

 انتلاب التطارات ولذللـ تركوا فراغاتات تعسح لهذه التضبان بالتقدد الثناء الصيف .

 ليسلل دراسة اثر الضنغف على العجم .

 من خلا إيصالها إلى الاخرين شفويا او كابابيا

 طريق إجراء التجارب العلية المّفلة بالكيبياء.
 مز خلال إيمالها إلى الانخرين شفويا أو كتابيا

 طريق إجراء التجارب العلية المتلقة بالكيياء.

 التي أجراها علياء الكييياء

 لهذه البعوث توصل العللاء إلى معلوماتة علية جذيدة تلتعلقَ بمتار البنسلين .

 سواء وإتتاج تطبيقات عديدرَ على نطاق واسع وبطرق التتمادية
 وتنقسم هنه التطبيقات إلى :

 التي تستخدم لعلاج الالمرافن الفتاكة

 إرسال الرسانل الصوتية التلفونية وكذلك إرسال الصور التلفزيونية من مسافات بعيلة جدا عبر هذه الألياف .

مجال العلوم الأساسية والتطبيقية
ـ أنر الججتع على العلمو والتقنية:

إجابة أسئلة الوحدة الأرفلى

. المقصود بطبيعة علم الكيمياء
 حدوث التفاعلات مع المواد الأخرى أو عند حدوث تغنرات في الطاقة

* علع ال

 العلية التي يته التوصل إليها عن مريق البحوثا الانساسية والتطبيقية على حد سواء وإتتـاج تطبيقـات عديـلـة على نعلاق والسع وبطلرق اقتتصادية

 بالكيعياs
 فيته عزلها والإبقاء على العامل الانساسيى الذيي يته دراسته.
 ج ج : للعلم تطبيقاته التقنية منها ما يغلم المجتبع وينفع الإنسان وسنا الها أثر سلبي على حياة الإنسان.

T.me/Doctor_future1

هــل أسئلة الكتـاب (الوحدة الثانية)

. (${ }^{(r)}$ () (r)

. () (${ }^{\text {(}}$
() ()
.
() () (${ }^{\text {(}}$)

ألســـلة عامـــة
(الشه: الختر الإجابة الصحيحة : 1- التكون أشدة المبط عندلما :

 () د د تكون أنبوبة التغريغ خالية من النازاتات .
سا سا: عند قذف فلز البريليوم بدقائق ألفا تنطلق : إلكترونات ، نيوترونات ، بروتونات . ج ج: تنطلق نيوترونات

. الأكسجين ـ الكلور ـ النيدروجين ـ الهيدروا الهيا ج Y : في وجود غاز الهيلروجيز.
سc : في ظاهر النشاط الإشعاعيى تنطلق دقائق كل دقيقة منها مساوية لكتلة ابإلكرون تقريباً وتحصل وحدة الشحذة السالبة: ألفا ـ بياتا ـ بـاما ـ القناة .

ج 1 : اششعة بيتا :
سَ 9 : الأشعة التيى تنطلق هن اللادة المشعة ولا تحمل شحنة ولا تتكون مذ دقائق مادية هيي أشعة
: بيتا ـ ألفا - جاها .

ج

$$
\begin{aligned}
& \text { لا تلنسونا من صالح الدعاء } \\
& \text { زورونا على الرابط } \\
& \text { المرفق أدناه }
\end{aligned}
$$

K وبعيث يكونِ: -
L \mathbf{L} L =
و و M و للمستوى الثالث $n=r$
خصانصر عدد الكم الرنينيس) (n) (n)
 .

فواند معرفة علد الكم الرنيسى (n) ا- يحلد طاقة المستوى .

 فرعية وتنطبق القاعدة إلى المستوى الرابع فقط ولا تنطبق على الستوى الخامس والسادس والسابع .

 يستلا بها كل مستوى طاقة رنيسي .

2n ${ }^{2}$ 2	عدد الإلكترونات	رقكم المسنّوى
$2 \times 1^{2}=2=2 \times n^{2}$	Y	1
$2 \times 2 \times 2=8$	\wedge	Y
$2 \times 3 \times 3=18$	1^	r
$2 \times 4 \times 4=32$	rr	ε
لا تنمبق القاعلة	rY	0
2×nxn		n

 والسالد والسابع. (Y) تلدور الالكترونات حول النواة بسرعات معدده في بواتقع محلده طبةأ للعلاقة:

$$
m v r=n \frac{h}{2 p}
$$

$$
\begin{aligned}
& \text { لا تلنسونا من صالح الدعاء } \\
& \text { زورونا على الرابط } \\
& \text { المرفق أدناه }
\end{aligned}
$$

 ا-ـ يتكون هن سبع دورات أفتيةية r- يتكون من ثشانيـة عشرة مجبوعة راسية سيت سبع منهـ بالجبوعات الرنيسية A. وتبـدا

> 5f , 4f فارغ وييتلذ بالتدريج .
الللانظانيداتِ :- هي العنامر التي تأتي بعد عنمر اللانثانيوم وتتوتوي على\&اعنمراً. الاكتنيلاتِ :ـ هي العناصر التي تأتي بعد عنمر الأكتنيوم وتحتوي على 12 عنصراً.

