Dr. Saeed A. Dobbah Alghamdi

Department of Statistics Faculty of Sciences Building 90, Office 26F41 King Abdulaziz University http://saalghamdy.kau.edu.sa

Main Reference

Elementary Statistics
A Step by Step Approach
By
Allan Bluman

Chapter 2

Frequency Distributions and Graphs

Objectives

Organize data using frequency distributions.Represent data using pie chart and bar chart.
\square Represent data using histogram, frequency polygon and ogive.
\square Other types of graphs such as time series graph and stem and leaf plot are presented.

Introduction

\square In order to conduct any statistical study about any phenomenon, you must gather data for variables that describe that phenomenon.

After gathering the data, you must organize them in a meaningful way to describe the situation, draw conclusions or make inferences.
\square The common way for organizing the data is by constructing a frequency distribution.
\square After organizing the data, you can present them using different types of charts or graphs.

Organizing Data

\square When data are collected in their original form, they are called raw data.

Example: Blood Type Data

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

\square Then, the raw data can be organized into a table form that is called frequency distribution using classes and frequencies.

Types of frequency distributions are categorical frequency
distribution, ungrouped frequency distribution and grouped
frequency distribution
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Categorical Frequency Distributions

\square When the sample size (n) is large, the data must be grouped into categories.
\square Categorical Frequency Distributions are used for data that can be placed in specific categories, such as nominal or ordinal level data.

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Instructions:

- Open Excel
- Enter the data in column A
- Enter the values of 1's in column B

[^0]
Categorical Frequency Distributions

Example: Blood Type Frequency Distribution

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Instructions:

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Instructions:

- Select OK

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Instructions:

- Drag the variable BLOOD TYPE into the ROWS area
- Drag the constant FREQ into the VALUES area

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences. KAU

Categorical Frequency Distributions

2-10
Example: Blood Type Frequency Distribution

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Instructions:

- Select the table
- Press Ctrl+C to copy the table
- Press Ctrl+V to paste the table into your document
- Edit the table

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Blood Type	Frequency
A	6
AB	3
B	8
O	11
Grand Total	$\mathbf{2 8} \longleftarrow$

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution (Adding Percentages)

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Instructions:

- Select ANALYZE

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution (Adding Percentages)

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Instructions:

- Select Fields,

Items \& Sets

- Select Calculated Field

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution (Adding Percentages)

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Instructions:

- Enter the name of the variable as

Percent

- Enter the Formula for calculating the percent as

FREQ/28

- Select OK

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution (Adding Percentages)

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Instructions:

- Select column C
- Select HOME
- Select \% to change the format of the column to \%.

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution (Adding Percentages)

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Instructions:

- Select the table
- Copy and paste it
 into your document
- Edit the table

Categorical Frequency Distributions

Example: Blood Type Frequency Distribution

A	B	B	AB	O	O	A	O	O	B	A	B	O	AB
O	AB	B	B	A	A	O	B	B	O	O	O	A	O

Blood Type	Frequency	Percent		
A	6	21%		
AB	3	11%		
B	8	29%		
O	11	39%		
Grand Total	$\mathbf{2 8}$	$\mathbf{1 0 0 \%}$	\quad	frequency
:---:	\quad	Total		
:---				

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

The Most Common Graphs for Categorical Data

\square The pie chart is a circle that is divided into sections according to the frequencies in each category of the distribution, Degree $=\frac{f}{n} \times 360$. It is the best graph for displaying the nominal level of qualitative data.

Class	Frequency	Percentage	Degree
A	6	21.43%	77.14
B	8	28.57%	102.86
O	11	39.29%	141.43
AB	3	10.71%	38.57
Total	$\mathbf{2 8}$	$\mathbf{1 0 0 \%}$	$\mathbf{3 6 0}$

The Most Common Graphs for Categorical Data

2.19

\square Pie chart using Excel.
Instructions:

- Select the table
- Select INSERT
- Select Pie chart

[^1]
The Most Common Graphs for Categorical Data

\square Pie chart using Excel.
Instructions:

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

The Most Common Graphs for Categorical Data

\square Pie chart using Excel.
Edit the graph

The Most Common Graphs for Categorical Data

\square The bar charts display the data using vertical bars of various heights to reflect the frequencies of the categories. It is the best graph for displaying the ordinal level or discrete type of data.

- Example: Education levels

Education Level	Frequency
Level 1	47
Level 2	15
Level 3	12
Level 4	7
Level 5	19
Total	$\mathbf{1 0 0}$

The Most Common Graphs for Categorical Data

2-23

\square Bar chart using Excel.
Instructions:

- Copy the table to Excel
- Select the table without the total
- Select INSERT
- Select Bar chart

[^2]
The Most Common Graphs for Categorical Data

\square Bar chart using Excel.
Instructions:

- Edit the chart
- Copy and paste it into your document

Eduction Levels

Ungrouped Frequency Distributions

Ungrouped frequency distributions are used for data that can be enumerated and when the range of values in the data set is small (discrete data) and the sample size (n) is large.

