathrm{Be}}$	
$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{gathered} 12 \\ \mathbf{M g} \end{gathered}$	$\begin{gathered} 3 \\ 3 \mathrm{~B} \end{gathered}$
$\begin{aligned} & 19 \\ & \mathbf{K} \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$
$\begin{aligned} & 37 \\ & \mathbf{R b} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$	39
$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 56 \\ & \mathbf{B a} \end{aligned}$	$\begin{aligned} & 57 \\ & \mathbf{L a} \end{aligned}$
$\begin{aligned} & 87 \\ & \mathbf{F r} \end{aligned}$	$\begin{aligned} & 88 \\ & \mathbf{R a} \end{aligned}$	89 Ac

$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \text { Pr } \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{aligned} & 61 \\ & \mathbf{P m} \end{aligned}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 63 \\ & \mathbf{E u} \end{aligned}$	$\begin{aligned} & 64 \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & 65 \\ & \mathbf{T b} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & 68 \\ & \mathbf{E r} \end{aligned}$	$\begin{aligned} & 69 \\ & \mathbf{T m} \end{aligned}$	$\begin{aligned} & 70 \\ & \mathbf{Y} \mathbf{b} \end{aligned}$	71 $\mathbf{L u}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Thank you

Chapter Fourteen

Chemical Equilibrium

The Concept of Equilibrium and the Equilibrium Constant

- Few chemical reactions proceed in only one direction, most are reversible.
- At the start of a reversible process, the reaction proceeds toward the formation of products. As soon as some product molecules are formed, the reverse process begins to take place and reactant molecules are formed from product molecules.

$$
A+B \leftrightarrow C+D
$$

- Chemical equilibrium is achieved when:

$$
\begin{aligned}
& \text { Physical equilibrium } \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
$$

Chemical equilibrium

$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$

- The rates of the forward and reverse reactions are equal and
- The concentrations of the reactants and products remain constant

The Concept of Equilibrium
and the Equilibrium Constant
$\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g)$

Start with NO_{2}

Start with $\mathrm{N}_{2} \mathrm{O}_{4}$

Start with $\mathrm{NO}_{2} \& \mathrm{~N}_{2} \mathrm{O}_{4}$

```
The Concept of Equilibrium
and the Equilibrium Constant
```

$$
a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}
$$

- Where $a, b, c, \& d:$ are the stoichiometric coefficients for $A, B, C, \& D$.

Law of Mass Action

Where K is equilibrium constant.
for a reversible reaction at equilibrium and a constant temperature, a certain ratio of reactant and product concentrations has a constant value, K , called the equilibrium constant.

Always
The concentration of solids and pure liquids and solvent are not included in the expression for the equilibrium constant.
K dos not have a unit

- The magnitude of the equilibrium constant tells us whether an equilibrium reaction favors the products or reactants.
- If K is much greater than 1 (that is, $K \gg 1$), the equilibrium will lie to the right and favors the products.
- if the equilibrium constant is much smaller than 1 (that is, $\mathrm{K} \ll 1$), the equilibrium will lie to the left and favor the reactants.
- In this context, any number greater than 10 is considered to be much greater than 1 , and any number less than 0.1 is much less than 1.

Writing Equilibrium Constant Expressions

Homogeneous Equilibria

- homogeneous equilibrium applies to reactions in which all reacting species are in the same phase.

Example

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

K can be given as

$$
K_{c}=\frac{\left[N O_{2}\right]^{2}}{\left[N_{2} O_{4}\right]} \quad K_{p}=\frac{P_{N O_{2}}^{2}}{P_{N_{2} O_{4}}}
$$

Note that the subscript in K_{c} indicates that the concentrations of the reacting species are expressed in molarity or moles per liter.

Homogeneous Equilibria

Relationship between Kc and Kp :
Kc \neq Kp

$$
\mathbf{i} \bar{K}_{p}=K_{c}(R T)^{\Delta n}
$$

$\Delta \mathrm{n}=$ moles of gaseous products - moles of gaseous reactants

$$
a A+b B \leftrightarrow c C+d D
$$

$$
\Delta n=(c+d)_{\text {products }(\mathrm{g})}-(a+b)_{\text {reactants }(\mathrm{g})}
$$

$K c=K p$, when $\Delta n=0$

Writing Equilibrium Constant Expressions

Homogeneous Equilibria

Example
Write expressions for K_{c}, and K_{p} if applicable, for the following reversible reactions at equilibrium?

$$
\begin{gather*}
H F(a q)+H_{2} O(l) \leftrightarrow H_{3} O^{+}(a q)+F^{-}(a q) \tag{a}\\
2 N O(g)+O_{2}(g) \leftrightarrow 2 \mathrm{NO}_{2}(g)
\end{gather*}
$$

(c) $\quad \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq}) \leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Writing Equilibrium Constant Expressions

Homogeneous Equilibria

(a)

$$
H F(a q)+H_{2} O(l) \leftrightarrow H_{3} O^{+}(a q)+F^{-}(a q)
$$

$$
K_{c}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

Always do not write solvent in the expression of equilibrium constant.
Normally water is solvent

$$
K_{c}=\frac{\left[H_{3} O^{+}\right]\left[F^{-}\right]}{[H F]}
$$

Because there are no gases then there is no K_{p}

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{NO}_{2}(g)
$$

$$
\begin{gathered}
K_{c}=\frac{\left[N O_{2}\right]^{2}}{[N O]^{2}\left[O_{2}\right]} \\
K_{p}=\frac{P_{N O_{2}}^{2}}{P_{N O}^{2} P_{O_{2}}}
\end{gathered}
$$

Writing Equilibrium Constant Expressions

Homogeneous Equilibria

(c)

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq}) \leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
K_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}
$$

Always do not write solvent in the expression of equilibrium constant.
Normally water is solvent

$$
K_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}
$$

Because there are no gases then there is no K_{p}

Writing Equilibrium Constant Expressions

Homogeneous Equilibria

- Example

The following equilibrium process has been studied at $230^{\circ} \mathrm{C}$:

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{NO}_{2}(g)
$$

In one experiment, the concentrations of the reacting species at equilibrium are found to be $[\mathrm{NO}]=0.0542 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.127 \mathrm{M}$, and $\left[\mathrm{NO}_{2}\right]=15.5 \mathrm{M}$. Calculate the equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ of this reaction at this temperature.

$$
\begin{gathered}
K_{c}=\frac{\left[N O_{2}\right]^{2}}{[N O]^{2}\left[O_{2}\right]} \\
K_{c}=\frac{(15.5)^{2}}{(0.0542)^{2}(0.127)}=6.44 \times 10^{5}
\end{gathered}
$$

Writing Equilibrium Constant Expressions

Homogeneous Equilibria

- Example

The equilibrium constant K_{p} for the decomposition of

$$
P C l_{5}(g) \leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

Is found to be 1.05 at $250^{\circ} \mathrm{C}$. If the equilibrium partial pressures of PCl_{5}, and PCl_{3} are 0.875 atm and 0.463 atm , respectively, what is the equilibrium partial pressure of Cl_{2} at $250^{\circ} \mathrm{C}$.

$$
\begin{aligned}
K_{p} & =\frac{P_{P C l_{3}} P_{C l_{2}}}{P_{P C l_{5}}} \\
P_{C l_{2}} & =\frac{K_{p} P_{P C l_{5}}}{P_{P C l_{3}}}=\frac{(1.05)(0.875)}{(0.463)}=1.98 \mathrm{~atm}
\end{aligned}
$$

Writing Equilibrium Constant Expressions

Homogeneous Equilibria

- Example

The equilibrium concentrations for the reaction between carbon monoxide and molecular chlorine to form $\mathrm{COCl}_{2}(g)$ at $74^{\circ} \mathrm{C}$ are $[\mathrm{CO}]=0.012 \mathrm{M},\left[\mathrm{Cl}_{2}\right]$ $=0.054 \mathrm{M}$, and $\left[\mathrm{COCl}_{2}\right]=0.14 \mathrm{M}$. Calculate the equilibrium constants K_{c} and K_{p}.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}\left(\mathrm{~g} \rightleftarrows \mathrm{COCl}_{2}(\mathrm{~g})\right.
$$

$$
\begin{aligned}
K_{c} & =\frac{\left[\mathrm{COCl}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]} \\
& =\frac{0.14}{0.012 \times 0.054}=220 \\
K_{p} & =K_{c}(R T)^{\Delta n}
\end{aligned}
$$

$\Delta \mathrm{n}=$ moles of products - moles of reactants

$$
\begin{gathered}
\Delta n=1-2=-1 \quad R=0.0821 \\
T=273+74=347 \mathrm{~K} \\
K_{p}=220 \times(0.0821 \times 347)^{-1}=7.7
\end{gathered}
$$

Chapter Fourteen/ Chemical Equilibrium

Writing Equilibrium Constant Expressions

Heterogeneous Equilibria

- heterogeneous equilibrium applies to reactions in which all reacting species are in different phases.

