بكوريات وجامعات سوريا

القناة الرئيسية: <u>t.me/baca11111</u>

يون ملفان العلمي: t.me/baca11bot

t.me/baca1bot : لأدبي:

تركيب الثواة

تتكون النواة من البروتونات موجبة الشحنة التي يرمز لها P ومن النترونات معتدلة الشحنة التي يرمز لها N.

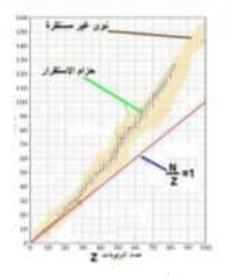
يدعى مجموع العدد الذري وعدد النترونات بالعدد الكتلي ويرمز A أما عدد البروتونات يدعى العدد الذري ويرمز له Z .

يرمز للنواة كما يلي: A-Z=N يرمز للنواة كما يلي: A-Z=N

أنواع النوى :

1- النوى المستقرة

2- النوى غير المستقرة (هذا النوع من النوى يسعى للاستقرار و هو موضوع در استنا)


الاستقرار النووي :

1- تكون النسبة $\frac{N}{Z} \simeq 1$ للعناصر المستقرة ذات الأعداد الذرية الصغيرة

2- تكون النسبة 1 (N للعناصر المسعود دات الأعداد الذرية الكبيرة

النسبة $\frac{N}{Z}$ لنظير غير مستقر Y تسمى النسبة $\frac{N}{Z}$ لنظير مستقر X

النشاط الاشعاعي: هو تحول الله ي غير المستقرة تلقائيا الى نوى لكثر استقراراً

أ . حسام الأسدي
 0959804537

التحولات النووية :

التحول من النمط بيتا

في هذا النوع يتحول نترون الى بروتون أي ينقص عند النترونات بمقدار 1 ويزداد عند البروتونات بمقدار 1 كما يلي $m \to {}_1^H + {}_1^H \to {}_1^H + {}_2^H + {}_3^H + {}_4^H + {}_4^H$

التحول من نعط البوزيترون

يحدث في اللواة التي تقع تحت حزام الاستقرار و في هذا اللوع يتحول بروتون الى نترون أي ينقص عدد البروتونات بمقدار 1 ويزداد عدد النترونات بمقدار 1 كما يلي ع الله عند الله و الشكل العام لهذا التحول يعطى بالشكل :

 $_{z}^{A}X \rightarrow _{z}^{A}Y + _{e}^{B} + Energy$: $_{z}^{A}X \rightarrow _{z}^{A}Y + _{e}^{B} + Energy$: $_{z}^{A}X \rightarrow _{z}^{A}Y + _{e}^{B} + Energy$: $_{z}^{A}X \rightarrow _{z}^{A}Y + _{e}^{B} + Energy$: $_{z}^{A}X \rightarrow _{z}^{A}Y + _{e}^{B} + Energy$

• الأصر الالكتروئي: في هذا النوع من التحولات تلتفط النواة الكترون فيتحد هذا الالكترون مع بروتون من النواة مسكن نرون كما يلي $n_0^1 \leftarrow n_0^2 + H_1^1$ يحدث في النوى التي تقع تحت حزام الاستقرار من خبر عنه كما يلي: $X + \frac{1}{2}x \rightarrow \frac{1}{2}y + Energy$

مثال : تحول نواة الروبيدوم الى نواة الترينون كما إلى : Rb + |e → || Kr + Energy

التحول من النوع الغا: يحدث هذا التفاعل في النوى الثقيلة التي يزيد عدها الذري عن
 83 حيث تطلق النواة جسيم الغا وفق التحول الاتي :

 $_{z}^{A}X \rightarrow _{z}^{A}Y + _{z}^{4}He + Energy$: $_{z}^{A}X \rightarrow _{z}^{A}Y + _{z}^{4}He + Energy$: $_{z}^{B}Ra \rightarrow _{z}^{B}Rn + _{z}^{4}He + Energy$

نشاط 2 صفحة 9:

 $^{237}_{93}U \rightarrow ^{239}_{93}Th + ^{4}_{2}He + Energy$ $^{90}_{19}S \rightarrow ^{99}_{9}Y + ^{9}_{14}e + Energy$ $^{63}_{42}Ru \rightarrow ^{43}_{4}Tc + ^{19}_{14}e + Energy$ $^{232}_{42}Po \rightarrow ^{235}_{144}Pb + ^{4}_{4}He + Energy$

> ا . حسام الأسدي 0959804537

خاصيات جسيمات ألقا و جسيمات بيتا و أشعة غاما :

	جسمات القا	جنيمات بيتا	اشعة غلما
الطبيعة	تطابق نواة الهوليوم He أ	الكثرونات عالية السرعة	أمواج كهرطيسية طاقتها عالية جدا
الشحنة	تحل شطنین موجبتین	تحمل ثنحنة سالبة	لا تحل شحن كهربائية
alts)	كتأنها تساوي اربع اضعاف كتلة الهيدروجين العادي	كثلتها تساوي كثلة الالكترون	ليس لها كتلة سكونية
تأين الغازات	تأين الغازات التي تمر من خلالها	اقل قدرة على تأين الغازات من جسيمات ألفا	أقل قدرة على تأين الغازات من جسيمات بيتا
التفاتية	تقلايتها ضعيقة	نفاذيتها أكبر من نفاذية جسيمات الفا	نفلايتها أكبر من نفلاية جسيمات بيئا
السرعة بالنسية للضوء	0.05من سرعة الضوء	0.9 من سرعة الضوء	تساوي سرعة الضوء
التأثر بالحقل الكهرباتي	تتحر ف تحو اللومن السالم لمكافة مشحولة	تتحرف تحو اللبوس الموجب لمكانفة مشحونة	لا تتاثر
التأثر بالحقل المغناطيسي	تنحرف بتاثير لورنز	ئنحرف بتاثير قوة لورنز بجهة	لا تتاثر
	The second of	معاكسة لجهة	

لا تتاثر	تنحرف بتأثير قوة لورنز بجهة ماك قامعة	تنحرف بتأثير م لورنز	التأثر بالحقل المغناطيسي
	معصه نجهه المراف جسومات النا	الحسامال	

سلاسل النشاط الاشعاعي:

يوجد ثلاث سلامل للنشاط الإشعاعي الطبيعي:

 $P_{ij} = 1$ السلسلة الأولى تبدأ باليور انيوم U_{ij}^{ij} وتتنهى بالرحساص

 $^{20}_{10}Pb$ السلسلة الثانية تبدأ بالثوريوم $^{10}_{10}Th$ وتنتهي بالرحساص $^{20}_{10}$

3 – السلسلة الثالثة تبدأ باليور انيوم U وتنتهى بالرحساص Pb وتنتهى بالرحساص

المستم الأسدي 0959804537

تطبيق 5 صفحة 12 ((شاهد شرح النطبيق على قناة اليوتيوب)) نشاط 5 صفحة 13 :

$$^{235}_{92}U \rightarrow ^{207}_{82}Pb + x ^{4}_{2}He + y ^{0}_{-1}e + Energy$$

$$235 = 207 + 4x + y(0)$$
 يلي $X = 4x \Rightarrow x = 7$ عدد التحو لات من نمط الغا كما يلي $X = 4x \Rightarrow x = 7$

$$92 = 82 + 2x + y (-1)$$

 $y = 82 + 14 - 92 \Rightarrow y = 4$ يلي لمط بيتًا كما يلي $y = 82 + 14 - 92 \Rightarrow y = 4$

 $^{235}_{92}U
ightarrow ^{207}_{82}Pb + 7\, ^{4}_{2}He + 4\, ^{0}_{-1}e + Energy$ والمعادلة الكلية كما يلي

((شاهد شرح النشاط على قناة اليوتيوب))

طاقة الارتباط:

هي الطاقة اللازمة لفصل النواة الى مكوناتها الأساسية من بروتونات ونترونات . يتم حسابها عن طريق حساب الطاقة المنترة وتكون طاقة الارتباط مساوية الطاقة المنتشرة ومعلكسة لها بالاشارة