وينقسه الجدول الدوري إلى أربع تكتلات
 الالكتروني لها عند المستوى الفرعي

 d العناصر التي ينتهي توزيعها الالكتووني عند المستوى الفرعي المي المي

「 - عنصرين وتعيم خواصلها على بقية المجهوعة
rـ خـواه العناصر في الجدول الدوري تتكرر بعد الانتقال من الدورة إلى التّي تليها \& ـ يلعم الجدول الدوري الحديث المفاهيم الحديثة التي تم التوصل إليها خلال القرن الماضي

الإبمومات في الجدول الـدوري

> المجوعة الرنيسية الاولى: I [[IA] م مجموعة الفلزات القلمية) (الاجقلاك).

هي

$\begin{gathered} \text { الثفرانسيوم. } \\ \text { Fr } \end{gathered}$	$\begin{gathered} \text { السيزيوم } \\ \text { Cs } \end{gathered}$	والربيديوم Rb	$\begin{gathered} \text { والبوتاسيوم K } \\ \text { K } \end{gathered}$	Na	
87	55	37	19	11	3

وهي مرتبة مز أعلى إلى أسفل حسب ترزايد أعدادها الذرية (راجي الجدول الدوري) .

 ns ${ }^{1}$ بدخول إلكترون واحد في المستوى الفرعي الانير المير المير

الوحتحَّالرابعة
 الـعناهـو الالانتقاليـة

 مــن المجووعـة اب إلى Уاب بالإضــافة إلى المجوعـة الثامنـة وتـشغل العناصـر الانتقاليـة علـى عـشرة أعمده رأسية

 وتتميز ذرات هنه العاصر بأن الالكتوونات التي تلخل في الستوى الفرعي الانخير تشغل المستوى الفرعي (nd).

 الفرعـي

 الثامنة يبدا بالحديد Fe والعود الثاني يبدأ بالكوبلة والعورد الثالث يبدأ بالنيكل.
(IIIA (أهن

الثالثّا	الانديوم	الجاليوم	الالومنيوم	البرون
${ }_{81} \mathbf{T i}$	${ }_{49}$ In	${ }_{31} \mathrm{Ga}$	${ }_{13} \mathrm{Al}$	${ }_{5}$ B

. حيث (ns ${ }^{\mathbf{2}}$, $\mathbf{n p}^{\mathbf{1}}$) وسيتم دراسة خواص عناصر هذه المجبوعة في الصف الحادي عشر .

الوحدة الرابعة				هكيهياء - آول	
(IVA , أ¢					
عناصر					
الرصاص	والقمصلدير	الجا	السيلكون	الكربون	
${ }_{82} \mathrm{Pd}$	${ }_{50} \mathrm{Sn}$	${ }_{32} \mathrm{Ge}$	${ }_{14} \mathrm{Si}$	${ }_{6} \mathrm{C}$	
وسيتم دراسة خواص هده العنامر لاحقاً					
مجهوعة النِيتوبيّنِ					
ns², np3 الكتونات وسيتم دراسة خواص عناصر هذه المجبوعة في الصف الحادي عشر					
(VIA) أ					
الأكسجين وتتيز					
(VIIA) iv iv					
مجهوعة الهالوجيناتِ					
عناصر					
الاستاتِينِ	اليود	اللبروم	الكلور	الفلور	
${ }_{85}$ At	${ }_{53} \mathrm{I}$	${ }_{35} \mathrm{Br}$	${ }_{17} \mathrm{Cl}$	${ }_{9} \mathrm{~F}$	- 1
تتفاعل مع الفلزات مكونة الملاح مثل تفاعل الكور					
كلور + صوديوم					
$2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathbf{2 N a C l}$					
عناصر هذه المجهوعله في المف الثاني عشر					
1					

الدورة الثمانيرة الثانية

${ }_{3} \mathbf{L i}=1 s^{2}, 2 s^{1}$: ${ }_{3}$ Li
 هذا المستوى بثعانية إلكترونات في ذرة النيون 20 Ne ويكون توزيعه الإلكتروني: (${ }_{10} \mathrm{Ne}=1 s^{2}, 2 s^{2}, 2 p^{6}$

 والفلور Fe والنيوز Ne
س : اكتب التوزيع الإكترونيى لذرات عناصر الدورة الثانية موضطأ الهستوى الفرعيى الذيى ينتميي إليد كل عنص.