Example

- All rules applied for homogeneous equilibria also applies for heterogeneous.
- Example

Heterogeneous Equilibria

Write the equilibrium constant expression K_{c}, and K_{p} if applicable, for each of the following heterogeneous systems:
(a)

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Se}(s) \leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{H}_{2} \mathrm{Se}(g)
$$

$$
\begin{equation*}
A g C l(s) \leftrightarrow A g^{+}(a q)+C l^{-}(a q) \tag{b}
\end{equation*}
$$

(c)

$$
P_{4}(s)+6 C l_{2}(g) \leftrightarrow 4 P C l_{3}(l)
$$

$$
\begin{gathered}
\text { Chapter Fourteen/ Chemical Equilibrium } \\
\text { Heterogeneous Equilibria } \\
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Se}(\mathrm{~s}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{Se}(\mathrm{~g}) \\
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{H}_{2} \mathrm{Se}\right]}{\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Se}\right]} \\
K_{c}=\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{H}_{2} \mathrm{Se}\right] \\
K_{p}=\mathrm{P}_{\mathrm{NH}_{3}}^{2} P_{\mathrm{H}_{2} \mathrm{Se}}
\end{gathered}
$$

(b)

$$
\mathrm{AgCl}(s) \leftrightarrow \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

- AgCl is solid therefore it dose not count in equilibrium constant.

$$
K_{c}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]
$$

There are no gases thus there are no K_{p}.

Heterogeneous Equilibria
(c)

$$
P_{4}(s)+6 C l_{2}(g) \leftrightarrow 4 P C l_{3}(l)
$$

- P_{4} is solid and PCl_{3} is liquid therefore they do not count in constant of equilibrium.

$$
\begin{aligned}
& K_{c}=\frac{1}{\left[C l_{2}\right]^{6}} \\
& K_{p}=\frac{1}{P_{C l_{2}}^{6}}
\end{aligned}
$$

Writing Equilibrium Constant Expressions

- Example

Heterogeneous Equilibria

Consider the following heterogeneous equilibrium:

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

At $800^{\circ} \mathrm{C}$, the pressure of CO_{2} is 0.236 atm . Calculate (a) K_{p} and (b) K_{c} for the reaction at this temperature.
CaCO_{3} and CaO are solid therefore they do not count in equilibrium of constant.
(a) $K_{p}=\dot{P}_{\mathrm{CO}_{2}}=0.236$

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

$$
K_{c}=\frac{K_{p}}{(R x T)^{\Delta n}}
$$

(b) $R=0.0821$

$$
T=273+800=1073 \mathrm{~K}
$$

$\Delta \mathrm{n}=$ moles of products - moles of reactants $\Delta n=1-0=1$

- If a reaction can be expressed as the sum of two or more reactions, the equilibrium constant for the overall reaction is given by the product of the equilibrium constants of the individual reactions.

Writing Equilibrium Constant Expressions

Multiple Equilibria

- When the equation for a reversible reaction is written in the opposite direction, the equilibrium constant becomes the reciprocal of the original equilibrium constant. Thus, if we write the $\mathrm{NO}_{2}-\mathrm{N}_{2} \mathrm{O}_{4}$ equilibrium
as

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g) \\
& K=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \quad=4.63 \times 10^{-3}
\end{aligned}
$$

- However, we can represent the equilibrium equally

When the equation for a reversible reaction is written in the opposite direction, the equilibrium constant becomes the reciprocal of the original equilibrium constant well as

$$
\begin{gathered}
2 \mathrm{NO}_{2}(g) \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4}(g) \\
K=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}=\frac{1}{K}=216
\end{gathered}
$$

What Does the Equilibrium Constant
Tell Us

Predicting the Direction of a Reaction

Example: The equilibrium constant for the following reaction at 700 K is,

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

$$
K_{1}=10.17
$$

What is the value of the equilibrium constant for the following :

$$
\mathrm{HI}(\mathrm{~g}) \rightleftharpoons 1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{I}_{2}(\mathrm{~g}) \quad K_{2}=?
$$

a- 9.668×10^{-3}
b- 3.189
c- 0.314
d- 0.098

$$
\begin{aligned}
& K_{2}=\sqrt{1 / K_{1}} \\
& K_{2}=\sqrt{1 / 10.17}=0.314
\end{aligned}
$$

What Does the Equilibrium Constant
 Tell Us

Predicting the Direction of a Reaction

Example: The equilibrium constant for the following reaction at 700 K is,

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

$$
K_{1}=10.17
$$

What is the value of the equilibrium constant for the following :

$$
\text { a- } 9.668 \times 10^{-3}
$$

$$
\begin{array}{rlr}
\mathrm{HI}(\mathrm{~g}) & \rightleftharpoons 1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{I}_{2}(\mathrm{~g}) & K_{2}=? \\
\mathrm{~b}-3.189 & \mathrm{c}-0.314 & \mathrm{~d}-0.098
\end{array}
$$

```
What Does the Equilibrium Constant
    Tell Us
```


Predicting the Direction of a Reaction

- reaction quotient $\left(\mathrm{O}_{\mathrm{c}}\right)$: is calculated by substituting the initial concentrations of the reactants and products into the equilibrium constant (K_{c}) expression.
- IF
- $Q_{c}>K_{c}$ system proceeds from right to left to reach equilibrium
- $Q_{c}=K_{c}$ the system is at equilibrium
- $Q_{c}<K_{c}$ system proceeds from left to right to reach equilibrium

What Does the Equilibrium Constant
 Tell Us

Predicting the Direction of a Reaction

- The equilibrium constant K_{c} for the formation of hydrogen iodide from molecular hydrogen and molecular iodine in the gas phase

$$
H_{2}(g)+I_{2}(g) \leftrightarrow 2 H I(g)
$$

is 54.3 at $430^{\circ} \mathrm{C}$. that in a certain experiment we place 0.243 mole of H_{2}, 0.146 mole of I_{2}, and 1.98 moles of HI all in a $1.00-\mathrm{L}$ container at $430^{\circ} \mathrm{C}$.

$$
\frac{[\mathrm{HI}]_{o}^{2}}{\left[\mathrm{H}_{2}\right]_{o}\left[I_{2}\right]_{o}}=\frac{(1.98)^{2}}{(0.243)(0.146)}=111
$$

where the subscript 0 indicates initial concentrations (before equilibrium is reached). Because the quotient $[\mathrm{HI}]_{0}^{2} /\left[\mathrm{H}_{2}\right]_{0}\left[\mathrm{I}_{2}\right]_{0}$ is greater than K_{c}, this system is not at equilibrium

What Does the Equilibrium Constant Tell Us

- Example:

Predicting the Direction of a Reaction

At the start of a reaction, there are $0.249 \mathrm{~mol}_{2}, 3.21 \times 10^{-2} \mathrm{~mol} \mathrm{H}_{2}$, and 6.42 $\times 10^{-4} \mathrm{~mol} \mathrm{NH}_{3}$ in a 3.50 L reaction vessel at $375^{\circ} \mathrm{C}$. If the equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ for the reaction:

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \leftrightarrow 2 \mathrm{NH}_{3}(g)
$$

Is 1.2 at this temperature, decide whether the system is at equilibrium. If it is not, predict which way the net reaction proceed?

$$
\begin{array}{ll}
{\left[\mathrm{N}_{2}\right]_{o}=\frac{0.249 \mathrm{~mol}}{3.50 \mathrm{~L}}=0.0711 \mathrm{M}} & \mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{\mathrm{c}} \\
{\left[\mathrm{H}_{2}\right]_{o}=\frac{3.21 \times 10^{-2} \mathrm{~mol}}{3.50 \mathrm{~L}}=9.17 \times 10^{-3} \mathrm{M}} & \text { THUS: the reaction is NOT at equilibrium } \\
{\left[\mathrm{NH}_{3}\right]_{o}=\frac{6.42 \times 10^{-4} \mathrm{~mol}}{3.50 \mathrm{~L}}=1.83 \times 10^{-4} \mathrm{M}} & \begin{array}{l}
\text { THUS: the product concentration will increase } \\
\text { and the reactant concentration will decrease }
\end{array} \\
Q_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{\left(1.83 \times 10^{-4}\right)^{2}}{(0.0711)\left(9.17 \times 10^{-3}\right)^{2}}=0.611 & \begin{array}{l}
\text { The reaction will proceed from left to right }
\end{array} \\
\text { und equilibrium is reached. }
\end{array}
$$

What Does the Equilibrium Constant
 Tell Us

Calculating Equilibrium Concentrations

- If we know the equilibrium constant for a particular reaction, we can calculate the concentrations in the equilibrium mixture from the initial concentrations.