يتم حساب الطاقة المنتشرة من العلاقة $\Delta E = \Delta m_C^2$ حيث ΔE هي الطاقة وواحدتها الجول أما Δm هي النقص في والحد الكتافة المنتشر من الخلاء تقدر بـ m_S من سرعة النشار الضوء في الخلاء تقدر بـ m_S

عمر النصف : هو الزمن اللازم لتحول نصف عدد نوى النظير المشع وفق نشاط اشعاعي محدد الى نوى عنصر اخر خلال أزمنة متساوية .

$$N \xrightarrow{i\frac{1}{2}} \xrightarrow{N} \xrightarrow{i\frac{1}{2}} \xrightarrow{N} \xrightarrow{i\frac{1}{2}} \xrightarrow{N} \xrightarrow{i\frac{1}{2}} \xrightarrow{N} \xrightarrow{i\frac{1}{2}} \xrightarrow{N}$$

n علاقة عمر النصف للمادة المشعة بالعلاقة $\frac{1}{n} = \frac{1}{2}$ حيث t الزمن الكلي و t عدد مرات التكرار

يتعلق عمر النصف بنوع المادة المشعة ولا يتعلق بالحالة الفيزيانية او الكيميانية او الضغط أو الحرارة .

> ا _ حسام الأسدي 0959804537

نشاط 7 صفحة 14 :

 Δm ويحساب ثناقص الكثلة نطبق العلاقة $\Delta E = \Delta m c^2$

$$\Delta m = -\frac{\Delta E}{C^2} = -\frac{38 \times 10^{27} \times 3 \times 60}{9 \times 10^{16}} = -7.6 \times 10^{13} Kg$$

ملاحظة : تم أخذ الاشارة السالبة لان الكتلة تتناقص

ملاحظة : تم الضرب يـ 3 لان التناقص تم خلال ثلاث دقائق و الضرب بـ 60 لتحويل الدقائق لثواني فلو طلب التناقص خلال ساعة مثلا يضرب 60 دقيقة ضرب 60 ثانية .

التفاعلات النووية:

1 - تفاعلات الالتقاط :

هي التفاعلات التي تلتقط بها الواة القنيقة دون ان تنقسم.

مثال : عند قذف نواة الذهب النظير عبر المنع المالية النووب المالية : النظير المشع وفق المعادلة النووب الثلية :

 ${}_{0}^{1}n + {}_{0}^{197}\Lambda u \rightarrow {}_{198}\Lambda u + Energy$

2 - تفاعلات التطافر:

هي التفاعلات التي تتحول فيها النواة المقذوفة بجسيم الى عنصر جديد مطلقة جسيم اخر .

مثال : عند قذف نواة النتروجين بجسيم الفا تتحول الى نواة الاوكسجين مطلقة بروتون وفق المعادلة النووية المعبرة

نشاط و صفحة 16

 $^{200}_{100}Hg + {}^{1}_{1}P \rightarrow {}^{197}_{79}Au + {}^{4}_{2}He + Energy$

وهو من تفاعلات التطافر

ا حسام الأسدي 0959804537

نشاط 11 صفحة 17

. النطافر $U \to T_{c}^{13}$ وهو من انواع تفاعلات النطافر $T_{c}^{13} + T_{c}^{13} + T_{c}^{13}$ النطافر

تفاعلات الاندماج : هي التفاعلات التي تندمج فيها نواتان او اكثر لتتشكل نواة اثقل

مثال : تندمج نواتا نظيري الهيدروجين الديتيريوم H_1^2 والتريتيوم H_1^3 لينتج نواة الهيليوم و نترون وفق التفاعل التالي

 ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n + Energy$

نشاط 12 صفحة 18

النوري $4_1^1H \rightarrow {}_2^4He + 2_{*1}^0e + Energy$ النوري

1 – نوع العنصر المشع

2 - الدماج

3 – تنتشر بسرعة الضوء

3-4

5 - جسيم بيتا

6 - تلتقط نترون وتطلق بروتون

1/8 - 7

405 -8

-y -9

e -10

ا مسلم الأسدي 0959804537

ثانياً: اعط تفسيرا علميا لكل مما يلي:

- 1 لأنه معتدل كير بانيا
- 2 بسبب تشكل طاقة الارتباط
- 3 بسبب تحول بروتون الى نترون
- 4 لأن النواة المتشكلة تكون كتلتها أصغر من مجموع كتل النوى المندمجة وهذا النقص
 في الكتلة يتحول الى طاعة
 - 5 بسبب تحول نثرون الى بروتون
 - 6 لانها معتدلة لا تحمل شحن كير بانية
 - 7 لانها تكرن مشحرنة كهر بانيا

: 1333

$$232 = 208 + 4x + y(0) \Rightarrow 24 = 4x \Rightarrow x = 6$$

 $90 = 82 + 2x + y(-1) \Rightarrow y = 82 + 12 - 90 \Rightarrow y = 4^{-1}$

$$^{232}_{90}Th \rightarrow ^{208}_{12}Pb + 6^{4}_{2}He + 4^{0}_{-1}e + Energy$$

- 2

	جسيمات ألفا	م بيتا	أشعة غلما
الثبدنة	تحل شخشن	٧ تحمل شحنة سالية مالسنة	لا تحمل شحن كوروانية
النفاتية	تقاذبتها ضعرفة	تقاتيتها اكبر من تقاتية حسمات القا	مهريات نفاذيتها أكبر من نفاذية حسمات بيثا
السرعة بالنسبة الضوء	0.05من سرعة الضوء	0.9 من سرعة الضوء	تساوي سرعة الضوء

النقاط النقاط
$$^{63}_{29}Cu + ^{1}_{0}n \rightarrow ^{64}_{29}Cu + Energy - 3$$

نقاعل نطائر
$${}_{5}^{6}B + {}_{0}^{1}n \rightarrow {}_{3}^{7}Li + {}_{2}^{4}He + Energy$$
 نقاعل نطائر ${}_{5}^{236}U \rightarrow {}_{51}^{132}Sb + {}_{41}^{101}Nb + {}_{0}^{1}n + Energy$ نقاعل انشطار ${}_{92}^{212}Bi \rightarrow {}_{51}^{132} + {}_{84}^{212}Po + {}_{-1}^{0}e + Energy - 4$ ${}_{19}^{40}K + {}_{-1}^{0}e \rightarrow {}_{18}^{40}Ar + Energy$

أ . حسام الأسدي
 0959804537

$$^{220}_{86}Ru \rightarrow ^{216}_{84}Mo + ^{4}_{2}He + Energy$$

$$^{37}_{18}Ar + ^{0}_{-1}e \rightarrow ^{37}_{17}cl + Energy - 5$$

رابعا: حل المسائل الأثية:

المسلة الأولى:

$$_{53}^{131}I \rightarrow_{54}^{131}Xe + _{-1}^{0}e + Energy$$

وهو عند مرات تكرار عمر النصف
$$n = \frac{t}{t_1} = \frac{24}{8} = 3$$

روم 1/8 من اليود المشع بعد 24 يوم
$$\frac{1}{8}$$
 بالتالي يبقى 1/8 من اليود المشع بعد 24 يوم

المسالة الثانية:

(لحل هذا النوع من المسائل تحسب طاقة الاستعلى في البداية وتكون طاقة الارتباط مساوية لها بالقيمة و معكسة لها بالاشارة)

$$\Delta E = \Delta \times I^{2} = -0.23 \times 10^{-27} \times 9 \times 10^{16} = -2.07 \times 10^{-11} J$$

 $\Delta E = +2.07 \times 10^{-11} J$ بالتالي طاقة الارتباط تساوي

أ. حسام الأسدي

المسألة الثالثة :

$$t_{\frac{1}{2}} = \frac{t}{n}$$

$$n=4$$
 النصف 1 النصف 1 النالي عند مرات تكرار عمر النصف 1 النالي عند مرات تكرار عمر النصف

$$t_{\frac{1}{2}} = \frac{t}{n} = \frac{480}{4} = 120$$
 year

المسألة الرابعة :