المتّوى الفرعي الدئي ينتّي إليه	التوزيل الإلكتروني لذذرة	عدهه الذدري	رهز العنصر	العنصر
2 s	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{1}$	3	Li	ليثيور
2s	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}$	4	Be	بريليوم
2p	1s ${ }^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{1}$	5	B	برون
2p	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{2}$	6	C	كربون
2p	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{3}$	7	N	نيتروجين
2p	$1 \mathrm{~s}^{2}, 2 s^{2}, 2 p^{4}$	8	0	أكسجين
-----	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{5}$	9	F	فلور
2p	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}$	10	Ne	نيون

 2p والبريليوم وستة عناصر يقعان في تحت المستوى الفرعي

$$
\begin{gathered}
n=4 \quad \text { السستوى الرابع } 4 s \\
{ }_{19} \mathrm{~K}=1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{1}
\end{gathered}
$$

 إلكترونات حسب التوزليع الإكتروني الأتي :

$$
{ }_{36} \mathrm{Kr}=1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{2}, 3 d^{10}, 4 p^{6}
$$

وتقسم عناصر الدورة الرابعة بحسب نوع المستويات إلى ثلاث فئات هي :

 النحاس ${ }^{29 \text { ، }}$ ، الزنتك ، وهذه عنامر السالسلة الاستقالية الالولى r- عناصر بتحتر المستوى الفرعي 4p ستل عناصر هي : 33AS الجرهانيوم 36 ${ }_{36}$ البورم 31Ga الجاليوم 34Se السيلينيوم

الدورة الخاموسة

الطوبلة الثّنية

 ويستئ هذا المستوى في نهاية الدورة بعنصر الزينون وتظهر في هذه الدورة سلسلة الانتقالية الثانية والتيو
 وتقسم عناصر الدورة الخامسة بحسب نوع المستوى إلى ثلاث فنات هي
${ }_{38}$ Sr r - r
 العناصر).

الدورة الساديسة

 اـ عناصر تقع تحتح المستوى 6S وتحتوي المتوي على عنصرين

 كـ عناصر تقع تتتت المستوى 6p وعلدها ستة عناصر .

 في مستوى جلديد هو المستوى السابع حيث \quad n \quad وفي هذه الدورة تظهر السلـسلة الاتتقاليـة الداخليـة
 وتنقسم الدورة السابعة بحسب نوع المستويات الفرعية المية إلى فنات هي هي

اـ عناصر تقع تحت المستوى 7s (عنمرين) .
r r- عناسر تقع تحتح المستوى 5 (5 (أربعة عشر عـر عنصراً)
r r عناصر تـتع تحتّ المستوى 6ل (عشرة عناصر) .

 ج : وذلك لزيادة الشُحنة الموجبة في النواة ((البروتونات)) ويزداد جذب النواة لالجلكتوونات التي تزداد في نفس المستوى فيقل نصف القطر

ب - بهد التأين للفازات النبيلج يكون مالياً . ج ج : وذلك يعود إلى امتلاء سستواها الخارجي بثلانية إلكتوناتات فنز الصعب أن تفقد إلكترون او تكسب
 جـ : علل : العنامر التي تكون لها طاقد تآين قليلة تكون نشططة كيعيانياً

 هذه العناصر إلكتزوناتها إثناء التفاعلات الكييانية

 أ) يقع في الدورة الثالثة . سף : إذا كان لدينا عنصر (×) يقع فيم الدورة الثانية الدجهوعة السادسة A الدطلوب منك دون الرجوع إلى الجدول الدوري تحديد الآتيى : ا: ا العدد الذدري لهذا العنصر . r r : تكافوّ هذا العنصر
r
بسه : لكي نحلد العلد الذدري للعنصر نحلد أولاً رقم الدورة والمجهوعة بالتوزيع الإلكتروني.

$$
X=1 s^{0}, 2 s^{1}, 2 p^{4}
$$

هذا هو التوزيي الإلكتروني لعنصر يقع في الدورة الثانية المجعوعة السادسة

Y Y ت تكافو هذا المنصر ثـناني
「
سع • (: وضح ما تدل عليه الأرقام والرموز للعنصر الأتيى حسب موقعه فيى الجدول الدوريه •

$$
\begin{aligned}
& \text { لا تلنسونا من صالح الدعاء } \\
& \text { زورونا على الرابط } \\
& \text { المرفق أدناه }
\end{aligned}
$$

كلا منها أيونًا موجباً كا هو هوضح: (Fr

 الهليوم ـ النيون -الأرجون

علد الالكترونات في المستوى الاخخير	التوزيع الالكتوني		 الستور الأخني	التوزيع ال\|كتزونى	العنصر
!إلكترونين شانية إلكترونات تُانية إلكترونات	$\begin{aligned} & 1 s^{2} \\ & 1 s^{2} 2 s^{2} 2 p^{6} \\ & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \end{aligned}$	${ }_{2} \mathrm{He}$ ${ }_{10} \mathrm{Ne}$ ${ }_{18} \mathrm{Ar}$! إلكتونينين ثـانية إلكتوونتانت ثـُنية إلكتونات	$\begin{aligned} & 1 s^{2} \\ & 1 s^{2} 2 s^{2} 2 p^{6} \\ & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \end{aligned}$	$\begin{gathered} \mathrm{Li}^{+} \\ \mathrm{Na}^{+} \\ \mathbf{K}^{+} \end{gathered}$

 استخلخامات عناصر الأقالاs:

 ونشاطله الكيمياني العالي .