1. Express the equilibrium concentrations of all species in terms of the initial concentrations and a single unknown x, which represents the change in concentration.
2. Write the equilibrium constant expression in terms of the equilibrium concentrations. Knowing the value of the equilibrium constant, solve for x.
3. Having solved for x, calculate the equilibrium concentrations of all species.

Chapter Fourteen/ Chemical Equilibrium

> What Does the Equilibrium Constant
> Tell Us

Calculating Equilibrium Concentrations

- Example

A mixture of $0.500 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$ and $0.500 \mathrm{~mol}_{2}$ was placed in a 1.00 L stainlesssteel flask at $430^{\circ} \mathrm{C}$. The equilibrium constant K_{c} for the reaction

$$
H_{2}(g)+I_{2}(g) \leftrightarrow 2 H I(g)
$$

Is 54.3 at this temperature. Calculate the concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at equilibrium

	H_{2}	I_{2}	2 HI
Initial (M)	0.5	0.5	0.0
Change	$-x$	$-x$	+2 x
Equilibrium	$0.5-x$	$0.5-x$	$2 x$

Calculating Equilibrium Concentrations

$$
\begin{aligned}
& K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[I_{2}\right]} \\
& 54.3=\frac{[2 x]^{2}}{[0.5-x][0.5-x]}=\frac{[2 x]^{2}}{[0.5-x]^{2}} \\
& \sqrt{54.3}=\frac{\sqrt{[2 x]^{2}}}{\sqrt{[0.5-x]^{2}}} \\
& 7.369=\frac{2 x}{0.5-x} \\
& 7.369(0.5-x)=2 x \\
& 3.684-7.369 x=2 x \\
& 3.684=2 x+7.369 x \\
& 3.684=9.369 x
\end{aligned}
$$

Factors That Affect Chemical Equilibrium

- Chemical equilibrium represents a balance between forward and reverse reactions. In most cases, this balance is quite delicate. Changes in experimental conditions may disturb the balance and shift the equilibrium position so that more or less of the desired product is formed.
- In this section we will study 5 factor which can effect chemical equilibrium namely : concentration, pressure, volume, temperature, and catalyst.
- Le Châtelier's Principle: if an external stress is applied to a system at equilibrium, the system adjusts in such a way that the stress is partially offset as the system reaches a new equilibrium position.

Change
Increase concentration of product(s)
Decrease concentration of product(s)
Increase concentration of reactant(s)
Decrease concentration of reactant(s)

Shifts the Equilibrium

Left (toward reactant)
Right (toward product)
Right (toward product)
Left (toward reactant)

Concentration effect the position and not the

Factors That Affect Chemical Equilibrium

Changes in Concentration

Example

If all species are gases and H_{2} is added, the amount of CO present at equilibrium will:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

Factors That Affect Chemical Equilibrium

Changes in Concentration

Example
At $720^{\circ} \mathrm{C}$, the equilibrium K_{c} for the reaction:

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Is 2.37×10^{-3}. the equilibrium concentrations are $\left[\mathrm{N}_{2}\right]=0.683 \mathrm{M},\left[\mathrm{H}_{2}\right]=8.80 \mathrm{M}$, and $\left[\mathrm{NH}_{3}\right]=1.05 \mathrm{M}$. Suppose some NH_{3} is added to the mixture so that the concentration is increased to 3.65 M . (a) Use Le Châtelier's Principal to predict the shift direction of the net reaction to reach new equilibrium. (b) Confirm your prediction by calculating the reaction quotient Q_{c} and comparing its value with K_{c}.

Chapter Fourteen/ Chemical Equilibrium

Factors That Affect Chemical Equilibrium

\square
Changes in Concentration

$$
N_{2}(g)+3 H_{2}(g) \leftrightarrow 2 \mathrm{NH}_{3}(g)
$$

a-The increase was in product thus the equilibrium will shift toward reactant (left).
b-

$$
\begin{aligned}
Q_{c} & =\frac{\left[\mathrm{NH}_{3}\right]_{o}^{2}}{\left[\mathrm{~N}_{2}\right]_{o}\left[\mathrm{H}_{2}\right]_{o}^{3}} \\
Q_{c} & =\frac{(3.65)^{2}}{(0.683)(8.80)^{3}}=2.86 \times 10^{-2}
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{c}}>\mathrm{K}_{\mathrm{c}}$
$Q_{c}>K_{c}$ system proceeds from right to left to reach equilibrium $\left(\mathrm{Q}_{\mathrm{c}}=\mathrm{K}_{\mathrm{c}}\right)$

Factors That Affect Chemical Equilibrium

Changes in Volume and Pressure

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

- In general, an increase in pressure (decrease in volume) favors the net reaction that decreases the total number of moles of gases.
- a decrease in pressure (increase in volume) favors the net reaction that increases the total number of moles of gases
- For reactions in which there is no change in the number of moles of gases, a pressure (or volume) change has no effect on the position of equilibrium.
- Volume has the opposite effect of pressure

Factors That Affect Chemical Equilibrium

Changes in Volume and Pressure

Example
Consider the following equilibrium systems:
(a) $2 \mathrm{PbS}(s)+3 \mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{PbO}(s)+2 \mathrm{SO}_{2}(g)$
(b) $P C l_{5}(g) \leftrightarrow P C_{3}(g)+C l_{2}(g)$
(c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$

Predict the direction of the net reaction in each case as a result of increasing the pressure (decreasing the volume) on the system at constant temperature.?

Changes in Volume and Pressure

(a) $2 \mathrm{PbS}(s)+3 \mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{PbO}(s)+2 \mathrm{SO}_{2}(g)$

- 3 mole for reactant and 2 mole for product Thus it will go toward product (less mole).
(b) $P C l_{5}(g) \leftrightarrow P C l_{3}(g)+C l_{2}(g)$
- 1 mole for reactant and 2 mole for product Thus it will go toward reactant (less mole)
(c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$
- 2 mole for reactant and 2 mole for product

Thus it will remain unchanged

Factors That Affect Chemical Equilibrium

Changes in Temperature

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

- The forward reaction is endothermic (absorbs heat, $\Delta \mathrm{H}^{\circ}>0$):

$$
\text { heat }+\mathrm{N}_{2} \mathrm{O}_{4}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \quad \Delta H^{\circ}=58.0 \mathrm{~kJ} / \mathrm{mol}
$$

- The reverse reaction is exothermic (releases heat, $\Delta \mathrm{H}^{\circ}<0$)

$$
2 \mathrm{NO}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(g)+\text { heat } \quad \Delta H^{\circ}=-58.0 \mathrm{~kJ} / \mathrm{mol}
$$

- Temperature increase favour the endothermic reaction,
- Temperature decrease favours an exothermic reaction
- Only a change in temperature can alter the equilibrium constant.

Chapter Fourteen/ Chemical Equilibrium

Factors That Affect Chemical Equilibrium

Changes in Temperature

Example
If the reaction is endothermic and the temperature is raised, the amount of CO present will:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

a-increase. b-decrease. c-remain unchanged. d-disappear.

Factors That Affect Chemical Equilibrium

- Adding a Catalyst

The Effect of a Catalyst

- does not change K
- does not shift the position of an equilibrium system
- system will reach equilibrium sooner

- Catalyst lowers E_{a} for both forward and reverse reactions.
- Catalyst does not change equilibrium constant or shift equilibrium.