الخلاليا الكهروضونية

أولاً : الصوديومر (Na)

الموديوم هو احل عناصر المجموعة الرنيسية الأولى (IA) وعددد الذري |" وتوزيعه الالكتروني كالاتي:

$$
{ }_{11} \mathrm{Na}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}
$$

 والمستوى الثاني L بثثمانية إلكترون والمستوى الثالث M بإلكترون واحد شقط

${ }_{11} \mathrm{~N}$
 وذلكـ لنششاطه الكييبياني العالّي. مركبات المصوليور :
 NaHCO

استخدامات بيكربونات الموديور :
Bakingpowder اـ تـستخدم في صناعة الخبز على شككل مسحوق يسري
 حوضضة المددت
دس : علا لها يأتي تعايلا علمياً دقيقاً :
 ج: جا وذلك لان لها تأثيرّ تآكلكي على الزّجاج Y (
 من كربونات الصوديوم حسب المعادلة الْتية : $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
 Bakingpowder
 نفخ العجين معا يعطى طعما سانفاً وسهولة في المضغ.

$$
\begin{aligned}
& \text { لا تلنسونا من صالح الدعاء } \\
& \text { زورونا على الرابط } \\
& \text { المرفق أدناه }
\end{aligned}
$$

 ${ }_{88} \mathrm{Ba}^{\mathrm{M}} \mathrm{P}$

الكييعياني فتَحول إلى ايون ثناني مبجب كعا يلى :

$$
\mathrm{Ra}^{++} \mathrm{Ba}^{++} \mathrm{Sr}^{++} \mathrm{Ca}^{++} \mathrm{Mg}^{++} \mathrm{Be}^{++}
$$

الايورنت تحتوي في المستوي الخاربي على ثمانية الكتوناتات ما علا البريليوم :

$$
\begin{aligned}
& { }_{4} \mathrm{Be}=(\mathrm{He})_{2} 2 \mathrm{~S}^{2} \\
& { }_{12} \mathrm{Mg}=(\mathrm{Ne})_{10} 3 \mathrm{~S}^{2} \\
& { }_{20} \mathrm{Ca}=(\mathrm{Ar})_{18} 4 \mathrm{~S}^{2} \\
& { }_{38} \mathrm{Sr}=(\mathrm{Kr})_{36} 4 \mathrm{~s}^{2} \\
& { }_{56} \mathrm{Ba}=(\mathrm{Xe})_{54} 6 \mathrm{~S}^{2} \\
& { }_{88} \mathrm{RA}=(\mathrm{Rn})_{36} 7 \mathrm{~S}^{2}
\end{aligned}
$$

 . 18 Ar (10 والارجون

سا أ : كيف تتم عملية تحضير الكالسيوم جا: الـ يصهر كلوريلد الكالسيوم بعل خلطة بقليل من الكالـيليو الميوم في البوتقة بـ يلامس طرف الهببط المصهور (المبالـط ساق مز الحديد). كيف تتم ععليه التحليل الكهرباني ؟:
 ويجّع「- - يترسب الكالسيوم على طرف المبطط الذي يرفع ببط؛ تـريجيا من السانلل

$$
\begin{aligned}
& \mathrm{CaCl}_{2} \xrightarrow{\text { تَتيل كهرباني }} \mathrm{Ca}^{++}+2 \mathrm{Cl} \\
& 2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2} \uparrow+2 \mathrm{e}^{-} \text {عند المقعد } \\
& \mathrm{Ca}^{++}+2 \mathrm{e}^{-} \xrightarrow{\text { تحليل كهربانى }}
\end{aligned}
$$

 جو مز غاز الارجوان أو يقطر فيه
 الـالغو/س الفيزيانية للكالسيور : يتتيع الكالسيوم بالخواص التاليةية: ا- خلز ابيض لفضي له بريق معلني صلب لامي r- جيلد التوصيل للحرارة والكهرباء .
 درجة انصهاره = \$80 +
 هـ يحتوي في مستواه الخارجي على إلكترونين.
 ا- يتأكسد الكالسيرم إذا تصرض للهواء الجوي مكونًأ أكسيد الكالسيوم ذو اللون (اسوة رمادي) . $2 \mathrm{CaO} \rightarrow 2 \mathrm{Ca}+\mathrm{O}_{2}$
r-- يتفاعل أككيلد الكالسيوم مع بغار الماء الموجود في الهواء الجوي مكوثاً يلدروكسيد الكالسيور. $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
r-- يتفاعل هيدرڭكسيد الكالسيوم مع ثاني اكسيد الكربون مكوثآ كربونات الكالسيوم $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
8 ي يذوب الكالسيوم هي الاهاء البارد مكونًّ هيدروكسيد الكالسيوم + هيدروجين $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \uparrow$

يتكون كلوريد الكاالسيمر + هيلروجين
$\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$

$$
\begin{aligned}
& \text { لا تلنسونا من صالح الدعاء } \\
& \text { زورونا على الرابط } \\
& \text { المرفق أدناه }
\end{aligned}
$$

 - خوام المادة الالصلاية
 ج : ا ـ تسخين النحاس في الهواء الجوي ويتكون أكسيد النحاس الماس r - ت تفاعل النحاس مع حصض النتريك المركز ويتكون نترات نحاس + ثاني أكسيد النتروجين . . \& ا احتراق الخشُبـ

التفاعلات الكييبيانية:

والمعادلة الرمزية
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CaCl}_{2} \rightarrow 2 \mathrm{NaCl}+\mathrm{CaCO}_{3}$

س: ها هي خطوات كتابة المعادلة الكيميائية الموزونة

 التفاعل .

 التفاعل.
. التفاعل

مثال : :- أكتب الدعادلة الكيميائية الموزونـة لتفاعل الالمونيـوم مـع الأكسجين لتكوين أكسيد
- الألهونيوم
اــ تكتب المعادلة اللفقلية على النحو الآتي
ألكونيوم + أكسبين ↔ أكسيل ألمونيوم
r. تكتب العادلة الرمزيلة على النحو الآتي :
$\mathrm{Al}_{2} \mathrm{O}_{3} \xrightarrow{\Delta} \mathrm{Al}+\mathrm{O}_{2}$

(r) قبل المواد الناتجة والعدد (r) قبل الأكسبين في المواد المتفاعلة وتكتب المالمادلة :
$\mathrm{Al}+\mathbf{3 O}_{2} \xrightarrow{\Delta} \quad 2 \mathrm{Al}_{2} \mathrm{O}_{3}$

ذرة الألونيوم في المواد المتفاعلة

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \xrightarrow{\Delta} 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

 . . تكتب شروط التفاعل وحالات المواد الداخلة والناتجة من التفاعل
 \(\mathbf{4 A I}(\mathrm{s})+\mathbf{3 0}_{\mathbf{2 (g)}} \xrightarrow{\Delta} \mathbf{2 A I}_{\mathbf{2}} \mathbf{O}_{\mathbf{3 (s)}}\)

كلور + برويلد صوديور ــ
$\mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{NaBr}_{(\mathrm{s})} \xrightarrow{\Delta} \mathrm{Br}_{2(\mathrm{~g})}+2 \mathrm{NaCl}_{(\mathrm{s})}$

الحديد + ثانعه اكسيد الكربون.
أكسيد العديديك + أول أكسيد الكربيرن
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})} \xrightarrow{\Delta} \quad 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~g})}$
العسابات الكيبانية :-
الحتلة الذدربة هي النسبة بيز كتلة ذرة العنصر إلى $\frac{1}{1 r}$ من كتلة ذرة
الكريون عللًاً بأن كتلة ذرة الكربون•= ri و.
Ir $\times \frac{\text { الكتلة الذرية النسبية لعنصر }}{\text { التلة ذتلة ذرة العربيون }}$

عددالذرات فئ المول	كتلة المول	الجتلة الذرية	الكتلة الذرية النسبية	العنصر
" $1 . \times 4.4$	7.9	1, 1,9	7.4 و.ك3	Li
"10. 7.0 . 4	1-1.1	1*, 1*		B
"1. $1 . .4 r$	\%	rer	J.	C
T $1 \times \times 7.4$	مrtr	NTr	3. ${ }^{\text {gr }}$	Na
" $1 \cdot \times 7.04$	- 12, ${ }^{\text {Pr }}$	M Y\%, T		Mg
"1**V.er	00,1	00,		Fe

 بالجرامات والمول الواحد من اي عنصر يحتوي على علد الفوجادرو من ذراتـ ذلك الـو المنصر .

علاقة الكتلة الجزينينية بالمول
 العلاقة بين المول والكتلة الجزيئية لبعض المركبات

عددالجززينات في	الكتلة الجزينِينية	الكتلة الجزينية	علدالذرات الداخلة	المركب
T1. $\times 1.0 r$	A10	$\begin{aligned} r & =1 \times Y \\ 17 & =17 \times 1 \\ \text { j. } 1 \mathrm{~A} & = \end{aligned}$	$\begin{array}{r}2 H \\ 100 \\ \hline\end{array}$	$\mathrm{H}_{2} \mathrm{O}$
Trı× 7 , \%r	م-0A,0		1 Na 1 Cl	NaCl
"1. 1×7.	§\$	$\begin{aligned} r Y & =1 Y \times 1 \\ r Y & =17 \times r \\ \text { j. } 5 . g & = \end{aligned}$	$\begin{array}{ll}1 & C \\ 2 & 0\end{array}$	CO_{2}
T1. \times I. \cdot. 4	14	$\begin{aligned} Y A & =1\{\times Y \\ \text { i.s. } \mathrm{F} P \mathrm{~A} & = \end{aligned}$	2 N	N_{2}

الوحدة السابعة	كيمياء - أول ثانوي
(17=	
	, الحل\|
)	
d.ك. $\mathrm{J} \mathrm{TY}=17 \times Y=$	
إذن (مول من غاز)	

Ca(OH)2

$$
\begin{array}{r}
\{\times 1+17 \times r+\mid \times r= \\
\text { i. } \boldsymbol{g} Y\{=\{\cdot+r Y+r=
\end{array}
$$

أذا الحتلة الجزينية لـ
الحسابات الكيميالي، المرتبطة بالكتلة الجزينيية الجرامية (المولية)
الكتلة الذريلة الجرامية للمنصر: هو عبارة عز التكلة الذربة لدلك المنصر معراً عنها بالجراماتات . الكتلة الجزينيية الجرامية: هي عبارة عن الكتلة الجزينية لذلك المركب معبراً عنها بالجرا المات فشلا الكتلة الجزينية لغاز
 مز ذلك نستنتج ان 1 مول من المركب = الكتلة الجزينية الجرامية لذلكك المركب.

$$
\text { = = } 17 \text { = والهيدروجين }
$$

 . $1 \mathrm{z}=\mathrm{r}=\mathrm{r}+17=1 \times r+17=$. . لالحصول على مول واحد من الهاء نحتّج إلى ^'جه. .