Factors That Affect Chemical Equilibrium

The Effect of a Catalyst

Example
If a catalyst is added to the equilibrium, the amount of CO present will:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \leftrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

a-increase. b-decrease. c-remain unchanged. d-disappear.

Change	Shift Equilibrium	Change Equilibrium Constant
Concentration	yes	no
Pressure	yes	no
Volume	yes	no
Temperature	yes	yes
Catalyst	no	no

Thank you

Chapter Fifteen

Acids and Bases

Chapter Fifteen/ Acids and Bases

The Acid-Base Properties of Water

- acids is a substances that ionize in water to produce H^{+}ions

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

- bases is a substances that ionize in water to produce OH^{-}ions.

$$
\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- An acid neutralizes a base

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)
$$

The Acid-Base Properties of Water

- Water has the ability to act either as an acid or as a base.
- Water undergo ionization to a small extent this reaction is sometimes called the autoionization of water.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(I) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
& K_{c}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& K_{W}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

- The ion-product constant $\left(\boldsymbol{K}_{w}\right)$ is the product of the molar concentrations of H^{+}and OH^{-}ions at a particular temperature.
- At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$

For water:

$$
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HO}^{-}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{HO}^{-}\right]=1 \times 10^{-14}
$$

Because water is neutral then

$$
\left[H^{+}\right]=\left[\mathrm{HO}^{-}\right]=\sqrt{1 \times 10^{-14}}=1 \times 10^{-7} \mathrm{M}
$$

Solution Is
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] \quad$ neutral
$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right] \quad$ acidic
$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right] \quad$ basic

Example:
Calculate the $\left[\mathrm{H}^{+}\right]$ions in aqueous ammonia , $\left[\mathrm{OH}^{-}\right]=0.0025 \mathrm{M}$?

$$
\begin{gathered}
K_{W}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
{\left[\mathrm{H}^{+}\right]=\frac{K_{W}}{\left[\mathrm{OH}^{-}\right]}} \\
{\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{0.0025}=4 \times 10^{-12} \mathrm{M}} \\
\text { THUS }\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right] \\
\text {therefore the solution is basic }
\end{gathered}
$$

pH -A Measure of Acidity

- Because the concentrations of H^{+}and OH^{-}ions in aqueous solutions are frequently very small numbers and therefore inconvenient to work with, Soren Sorensen in 1909 proposed a more practical measure called pH.
- The pH of a solution is defined as the negative logarithm of the hydrogen ion concentration (in $\mathrm{mol} / \mathrm{L}$).

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right]=-\log \left[H_{3} O^{+}\right] \\
& {\left[H^{+}\right]=10^{-p H}}
\end{aligned}
$$

- For [OH]

$$
\begin{aligned}
& p O H=-\log \left[O H^{-}\right] \\
& {\left[O H^{-}\right]=10^{-p O H}} \\
& p K_{w}=-\log 1 x 10^{-14}=14 \\
& p H+p O H=14
\end{aligned}
$$

Acidic		Basic
Increase the acidity		Increase the basisty
Solution		At $25^{\circ} \mathrm{C}$
neutral	$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$	$\left[\mathrm{H}^{+}\right]=1 \times 10^{-7}$
acidic	$\left[\mathrm{H}^{+}\right]>$[OH^{-}]	$\left[\mathrm{H}^{+}\right]>1 \times 10^{-7}$
basic	$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$	$\left[\mathrm{H}^{+}\right]<1 \times 10^{-7}$

[pHis inversely proportional to $\left[\mathrm{H}^{+}\right]$

pH -A Measure of Acidity

Example

The concentration of H^{+}ions in a bottle of vinegar was $3.2 \times 10^{-4} \mathrm{M}$ right after the cork was removed. Only half of the vinegar was consumed. The other half, after it had been standing open to the air for a month, was found to have a hydrogen ion concentration equal to $1.0 \times 10^{-3} \mathrm{M}$. Calculate the pH of the vinegar on these two occasions.

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right]=-\log \left(3.2 \times 10^{-4}\right)=3.49 \\
& p H=-\log \left[H^{+}\right]=-\log \left(1.0 \times 10^{-3}\right)=3.00
\end{aligned}
$$

Example

The pH of rainwater collected in a certain region of Saudi Arabia on a particular day was 4.82 . Calculate the H^{+}ion concentration of the rainwater.

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right] \\
& {\left[H^{+}\right]=10^{-p H}} \\
& {\left[H^{+}\right]=10^{-4.82}=1.5 \times 10^{-5} \mathrm{M}}
\end{aligned}
$$

Example

In a NaOH solution $\left[\mathrm{OH}^{-}\right]$is $2.9 \times 10^{-4} \mathrm{M}$. Calculate the pH of the solution?
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(2.9 \times 10^{-4}\right)=3.54$
pH + pOH $=14$
$p H=14-p O H=14-3.54=10.46$

- Strong acid (or base) have 100 \% dissociation.
$\mathrm{HCl}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
- Weak acid (or base) have incomplete dissociation.
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}^{+}(a q)$

(1) $\mathrm{H}_{2} \mathrm{O}$
($\mathrm{H}_{3} \mathrm{O}^{+}$

Weak Acids and Acid Ionization Constants

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

- The acid ionization constant $\left(\mathrm{K}_{\mathrm{a}}\right)$, is the equilibrium constant for the ionization of an acid.

$$
K_{a}=\frac{\left[H_{3} O^{+}\right]\left[A^{-}\right]}{[H A]}
$$

- At a given temperature, the strength of the acid HA is measured quantitatively by the magnitude of K_{a}. The larger K_{a}, the stronger the acid that is, the grater the concentration of H^{+}ions at equilibrium due to its ionization.

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=\sqrt{K_{a}[\text { acid }]}} \\
{\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b}[\text { base }]}}
\end{gathered}
$$

Weak Acids and Acid Ionization Constants

Example
What is the pH of a 0.5 M HF solution (at $25^{\circ} \mathrm{C}$) if $\mathrm{K}_{\mathrm{a}}=7.1 \times 10^{-4}$?

$$
\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q)
$$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\sqrt{K_{a}[\text { acid }]}} \\
& {\left[H^{+}\right]=\sqrt{7.1 \times 10^{-4} x 0.5}} \\
& {\left[H^{+}\right]=0.019} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.72
\end{aligned}
$$

Weak Acids and Acid Ionization Constants

Example

- What is the pH of a 0.122 M monoprotic acid whose K_{a} is 5.7×10^{-4} ?

$$
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

$$
\begin{gathered}
{\left[H^{+}\right]=\sqrt{K_{a}[\text { acid }]}} \\
{\left[H^{+}\right]=\sqrt{5.7 \times 10^{-4} \times 0.122}} \\
{\left[H^{+}\right]=0.008} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.08
\end{gathered}
$$

Weak Acids and Acid Ionization Constants

Example

The pH of a 0.10 M solution of formic acid (HCOOH) is 2.39 . What is the K_{a} of the acid?

$$
\mathrm{HCOOH}(a q) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{HCOO}^{-}(a q)
$$

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right] \\
& {\left[H^{+}\right]=10^{-p H}} \\
& {\left[H^{+}\right]=10^{-2.39}=4.1 \times 10^{-3} \mathrm{M}} \\
& {\left[\mathrm{H}^{+}\right]=\sqrt{\left.K_{a} \text { [acid }\right]}} \\
& {\left[\mathrm{H}^{+}\right]^{2}=K_{a}[\text { acid }]} \\
& K_{a}=\frac{\left[H^{+}\right]^{2}}{[\text { acid }]} \\
& \quad K_{a}=\frac{\left[4.1 \times 10^{-3}\right]^{2}}{[0.1]} \\
& \quad K_{a}=1.7 \times 10^{-4}
\end{aligned}
$$

Weak Acids and Acid Ionization Constants

- K_{a} indicates the strength of an acid. Another measure of the strength of an acid is percent ionization.
percent ionization $=\frac{\text { lonized acid concentration at equilibrium }}{\text { Initial concentration of acid }} \times 100 \%$

$$
\text { Percent ionization }=\frac{\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]_{0}} \times 100 \% \quad[\mathrm{HA}]_{0}=\text { initial concentration }
$$

- The stronger the acid, the greater the percent ionization.