يعكن التعرف على كتلة إحدى المواد الدلاخلة او الناتبة من التفاعل الكيمياني من خلال معرفة كتلة مـادة
 اـ كـتابة المادادلة الكيميانية صحيحة وموزونة الما

$$
\begin{aligned}
& \text { الكتلة الذربة للموديوم rry والكلور=ro;0 } \rightarrow \text { 2Na }+ \text { Cl }_{2} \\
& \mathbf{2 N a C l}
\end{aligned}
$$

-

($\mathbf{N a C l}$)

حيث س عدد جرامات NaCl التي تعطى ${ }^{\text {No }}$ جم

$$
2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})}
$$

الحلّ:
اــ المادرلة موزونة .
 وكدلك 1 جم من (Mg) تتتج س بـ مز (MgO)
r بول من (MgO (Mg (M)

$$
\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}
$$

-r -r
$\mathbf{M g}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{MgCl}_{2(\mathrm{~s})}$ r- المونيوم +أكسيد الحديديك
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Al}_{(\mathrm{s})} \rightarrow \mathbf{2 F e} \mathrm{e}_{(\mathrm{s})}+\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$

$\mathrm{Fe}+\mathrm{S} \rightarrow \mathrm{FeS} \quad: \quad$ الدعادلة الآتية

والكتلة الذرية للحديد = و و.ك.ذ تَريباً
المول من الحديد يتفاعل مع ا بوّا من الكبريت لتعطي ا بول من كبريتيد الحديديك

0,1 بجم من الحديل تلتفاعل مل

$$
r \times \times 0, \eta=u \times 07 \quad \therefore
$$

س $r, r=\frac{r r \times 0,7}{07}=0$

سc
$\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+2 \mathrm{NH}_{3(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}$
أحسب كتلة كلوريد الكالسيوم الناتجة من تفاعل ؛, آجم من كلوربد الأمونيوم تفاعلاً

و الكلور=0,0
$\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}$ ج : مول واحد من

س، ا ا تتفاعل ندرات الرصاص هع كلوريد الصوديوم لتكوين كلوريد الرصاص وفقا للمعادلة الآتية :
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{NaCl}_{(\mathrm{aq})} \rightarrow \mathrm{PbCl}_{2(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\mathrm{aq})}$

NaCl

$$
\begin{array}{r}
Y, 90 \times 11 Y=r Y A \times \sim \\
\therefore \mathrm{Y}, 9 \mathrm{Y}=\frac{7,90 \times 11 \mathrm{Y}}{r Y A}=\mathrm{C}
\end{array}
$$

.
س Y Y : أيى هـا يليم يمثل كتلة ذرية جرامية لعنصر : (ا
جrا : جr جم يـشل كتلة ذرية جرامية

ب(بז
Jorr l
جr : جr جمر يعبر عن المول هن الصوديوم .

$$
\begin{aligned}
& \text { لا تلنسونا من صالح الدعاء } \\
& \text { زورونا على الرابط } \\
& \text { المرفق أدناه }
\end{aligned}
$$

 اـ الكينات : وهي مركبات تتتوي على رابطة ثـثانية واحلة على الأقل مثل : \mid
$-\mathbf{C}$
$=\mathbf{C}$ r- الكاينات : وهي مركبات تختوي على رابطة ثُلاثية على الآقل مثل :
$-\mathrm{C} \equiv \mathrm{C}-$

الهيلدروكريونات غير الحلقية :

(

نجد أن قيبة n - ا .
$C_{n} H_{2 n+2} \quad .1=$ علد ذرات الكربون في الميثان من القاعدة نجل ان علد ذرات الهيلرورجين = \ddagger ذرات. !

 إذأ علد ذرات الهيلدروجين = 7 ذرات .
والصيفة الجزنية للايثان هـ ${ }^{\text {(}}$.
والجـــدول الالتــــي يوضـــح العــشر المركبــات الأولى في الهيـــلـروكربونات الـــشبعة (الكانـــات)، هوفخاً صيفتها الجزنية والتركيبة البنانية :

 مشالًألمركب منها وهو المركب الأول في الساسلة (اليثان)

الميـثان (CH4)

 أربع ذرات هيدروجين وذرة كربون وصيفته البنانية هي:

وجحد الميثان فـ الطبية
「-「-

 $\%$.

أروِّ : بتسغين كربيد الألومنيوم مع الماء كا في المعادلة الآتية : كربيد الألمونيوم + $\mathrm{Al}_{4} \mathrm{C}_{3}+12 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{CH}_{4}$

ثينًا : يحضر غاز الميثان في المعامل المدرسية وذلك بتسخيز خلات الصوديوم اللامانية مى الصودا الكاوية حسب المعادلة الآتية باستخدام الجهاز المبين بالشكل(الجا
خلات الصوديوم + هيلروكسيد الصوديوم
$\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CH}_{4}$
الجير الصودي عبارة عن مخلوط من هيلروكسيد الصوديوم وهيلدروكسيد الكالسيوم.

$$
\text { واوطارات السيارات : CH }{ }_{4} \rightarrow \mathrm{C}+2 \mathrm{H}_{2}
$$

 .
$\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$
 الميثلي والفوريالدفيد
.

 حيث n : عدد ذرات الكربون .
 ميلروجين وكذلك يطلقات على الالكاناتا اسم البرفينات

 الجزينية هي ${ }^{\text {C2 }}$ وهو أول فرد مز سلسلة الإلكينات .

$$
\begin{aligned}
& -\stackrel{H}{\mathrm{C}}=\stackrel{H}{\mathrm{C}} \\
& \text { ايثليز }
\end{aligned}
$$

الايثين (الايثيلين)

$\mathrm{CH}_{2}=\mathrm{CH}_{2}$
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$

ويستخدم الجهاز المبين بالشكل لتحضيرالايثيلين في المعل بالطريقة التالية الية: ا- ${ }^{\text {- }}$ r-r-r .

نلاحظ : مرور الغاز الناتِ في القارورتين وفي كل منها هيدروكسيل الصوديوم لزذالة ثاني أكسيد الكربــون وثالث أكسيد الكبريت . اجقع الغاز هي مخبر بإزاحة الماي كها يلاحظ في الشكل . عند تسخيز الكعول الايثيلي في وجود حصض الكبريتيك
 الايثين كا في المعادلة الاتية : $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{HSO}_{4}$ كريتات الايثيل الهيدروجينية

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{HSO}_{4} \xrightarrow{\mathrm{IV} .} \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

كبريتات الايثيل الهيدروجينية غاز الايثين

س : فعى التجربة السابقة ما فائدة كلاَ من :
ا ب : بيلراركسيلا الصوديوم ج : الحعام الرملي . : ا : افاندة حصض الكبريتيك ب : فاندة ميلروكسيد الصوديوم NaOH يعل على إمتصام غاز ثاني أكسيلد الكربون وثالــثـ أكسيد الكبريت المتصاعد مي غاز الايثين ع : فالدة الحطام الرملي يعمل على تقليل درجة العرارة عند التسخين .

 خوام الايثين الفيزيانية : 1: غاز عديم اللون
r: با له رانحة ايثرية ضيفيفة . r: شا شحيح الذدوبان في الماء . ؛: يدوب بسهولة في الكحول والايثر .

تتيجة لأن الالكينات مركبـات غـير مـشبعة فهي لا تتفاعـل بــالاحكلال بـل بالاضضـانة وعليـه فـلن الايـثين له تفاعلات nنها : .
 المجزا الساخخ ويتكون الايثان .

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}
$$

r: تفاعل الايثين م الهالوجينيات (الذئ -- الكلور- البروم - الييود).
 $\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ () مع الكلور:
ثانى كلوريد الايثين

$$
\text { ب) معع النوومــCH2 } \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}
$$

 فعالية من الكلورو والبجوم .
r: تفاعل الايثين مي الاحافن الهالوجينية (HI, HBr, HCl) :

$$
\text { أ: مع حمض الهيلروايوديك CH2 }{ }^{\text {ا }}
$$

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Cl} \text { مع حمن الهيلدروكلوريك }
$$

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \quad \text { - }
$$

 $\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{HSO}_{4}$ $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{HSO}_{4} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\text { تخفيف }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4}$
 الميفة الاولية ولكن وزنها الجزنى مصناعف للوزن الجزيني للعركب الالصلي

 حيث يصنع منها البلاستيك والبويات والقاعدة العامة لبلبرة هي: $\mathrm{n}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right) \rightarrow\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{n}$ حيث n علد جزنيات الايثين

استخلامات الالايثين:
 1: في إنضاج الفاكهة
 r: كا بادة مغليرة

 الذي يستخذد في صناعة البلااستيك

الالكاينات : هي ثيدروكريونات غبي شبعة تتتوي على رابطة ثلاثية بيز ذرتي كربون متجاورتين :

$$
(-C \equiv C-)
$$

وصيغتها الثامة :
$\mathrm{C}_{n} \mathrm{H}_{2 n-2}$

تسيية الالكاينات : عند تسسبة (الكايناتة فانه يضاف القطع (اين Yne) دلالة على وجود رابطة ثلاثية بالجزى: .