Weak Acids and Acid Ionization Constants

Example

Calculate the percent ionization of hydrofluoric acid at the concentrations of 0.50 M if $\mathrm{K}_{\mathrm{a}}=7.1 \times 10^{-4}$?

$$
\mathrm{HF}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q)
$$

$$
\begin{aligned}
& {\left[H^{+}\right]=\sqrt{K_{a} x[\text { acid }]}} \\
& {\left[H^{+}\right]=\sqrt{7.1 \times 10^{-4} x 0.5}} \\
& {\left[H^{+}\right]=0.019 M}
\end{aligned}
$$

percent ionization $=\frac{\text { lonized acid concentration at equilibrium }}{\text { Initial concentration of acid }} \times 100 \%$
percent ionization $=\frac{0.019}{0.5} \times 100 \%=3.8 \%$

Weak Acids and Acid Ionization Constants

Example

A 0.040 M solution of a monoprotic acid is 3 percent ionized. Calculate the ionization constant of the acid.?

$$
\text { percent ionization }=\frac{\text { Ionized acid concentration at equilibrium }}{\text { Initial concentration of acid }} \times 100 \%
$$

$$
\begin{aligned}
& 3=\frac{\left[H^{+}\right]}{0.04} \times 100 \\
& {\left[H^{+}\right]=\frac{0.04 \times 3}{100}=0.0012 \mathrm{M}} \\
& {\left[H^{+}\right]=\sqrt{K_{a}[\text { acid }]}} \\
& {\left[H^{+}\right]^{2}=K_{a}[\text { acid }]} \\
& K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\text { acid }]} \quad K_{a}=\frac{[0.0012]^{2}}{[0.04]}
\end{aligned}
$$

- The ionization of weak bases is treated in the same way as the ionization of weak acids.
- The base ionization constant $\left(K_{b}\right)$, is the equilibrium constant for the ionization of a base.

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

- At a given temperature, the strength of the base BA is measured quantitatively by the magnitude of K_{b}. The larger K_{b}, the stronger the base-that is, the greater the concentration of OH^{-}ions at equilibrium due to its ionization
- In solving problems involving weak bases, we follow the same procedure we used for weak acids. The main difference is that we calculate [OH^{-}] first, rather than $\left[\mathrm{H}^{+}\right]$.
- Example

What is the pH of a 0.40 M ammonia solution if $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$?

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b}[\text { base }]}} \\
& {\left[\mathrm{OH}^{-}\right]=\sqrt{1.8 \times 10^{-5} x 0.4}} \\
& {\left[\mathrm{OH}^{-}\right]=0.0027} \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=2.57 \\
& p H+p O H=14 \\
& p H=14-p O H=14-2.57=11.43
\end{aligned}
$$

Thank you

Chapter Sixteen

Acid-Base Equilibria and Solubility Equilibria

Chapter Sixteen/ Acid-Base Equilibria and Solubility Equilibria

The Common Ion Effect

- The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

The Common Ion Effect

- Consider mixture of salt NaA and weak acid HA.

$$
\begin{aligned}
& \mathrm{NaA}\left(s \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{A}^{-}(a q)\right. \\
& \mathrm{HA}\left(\mathrm{aq} \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})\right. \\
& {\left[\mathrm{H}^{+}\right]=\frac{K_{a}[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}} \\
& -\log \left[\mathrm{H}^{+}\right]=-\log K_{a}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \\
& -\log \left[\mathrm{H}^{+}\right]=-\log K_{a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]^{*}} \text { salt } \mathrm{p}_{\mathrm{a}}=-\log K_{a} \quad \text { Henderson-Hasselbalch equation }
\end{aligned}
$$

The Common Ion Effect

Example

What is the pH of a solution containing both $0.20 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.30 M $\mathrm{CH}_{3} \mathrm{COONa}$? The K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}.

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq}) \\
\mathrm{CH}_{3} \mathrm{COONa}(s) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq}) \\
p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]} \\
p H=-\log 1.8 \times 10^{-5}+\log \frac{0.3}{0.2} \\
\mathrm{pH}=4.92
\end{gathered}
$$

Buffer Solutions

- A buffer solution is a solution of (1) a weak acid or a weak base and (2) its salt; both components must be present.
- The solution has the ability to resist changes in pH upon the addition of small amounts of either acid or base.
- A buffer solution must contain a relatively large concentration of acid to react with any OH^{-}ions that are added to it, and it must contain a similar concentration of base to react with any added H^{+}ions. Furthermore, the acid and the base components of the buffer must not consume each other in a neutralization reaction. These requirements are satisfied by an acidbase conjugate pair.

Buffer Solutions

- A solution containing acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and its salt sodium acetate ($\mathrm{CH}_{3} \mathrm{COONa}$) added to water these two substances has the ability to neutralize either added acid or added base. Sodium acetate, a strong electrolyte, dissociates completely in water:

$$
\mathrm{CH}_{3} \mathrm{COONa} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(a q)
$$

- Acetic acid is weak acid :

$$
\mathrm{CH}_{3} \mathrm{COOH}(a q) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)
$$

- If an acid is added, the H^{+}ions will be consumed by the conjugate base in the buffer, $\mathrm{CH}_{3} \mathrm{COO}^{-}$, according to the equation:

$$
\mathrm{H}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q) \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)
$$

- If a base is added to the buffer system, the OH^{-}ions will be neutralized by the acid in the buffer:

$$
\mathrm{OH}^{-}(a q)+\mathrm{CH}_{3} \mathrm{COOH}(a q) \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Chapter Sixteen/ Acid-Base Equilibria and Solubility Equilibria

Buffer Solutions

Example
Which of the following are buffer systems? (a) $\mathrm{KF} / \mathrm{HF}$ (b) $\mathrm{KBr} / \mathrm{HBr}$
(a) HF is a weak acid and F^{-}is its conjugate base
buffer solution
(b) HBr is a strong acid
not a buffer solution

Chapter Sixteen/ Acid-Base Equilibria and Solubility Equilibria

Buffer Solutions

Example
A-What is the pH of a solution containing both $0.20 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.30 M $\mathrm{CH}_{3} \mathrm{COONa}$? The K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}.
B-If you add 0.01 M HCl to the previous solution (buffer solution) what is the new PH ?
C- If you add 0.01 M NaOH to the previous solution (buffer solution) what is the new PH?

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

Chapter Sixteen/ Acid-Base Equilibria and Solubility Equilibria

Buffer Solutions

Example

A-What is the pH of a solution containing both $0.20 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.30 M $\mathrm{CH}_{3} \mathrm{COONa}$? The K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}.

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) & \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq}) \\
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{pH} & =-\log 1.8 \times 10^{-5}+\log \frac{0.3}{0.2} \\
\mathrm{pH} & =4.92
\end{aligned}
$$

Buffer Solutions

Example

B-If you add 0.01 M HCl to the previous solution (buffer solution) what is the new PH?

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

HCl is strong acid therefore it equation will be as

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}
$$

Thus the H^{+}will increase and the equilibrium will shift toward reactant.
Thus we have to add 0.01 to the weak acid concentration $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ so it will be ($0.2+0.01=0.21$) and also take 0.01 from the negative ion concentration ($\mathrm{CH}_{3} \mathrm{COO}$). $(0.3-0.01=0.29)$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& \mathrm{pH}=-\log 1.8 \times 10^{-5}+\log \frac{0.29}{0.21} \\
& \mathrm{pH}=4.88
\end{aligned}
$$

Buffer Solutions

Example

C- If you add 0.01 M NaOH to the previous solution (buffer solution) what is the new PH?

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

NaOH is strong base therefore it equation will be as

$$
\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})
$$

The OH^{-}ion produced from NaOH will react with H^{+}ion. Then the H^{+}will decrease and the equilibrium will shift toward product
Then we have to take 0.01 to the weak acid concentration $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ so it will be (0.2-0.01=0.19) and also add 0.01 to the negative ion concentration $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right) .(0.3+0.01=0.31)$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& \mathrm{pH}=-\log 1.8 \times 10^{-5}+\log \frac{0.31}{0.19} \\
& \mathrm{pH}=4.96
\end{aligned}
$$

Preparing a Buffer Solution with a Specific pH

- to prepare a buffer solution, we work backwards. First we choose a weak acid whose pK_{a} is close to the desired pH . Next, we substitute the pH and pK_{a} values in Henderson-Hasselbalch equation to obtain the ratio [conjugate base]/[acid]. This ratio can then be converted to molar quantities for the preparation of the buffer solution.
- Smaller the pKa value, the stronger the acid.

Preparing a Buffer Solution with a Specific pH

Example:
Describe how you would prepare a "phosphate buffer" with a pH of about 7.40.?

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q) & K_{\mathrm{a}_{1}}=7.5 \times 10^{-3} ; \mathrm{p} K_{\mathrm{a}_{1}}=2.12 \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{HPO}_{4}^{--}(a q) & K_{\mathrm{a}_{2}}=6.2 \times 10^{-8} ; \mathrm{p} K_{\mathrm{a}_{2}}=7.21 \\
\mathrm{HPO}_{4}^{2-}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{PO}_{4}^{3-}(a q) & K_{\mathrm{a}_{3}}=4.8 \times 10^{-13} ; \mathrm{p} K_{\mathrm{a}_{3}}=12.32
\end{array}
$$

The most suitable of the three buffer systems is $\mathrm{HPO}_{4}^{-2} / \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$, because the pK_{a} of the acid $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is closest to the desired pH . From the HendersonHasselbalch equation we write

$$
\begin{array}{ll}
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} & 0.19=\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{array} \quad 1.5=\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Preparing a Buffer Solution with a Specific pH

- Thus, one way to prepare a phosphate buffer with a pH of 7.40 is to dissolve disodium hydrogen phosphate $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$ and sodium dihydrogen phosphate $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right)$ in a mole ratio of 1.5:1.0 in water. For example, we could dissolve 1.5 moles of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 1.0 mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ in enough water to make up a 1-L solution

Solubility Equilibria

$$
\begin{gathered}
\mathrm{AgCl}(s) \rightleftarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]
\end{gathered}
$$

- The solubility product (K_{sp}) of a compound is the product of the molar concentrations of the constituent ions, each raised to the power of its stoichiometric coefficient in the equilibrium equation.

$$
\begin{array}{ll}
\mathrm{MgF}_{2}(s) \rightleftarrows \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}) & K_{s p}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} \\
\mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \rightleftarrows 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{--}(\mathrm{aq}) & \mathrm{K}_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{-}\right] \\
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s) \rightleftarrows 3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}{ }^{3^{-}}(\mathrm{aq}) & K_{s p}=\left[\mathrm{Ca}^{2+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]^{2}
\end{array}
$$

- The value of $K_{\text {sp }}$ indicates the solubility of an ionic compound, the smaller the value, the less soluble the compound in water.

Chapter Sixteen/ Acid-Base Equilibria and Solubility Equilibria

Solubility Equilibria

- For concentrations of ions that do not correspond to equilibrium conditions we use the reaction quotient, which in this case is called the ion product (Q), to predict whether a precipitate will form.

Dissolution of an ionic solid in aqueous solution:
$Q<K_{s p} \quad$ Unsaturated solution No precipitate
$Q=K_{s p} \quad$ Saturated solution
$Q>K_{s p} \quad$ Supersaturated solution
Precipitate will form

Solubility Equilibria

Compound	$K_{\text {sp }}$	Compound	$K_{\text {sp }}$
Aluminum hydroxide $\left[\mathrm{Al}(\mathrm{OH})_{3}\right]$	1.8×10^{-33}	Lead(II) chromate (PbCrO_{4})	2.0×10^{-14}
Barium carbonate (BaCO_{3})	8.1×10^{-9}	Lead(II) fluoride (PbF_{2})	4.1×10^{-8}
Barium fluoride (BaF_{2})	1.7×10^{-6}	Lead(II) iodide (PbI_{2})	1.4×10^{-8}
Barium sulfate (BaSO_{4})	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide ($\left.\mathrm{Bi}_{2} \mathrm{~S}_{3}\right)$	1.6×10^{-72}	Magnesium carbonate (MgCO_{3})	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [$\mathrm{Mg}(\mathrm{OH})_{2}$]	1.2×10^{-11}
Calcium carbonate (CaCO_{3})	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF_{2})	4.0×10^{-11}	Mercury(I) chloride ($\mathrm{Hg}_{2} \mathrm{Cl}_{2}$)	3.5×10^{-18}
Calcium hydroxide $\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$	8.0×10^{-6}	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate $\left[\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]$	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide $\left[\mathrm{Cr}(\mathrm{OH})_{3}\right]$	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate ($\mathrm{Ag}_{2} \mathrm{CO}_{3}$)	8.1×10^{-12}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}
Copper(I) iodide (CuI)	5.1×10^{-12}	Silver iodide (AgI)	8.3×10^{-17}
Copper(II) hydroxide $\left[\mathrm{Cu}(\mathrm{OH})_{2}\right]$	2.2×10^{-20}	Silver sulfate $\left(\mathrm{Ag}_{2} \mathrm{SO}_{4}\right)$	1.4×10^{-5}
Copper(II) sulfide (CuS)	6.0×10^{-37}	Silver sulfide ($\mathrm{Ag}_{2} \mathrm{~S}$)	6.0×10^{-51}
Iron(II) hydroxide [$\left.\mathrm{Fe}(\mathrm{OH})_{2}\right]$	1.6×10^{-14}	Strontium carbonate (SrCO_{3})	1.6×10^{-9}
Iron(III) hydroxide [$\left.\mathrm{Fe}(\mathrm{OH})_{3}\right]$	1.1×10^{-36}	Strontium sulfate (SrSO_{4})	3.8×10^{-7}
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfide (SnS)	1.0×10^{-26}
Lead(II) carbonate (PbCO_{3})	3.3×10^{-14}	Zinc hydroxide [$\mathrm{Zn}(\mathrm{OH})_{2}$]	1.8×10^{-14}
Lead(II) chloride (PbCl_{2})	2.4×10^{-4}	Zinc sulfide (ZnS)	3.0×10^{-23}

Solubility Equilibria

- There are two other ways to express a substance's solubility:
- Molar solubility (s) (mol$/ \mathrm{L})$ is the number of moles of solute dissolved in 1 L of a saturated solution.
- Solubility $(\mathrm{g} / \mathrm{L})$ is the number of grams of solute dissolved in 1 L of a saturated solution.
- Molar solubility = solubility / molar mass
- Solubility = molar solubility x molar mass

Solubility Equilibria

Example:
The solubility of calcium sulfate $\left(\mathrm{CaSO}_{4}\right)$ is found to be $0.67 \mathrm{~g} / \mathrm{L}$. Calculate the value of $\mathrm{K}_{\text {sp }}$ for calcium sulfate.?

$$
\mathrm{CaSO}_{4}(\mathrm{~s}) \rightleftarrows \mathrm{Ca}^{+2}(\mathrm{aq})+\mathrm{SO}_{4}^{-2}(\mathrm{aq})
$$

$$
\begin{aligned}
& {\left[\mathrm{Ca}^{+2}\right]=\mathrm{s} \quad\left[\mathrm{SO}_{4}^{-2}\right]=\mathrm{s}} \\
& K_{s p}=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{SO}_{4}^{-2}\right] \\
& K_{s p}=s^{2}
\end{aligned}
$$

First, we calculate the number of moles of CaSO_{4} dissolved in 1 L of solution:
Molar solubility(s) = solubility / molar mass $s=0.67 / 136.2=4.9 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$

$$
\begin{aligned}
& {\left[\mathrm{Ca}^{+2}\right]=4.9 \times 10^{-3} \text { and }\left[\mathrm{SO}_{4}^{-2}\right]=4.9 \times 10^{-3}} \\
& K_{s p}=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{SO}_{4}^{-2}\right] \quad K_{s p}=2.4 \times 10^{-5}
\end{aligned}
$$