وابسط أفراد هذه المجموعة هو الاستيلين C

- ويزيد كل فرد من أفراد الالكاينات عن الذي قبله بنجهوعة ميثيلين
$\mathrm{C}_{2} \mathrm{H}_{2}$ \qquad $\mathrm{C}_{2} \mathrm{H}_{4}$ \qquad $\mathrm{C}_{2} \mathrm{H}_{6}$

وللتعرف على بعض أسهاء أفراد السلسلة المتجانسة للايككاينات عليك العردة إلى , الكتاب المدرسي مטIYY)
 وصينته البنانية：H－C＝C－H وصيغته الجزنية هـ ${ }^{\text {هو }}$ و وجوده ：في غاز الفحم والخشب والنواتع الفازية لتقطير الفخم ．

تحفني الاستِيليز في الممل ： $\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2}$ كربيدكالسيوم
$\xrightarrow{\mathrm{C}} \stackrel{+}{\mathrm{II}} \mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}+\mathrm{Ca}(\mathrm{OH})_{2}$

تصنير الاستِلين لم المصناعة： يعضر الإستيلين في الصناعة بنفس الطرة الحتّ يحضر بها في المعل ولكز بكيات كبيرة وأجهزة كبيرة．

خوامر الاسيتيلين الفيزيانية： ）ا）غاز عايم اللون ．
「
「
 0）قليل النوبان في الماء ولكنه يدوب في الكعول

الخوام الكيبانية لالاستيلين：

「＂يشتعل غاز الاستيلين في الهواء الجوي في جو من الاوكسبيز بلهب مضوء مدخن في وجود كهيـة قليلة من الاككبين

$$
\begin{aligned}
& 2 \mathrm{C}_{2} \mathrm{H}_{2}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{C}+\mathrm{E} \\
& \text { استيلين } \\
& \text { ثانثى أكسيلد كربون } \\
& \text { كربون }
\end{aligned}
$$

 $2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{E}$

 حفاز ويتكون غاز الايثيز والذا زادت كبية الهيدروجين يتكون غاز الايثاذ

$$
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \xrightarrow{\text { بلاتتين }} \mathrm{C}_{2} \mathrm{H}_{4} \xrightarrow[\text { بلاتيز }]{\mathrm{H}_{2}} \mathrm{C}_{2} \mathrm{H}_{6}
$$

 كريتاتة البوتاسيوم - تلوين - حامين البينزويك كيف تفرة بين هده المواد فيبا إذا كانت مضوية او غير عضوية!.

\%	المركباتالفيّ عضوية	المركبات المغوية
يكين مراجعة اههم الفوارة بين المركبات العضنوية والغير عضويلـ في الجدول صڭ؛	كبريتات نحاس	خا
	كلوريد الكالسيوم	كحول
	اوكسيلإلاباغنسيور	سكر
	كبريتاتا البوتاسيوم	دقيق
		تلوين
		حضض بنزيك

سع\&: تعرف على أنواع الروابط فيا إذا كانت رابطة تساهمية أو ايونية فيى المركبات الآتية : $\mathrm{CaC}_{2}, \mathrm{CH}_{3} \mathrm{COONa}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CH}_{4}$

نوع الرابطة	المركب
رابطا تساهصية	CH_{4}
رابطلة تساهية	$\mathrm{C}_{2} \mathrm{H}_{2}$
رابطلة أيونية بين الْفلات والصوديوم	$\mathrm{CH}_{3} \mathrm{COONa}{ }^{+}$
رابطة إيونية	CaC_{2}

سه: أي الصيغ الآتية هثل الكانات :
$\mathrm{C}_{4} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{10}, \mathrm{C}_{4} \mathrm{H}_{10}, \mathrm{C}_{5} \mathrm{H}_{12}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{4}, \mathrm{C}_{10} \mathrm{H}_{42}, \mathrm{C}_{15} \mathrm{H}_{30}$ ع': الميغ التّي تشل الكان هي : سا7: ما الفرق بين المركبات الهيدروكربونية الآتية مع ذكر مثالين لكل نـوع .الكانـات، الكينـات والكاينات

الكاينات	الكينات)	الكانّانتا	اههم الفرورة
$\begin{aligned} & : \mathrm{H}_{\mathrm{n}} \mathrm{H}_{2 n-2} \\ & \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{3} \mathrm{H}_{4} \end{aligned}$	$\begin{gathered} : \mathrm{H}_{n} \mathrm{H}_{2 n} \\ \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{3} \mathrm{H}_{6} \end{gathered}$	$\begin{aligned} & : ~ \\ & \mathrm{C}_{n} \mathrm{H}_{2 n+2} \\ & \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6} \end{aligned}$	الميفة العامة 4
تحتوي على رابطة تساهيية ثلالثية واحدة على الأقل $\mathrm{CH} \equiv \mathrm{CH}$	تتتوي على رابطلة تساهيمة ثنانية واحدة على الأقل $\mathrm{CH}_{2}=\mathrm{CH}_{2}$	تتوتي على رابطة تساهية أحادية	الكييعانطي
تتفاعل بالإضابهة	تتفاعل بالإضافة	تتفاعل بالإهلال والاسبدال	التفاعلات

$$
\begin{aligned}
& \text { لا تلنسونا من صالح الدعاء } \\
& \text { زورونا على الرابط } \\
& \text { المرفق أدناه }
\end{aligned}
$$