Solubility Equilibria

Example:
What is the solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ in g / L if $\mathrm{K}_{\mathrm{sp}}=2.2 \times 10^{-20}$

$$
\mathrm{Cu}(\mathrm{OH})(s) \rightleftarrows \mathrm{Cu}^{+2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\begin{gathered}
{\left[\mathrm{Cu}^{+2}\right]=\mathrm{s} \quad\left[\mathrm{OH}^{-}\right]^{2}=2 \mathrm{~s}} \\
\mathrm{~K}_{\mathrm{sp}}=\left[\mathrm{Cu}^{+2}\right][\mathrm{OH}-]^{2} \\
\mathrm{~K}_{\mathrm{sp}}=(\mathrm{s})(2 \mathrm{~s})^{2} \\
\mathrm{~K}_{\mathrm{sp}}=4 \mathrm{~s}^{3} \\
4 \mathrm{~s}^{3}=2.2 \times 10^{-20} \\
\mathrm{~s}^{3}=5.5 \times 10^{-21} \\
\mathrm{~s}=1.8 \times 10^{-7} \mathrm{M}
\end{gathered}
$$

Solubility $=$ molar solubility $(s) \times$ molar mass

$$
\text { solubility }=1.8 \times 10^{-7} \times 97.57
$$

$$
\text { solubility }=1.8 \times 10^{-5} \mathrm{~g} / \mathrm{L}
$$

Thank you

Chapter Twenty-four

Organic Chemistry

Classes of Organic Compounds

- The branch of chemistry that deals with carbon compounds is organic chemistry.
- Classes of organic compounds can be distinguished according to functional groups they contain.
- A functional group is a group of atoms that is largely responsible for the chemical behavior of the parent molecule.
- Most organic compounds are derived from a group of compounds known as hydrocarbons because they are made up of only hydrogen and carbon.
- Carbon has the ability to form long chains and ring structure.

Chapter Twenty-Four/ Organic Chemistry

Classes of Organic Compounds

Classes of Organic Compounds

- Aliphatic hydrocarbons divided into:
- Alkanes: Only single covalent bonds are present, general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}, \mathrm{n}=1,2, \ldots$.
- Cycloalkanes: alkanes whose carbon atoms are joined in rings, general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}, \mathrm{n}=3,4, \ldots$.
- Alkenes: contain at least one carbon-carbon double bond, general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}, \mathrm{n}=2,3 \ldots$...
- Alkynes: contain at least one carbon-carbon triple bond, general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}, \mathrm{n}=2,3 \ldots$.

Example:
$\mathrm{C}_{10} \mathrm{H}_{22}$ is the formula of an:
a-alkane. b-alkene. c-alkyne. d-aromatic hydrocarbon.

Aliphatic hydrocarbons

Alkanes

- Alkanes have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ where $n=1,2,3, \ldots$
- only single covalent bonds
- saturated hydrocarbons because they contain the maximum number of hydrogen atoms that can bond with the number of carbon atoms in the molecule

CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$
methane	ethane	propane

- Alkane Nomenclature:
- IUPAC: International Union of Pure and Applied Chemistry

TABLE 24.1 The First 10 Straight-Chain Alkanes

Name of Hydrocarbon	Molecular Formula	Number of Carbon Atoms	Melting Point $\left({ }^{\circ} \mathrm{C}\right)$	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$
Methane	CH_{4}	1	-182.5	-161.6
Ethane	$\mathrm{CH}_{3}-\mathrm{CH}_{3}$	2	-183.3	-88.6
Propane	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$	3	-189.7	-42.1
Butane	$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{3}$	4	-138.3	-0.5
Pentane	$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3}$	5	-129.8	36.1
Hexane	$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}$	6	-95.3	68.7
Heptane	$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{CH}_{3}$	7	-90.6	98.4
Octane	$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{3}$	8	-56.8	125.7
Nonane	$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{3}$	9	-53.5	150.8
Decane	$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{3}$	10	-29.7	174.0

Aliphatic hydrocarbons

Alkanes

1. The parent name of the hydrocarbon is that given to the longest continuous chain of carbon atoms in the molecule.
اختر أطول سلسلة ممكنة في الألكان

2. When one or more hydrogen atoms are replaced by other groups, the name of the compound must indicate the locations of carbon atoms where replacements are made. Number in the direction that gives the smaller numbers for the locations of the branches.
ابدأ بترقيم ذرات الكربون في السلسلة من الجهة الأقرب لللتفر ع.

Aliphatic hydrocarbons

Alkanes
3. An alkane less one hydrogen atom is an alkyl group.
CH_{4} methane
CH_{3} methyl

TABLE 24.2	Common Alkyl Groups
Name	Formula
Methyl	$-\mathrm{CH}_{3}$
Ethyl	$-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
n-Propyl	$-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
n-Butyl	$-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
	CH_{3}
Isopropyl	$-\mathrm{C}-\mathrm{H}$
	\vdots
	CH_{3}
	CH_{3}
	1 -Butyl*
	$-\mathrm{C}-\mathrm{CH}_{3}$
	1
	CH_{3}

*The letter t stands for tertiary.

Aliphatic hydrocarbons

Alkanes

4. When there is more than one alkyl branch of the same kind present, we use a prefix such as di-, tri-, or tetra - with the name of the alkyl group. prefixes di-, tri-, tetra-, في حال وجود أكثر من مجموعة متفرعة من نفس النوع، نستخدم

TABLE 2.4

```
Greek Prefixes Used in
Naming Molecular
Compounds
```

Prefix

Meaning
mono-
di- 2
tri- 3
tetra- 4
penta- 5
hexa- 6
hepta- 7
octa- 8
nona- 9
deca-
10^{434}

Aliphatic hydrocarbons

Alkanes

5. The substituent groups are listed alphabetically in the name, and the chain is numbered in the direction that gives the lowest number to the first substituted carbon atom.

Alkanes
Example:
$\mathrm{CH}_{2}-\mathrm{CH}_{3}$
The systematic name for

b-3,3-dimethylpentane
a- 1-ethyl-2-methylbutanє $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{3}$

Example

Give the IUPAC name of the following compound:

2,2,4-trimethylhexane

Aliphatic hydrocarbons

Example

Alkanes

Write the structural formula of 3-ethyl-2,2-dimethylpentane

Example

What is the IUPAC name of the following compound?

Aliphatic hydrocarbons

Alkanes

Example

What is the structure of 4-methyl-2-propylhexane?

Aliphatic hydrocarbons

Alkanes

- Structural isomers: are molecules that have the same molecular formula but different structures.

\# carbons	Name	\# isomers
1	Methane	1
2	Ethane	1
3	Propane	1
4	Butane	2
5	Pentane	3
6	Hexane	5
7	Heptane	9

Aliphatic hydrocarbons

Alkanes

Example

How many structural isomers does pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$ have?
a-1
b-2
c-3
d-4

Example
Which of the following hydrocarbons does not have isomers?
$\mathrm{a}-\mathrm{C}_{7} \mathrm{H}_{16}$
b- $\mathrm{C}_{6} \mathrm{H}_{14}$
$\mathrm{c}-\mathrm{C}_{5} \mathrm{H}_{10}$
$d-\mathrm{C}_{4} \mathrm{H}_{8}$

Cycloalkanes

- Cycloalkanes are Alkanes whose carbon atoms are joined in rings.
- They have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$ where $n=3,4, \ldots$

Aliphatic hydrocarbons

Alkenes

- Alkenes (also called olefins) are Alkanes contain at least one carboncarbon double bond.
- They have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$ where $n=2,3, \ldots$
- The simplest alkene is $\mathrm{C}_{2} \mathrm{H}_{4}$, ethylene $\mathrm{CH}_{2}=\mathrm{H}_{2} \mathrm{C}$

$$
\underset{\text { 1-butene }}{\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}} \quad \mathrm{CH}_{3}-\underset{\text { 2-butene }}{\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}}
$$

- Alkene Nomenclature: same rules as alkane +
- The names of compounds containing $C=C$ bonds end with -ene.
- The numbers in the names of alkenes refer to the lowest numbered carbon atom in the chain that is part of the $\mathrm{C}=\mathrm{C}$ bond of the alkene.
ابدأ بترقيم ذرات الكربون في السلسلة من الجهة الأقرب إلى الرابطة المزدوجة.

3-methyl-2-heptene

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\underset{\substack{\mathrm{Br} \\ \text { 4-bromo-2-pentene }}}{\mathrm{CH}-\mathrm{CH}_{3}}
$$

$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$
1,4-pentadiene

Aliphatic hydrocarbons

Alkenes

- Geometric Isomers of Alkenes: describing the orientation of functional group within a molecule.
- The terms cis on the same side, The terms trans on the other side.

cis-dichloroethylene

trans-dichloroethylene

Example
Aliphatic hydrocarbons

Which of the following compounds has geometrical isomer?

NO

NO

NO

yes

yes

Aliphatic hydrocarbons

Alkenes

Example

For which of the compounds below are cis-trans isomers possible?

$$
\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2} \quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3} \quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}
$$

(1)
a-only 2 b-both 1 and 2

(3)
d-all three

Example
Which of the following does NOT exhibit geometric isomerism?
a-4-octene
b-2-pentene
c-3-hexene
d-2-hexene

Chapter Twenty-Four/ Organic Chemistry

Aliphatic hydrocarbons

Alkynes

- Alkynes are alkanes contain at least one carbon-carbon triple bond .
- They have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$ where $n=2,3,4, \ldots$
- Alkene Nomenclature: same rules as alkane +
- The names of compounds containing $\mathrm{C} \equiv \mathrm{C}$ bonds end with -yne.

$$
\begin{array}{cc}
\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3} & \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3} \\
\text { 1-butyne } & \text { 2-butyne }
\end{array}
$$

Classes of Organic Compounds

Aromatic

- Aromatic compound contain one or more benzene ring.

Classes of Organic Compounds

Aromatic

- Nomenclature: Same rules as before +

If one H atom has been replaced by another atom or a group of atom \rightarrow the name of the atom or group then benzene

Classes of Organic Compounds

Aromatic

If more than one substituent is present, we must indicate the location of the second group relative to the first.

1,2-dibromobenzene (o-dibromobenzene)

1,3-dibromobenzene
(m-dibromobenzene)
*The letter t stands for tertiary.

TABLE 24.2	Common Alkyl Groups
Name	Formula
Methyl	$-\mathrm{CH}_{3}$
Ethyl	$-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
n-Propyl	$-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
n-Butyl	$-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
Isopropyl	
t-Butyl*	

Classes of Organic Compounds

TABLE 24.3

Names of Common
 Substituent Groups

Functional Group	Name
$-\mathrm{NH}_{2}$	Amino
-F	Fluoro
-Cl	Chloro
-Br	Bromo
-I	Iodo
$-\mathrm{NO}_{2}$	Nitro
$-\mathrm{CH}=\mathrm{CH}_{2}$	Vinyl

TABLE 2.4

Greek Prefixes Used in
 Naming Molecular
 Compounds

Prefix
Meaning
mono- 1
di- 2
tri- 3
tetra- 4
penta- 5
hexa- 6
hepta- 7
octa- 8
nona- 9
deca- 10

The group containing benzene minus a hydrogen atom $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ is called the phenyl group.

Chapter Twenty-Four/ Organic Chemistry

Classes of Organic Compounds

Aromatic

Example
Which one of these formulas is that of unsaturated hydrocarbon?
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$

Example
Which of these is the systematic name for the compound represented below?

$$
\begin{array}{r}
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\mid}{\mathrm{CH}}-\mathrm{CH}_{3} \\
\mathrm{CH}=\mathrm{CH}_{2}
\end{array}
$$

A. 2-ethylbutane
B. 3-methyl-1-hexene
C. 3-methyl-1-pentene

Hybridization

Hybridization: mixing of two or more atomic orbitals to form a new set of hybrid orbitals.
Hybridization is used to explain the formation of bonds.
In this course we will study three types of hybridization for carbon atom

$$
\mathrm{SP}^{3} \quad \mathrm{SP}^{2} \quad \mathrm{SP}
$$

Remember

Hybridization

sp^{3} hybridization

- Promote one 2 s electron into the vacant p-orbital.
- Combine (mix) all four orbitals to give four hybrid orbitals of equivalent

E energy:

- $\quad S P^{3}$ hybridization always associated with saturated hydrocarbon compounds (i.e any carbon atom with 4 single bonds have S^{3} hybridization).

Hybridization

sp^{2} hybridization

- Promote one $2 s$ electron into the vacant p-orbital.
- Combine (mix) the $2 \mathrm{~s}, 2 \mathrm{p}_{\mathrm{x}}$ and $2 \mathrm{p}_{\mathrm{y}}$ orbitals to give three hybrid orbitals of equivalent energy
E
- The $\mathbf{2} p_{z}$ orbital is unaltered.

- $\quad \mathbf{S P}{ }^{2}$ hybridization always associated with unsaturated hydrocarbon compounds (i.e any carbon atom with 1 duple bonds have S^{2} hybridization).

Hybridization

sp hybridization

- Promote one 2 s electron into the vacant p-orbital.
- Combine (mix) the $\mathbf{2 s}$ and $\mathbf{2} p_{x}$ orbitals to give two hybrid orbitals of equivalent energy
E - The $2 p_{y}$ and $2 p_{z}$ orbital are unaltered.

- SP hybridization always associated with unsaturated hydrocarbon compounds (i.e any carbon atom with 1 triple bonds or 2 duple bonds have SP hybridization).

Hybridization

- Sigma bond (σ) : the first bond made with any other atom. Made from : hybridized orbitals
- Pi bond (π): Any second or third bond made with any other atom Made from : left over p orbital

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}
$$

- Sigma bond $(\sigma)=23$

Pi bond ($\boldsymbol{\pi}$)=1

Sigma bond (σ) =15
Pi bond ($\boldsymbol{\pi}$)= $\mathbf{3}$

Classes of Organic Compounds

Functional Groups
Functional groups are responsible for most of the reactions of the parent compounds.

Functional groups are:
Alcohol, Ethers, Aldhyde, Ketones , Carboxylic acid , Esters, Amines, Aminoacid

Classes of Organic Compounds

Functional Groups

Alcohol : contain the hydroxyl functional group, -OH.
Methanol
(methyl alcohol)

Classes of Organic Compounds

Functional Groups

Ethers: contain the $\mathrm{R}-\mathrm{O}-\mathrm{R}^{\prime}$ linkage, where R and R^{\prime} are a hydrocarbon (aliphatic or aromatic) group.

$$
\begin{array}{cc}
\mathrm{CH}_{3} \mathrm{OCH}_{3} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5} \\
\text { Dimethyl ether } & \text { Diethyl ether }
\end{array}
$$

Aldehydes and Ketones: The functional group in these compounds is the carbonyl group.
$\mathrm{C}=\mathrm{O}$
In an aldehyde at least one hydrogen atom is bonded to the carbon in the carbonyl group. In a ketone, the carbon atom in the carbonyl group is bonded to two hydrocarbon groups.

- aldehydes have the general formula

Functional Groups

formaldehyde

Carboxylic Acids: acids that contain the carboxyl group, - COOH .

Classes of Organic Compounds

Functional Groups

Esters: have the general formula $\mathrm{R}^{\prime} \mathrm{COOR}$, where R^{\prime} can be H or a hydrocarbon group and R is a hydrocarbon group.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$ methyl butyrate

Amines: are organic bases having the general formula $R_{3} N$, where R may be H or a hydrocarbon group.

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}
$$

Methyl amine

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}
$$

Ethyl amine

Classes of Organic Compounds

Functional Groups

TABLE 24.4
Important Functional Groups and Their Reactions

Functional Group

$(X=F, C 1, B r, I)$
$-\ddot{\mathrm{O}}-\mathbf{H}$

$(\mathrm{R}=$ hydrocarbon $)$

($\mathrm{R}=\mathrm{H}$ or hydrocarbon)

Name
Carbon-carbon double bond

Carbon-carbon triple bond

Halogen

Hydroxyl

Carbonyl

Carboxyl

Ester

Amine

Typical Reactions

Addition reactions with halogens, hydrogen halides, and water: hydrogenation to yield alkanes
Addition reactions with halogens, hydrogen halides: hydrogenation to yield alkenes and alkanes
Exchange reactions:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{KI} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}+\mathrm{KBr}$

Esterification (formation of an ester) with carboxylic acids: oxidation to aldehydes. ketones, and carboxylic acids
Reduction to yield alcohols; oxidation of aldehydes to yield carboxylic acids

Esterification with alcohols; reaction with phosphorus pentachloride to yield acid chlorides

Hydrolysis to yield acids and alcohols

Formation of ammonium salts with acids

Thank you

[^0]: *The boiling point of HCN is $26^{\circ} \mathrm{C}$, but it is close enough to qualify as a gas at ordinary atmospheric conditions.