- Examples:
- Number of children per family
- Number of cars in a parking lot
- Number of houses
- Number of students

[^3]
Ungrouped Frequency Distributions

Example: Number of patients in the waiting rooms of 16 clinics within a hospital at a specific time.

Instructions:

- Open Excel
- Enter the data in column A
- Enter the values of 1 's in column B

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Ungrouped Frequency Distributions

Example: Number of patients in the waiting rooms of 16 clinics within a hospital at a specific time.$$
\begin{array}{llllllllllllllll}
5 & 4 & 4 & 8 & 8 & 5 & 8 & 4 & 4 & 4 & 8 & 4 & 5 & 8 & 4 & 4
\end{array}
$$

Instructions:

- Select INSERT
- Select PivotTable

Ungrouped Frequency Distributions

Example: Number of patients in the waiting rooms of 16 clinics within a hospital at a specific time.

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Ungrouped Frequency Distributions

Example: Number of patients in the waiting rooms of 16 clinics within a hospital at a specific time.
$\begin{array}{lllllllllllllllll}5 & 4 & 4 & 8 & 8 & 5 & 8 & 4 & 4 & 4 & 8 & 4 & 5 & 8 & 4 & 4\end{array}$

Instructions:

- Drag the variable

No. of Patients into the ROWS area

- Drag the constant

FREQ into the VALUES area

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences. KAU

Ungrouped Frequency Distributions

Example: Number of patients in the waiting rooms of 16 clinics within a hospital at a specific time.

Instructions:

- Rename the table columns as

No. of Patients Frequency

$4 \begin{array}{lllll}5 & 8 & 4 & 4\end{array}$
\qquad - - . \times

5448

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Ungrouped Frequency Distributions

Example: Number of patients in the waiting rooms of 16 clinics within a hospital at a specific time.

Instructions:
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Ungrouped Frequency Distributions

Example: Number of patients in the waiting rooms of 16 clinics within a hospital at a specific time.

5	4	4	8	8	5	8	4	4	4	8	4	5	8	4	4

No. of Patients	Frequency
4	8
5	3
8	5
Grand Total	16

The Most Common Graph for Discrete Data

\square The bar charts display the data by using vertical bars of various heights to reflect the frequencies of the categories. It is the best graph for displaying the discrete type of data or ordinal level of qualitative data.Example: Number of patients

No. of Patients	Frequency
4	8
5	3
8	5
Grand Total	16

[^4]
The Most Common Graphs for Categorical Data

- Bar chart using Excel.

Instructions:

- Select the table without the total
- Select INSERT
- Select Bar chart

The Most Common Graphs for Categorical Data

\square Bar chart using Excel.
Instructions:

- Edit the chart
- Copy and paste it

No. of Patients
into your document

Grouped Frequency Distributions

\square When the range of values in a data set is large (continuous data), the data must be grouped into classes that are more than one unit in width, e.g., $24-30$.
\square The lower class limit represents the smallest data value that can be included in a class, e.g., 24 for the class limit $24-30$.

- The upper class limit represents the largest value that can't be included in the class, e.g., 30 for the class limit 24 - 30 .

Grouped Frequency Distributions

The class width for a class in a frequency distribution is found by subtracting the lower (or upper) class limit of one class from the lower (or upper) class limit of the next class.The class midpoint is found by adding the lower and upper boundaries (or limits) and dividing by 2 .

[^5]
Grouped Frequency Distributions

2-38

Class Rules

\square There should be between 5 and 20 classes.
As a guide line, the number of classes can be found using
Number of Classes $\approx 1+3.3 \times \log (n)$
The first class lower limit usually is the lowest value in the data set
The class width should be an odd number.
The classes must be mutually exclusive.
The classes must be continuous.
The classes must be exhaustive.
The classes must be equal in width.

Grouped Frequency Distributions

\square Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95

83	112	128	127	124	123	134	94	67	124	155	105	100	112	141

$\begin{array}{llllllllll}104 & 132 & 98 & 146 & 132 & 93 & 85 & 94 & 116 & 113\end{array}$
Instructions:

- Open Excel
- Enter the data in column A

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95
83	112	128	127	124	123	134	94	67	124	155	105	100	112	141
104	132	98	146	132	93	85	94	116	113					

- Select DATA
- Select MegaStat

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95
83	112	128	127	124	123	134	94	67	124	155	105	100	112	141
104	132	98	146	132	93	85	94	116	113					
tructions:				m			\cdots	\cdots						
\cdots														

Instructions:

- Select Frequency

Distribution

- Select Quantitative

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95
83	112	128	127	124	123	134	94	67	124	155	105	100	112	141
104	132	98	146	132	93	85	94	116	113					

Intuctions:

- Click on Input range
- Select your data "column A"

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95
83	112	128	127	124	123	134	94	67	124	155	105	100	112	141
104	132	98	146	132	93	85	94	116	113					

Instructions: \qquad

- Enter Interval width
- Enter Lower boundary of the first interval
- Select the desired graphs
- Histogram
- Polygon
- Ogive
- Click OK
\qquad

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences. KAU

Grouped Frequency Distributions

2.44

Example: Sample of birthweight (oz) from 40 consecutive deliveries

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95
83	112	128	127	124	123	134	94	67	124	155	105	100	112	141
104	132	98	146	132	93	85	94	116	113					
tructions:							\cdots	\cdots						

Instructions:

- Select the frequency distribution table and copy it into your document.

(C) All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95
83	112	128	127	124	123	134	94	67	124	155	105	100	112	141
104	132	98	146	132	93	85	94	116	113					

Instructions:

- Edit your table

Birthweight						cumulative		
lower		upper	Midpoint	width	frequency	percent	frequency	percent
32	$<$	51	42	19	1	2.5	1	2.5
51	$<$	70	61	19	2	5.0	3	7.5
70	$<$	89	80	19	3	7.5	6	15.0
89	$<$	108	99	19	10	25.0	16	40.0
108	$<$	127	118	19	12	30.0	28	70.0
127	$<$	146	137	19	9	22.5	37	92.5
146	$<$	165	155	19	3	7.5	40	100.0

(C) All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

The Most Common Graphs for Continuous Data

\square The histogram displays the continuous data that are organized in a grouped frequency distribution by using vertical bars of various heights to represent the frequencies.Example: Sample of birthweight
Instructions:

- Copy the histogram graph from MegaStat output and paste it into your document

[^6]
The Most Common Graphs for Continuous Data

The frequency polygon displays the continuous data that are organized in a grouped frequency distribution by using lines that connect points plotted for the frequencies at the midpoints of the classes.
\square Example: Sample of birthweight Instructions:

- Copy the Frequency
polygon graph from
MegaStat output and paste it into your document

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

The Most Common Graphs for Continuous Data

\square The cumulative frequency graph or ogive represents the cumulative frequencies for the classes in a grouped frequency distribution.
Example: Sample of birthweight
Instructions:

- Copy the Ogive graph from MegaStat output and paste it into your document

[^7]
Other Types of Graphs

The time series graph represents data that occur over a specific period of time.
\square Example: Yearly cargo and mail traffic of an airline
Instructions:

- Copy the data table into Excel sheet

Year	Cargo and Mail Traffic
1998	199368
1999	203402
2000	209102
2001	192702
2002	214587
2003	203480
2004	222418
2005	221344
2006	198063
2007	209119

Other Types of Graphs

\square The time series graph represents data that occur over a specific period of time.
\square Example: Yearly cargo and mail traffic of an airline Instructions:

- Edit the table
- Select Cargo and Mail Traffic, column B
- Select INSERT
- Select Line Chart

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences. KAU

Other Types of Graphs

The time series graph represents data that occur over a specific period of time.
\square Example: Yearly cargo and mail traffic of an airline
Instructions: $\quad=-\infty-m=-m$

- Edit the graph by selecting the

(C) All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Other Types of Graphs

\square The time series graph represents data that occur over a specific period of time.
\square Example: Yearly cargo and mail traffic of an airline Instructions:

- Select Edit on the right box

[^8]
Other Types of Graphs

\square The time series graph represents data that occur over a specific period of time.
\square Example: Yearly cargo and mail traffic of an airline
Instructions:

- Select the data in Year, column A
- Click OK
- Click OK again
- Copy the graph into your document

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Other Types of Graphs

The time series graph represents data that occur over a specific period of time.
\square Example: Yearly cargo and mail traffic of an airline Instructions:

- Edit the graph

Cargo and Mail Traffic

[^9]
Other Types of Graphs

A stem-and-leaf plot is a data plot that uses part of a data value as the leaf, the less significant digits (the 'units'), and the other part of the data value as the stem, the most significant digit (i.e. the 'tens'), to form groups or classes.
\square It has the advantage over grouped frequency distribution of retaining the actual data while showing them in a graphic form.

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95
83	112	128	127	124	123	134	94	67	124	155	105	100	112	141
104	132	98	146	132	93	85	94	116	113					
nstructions:						\cdots	\cdots	\cdots						

Instructions:

- Open Excel
- Enter the data in column A

Grouped Frequency Distributions

2-58

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95
83	112	128	127	124	123	134	94	67	124	155	105	100	112	141
104	132	98	146	132	93	85	94	116	113					

Instructions: \quad an

- Select DATA
- Select MegaStat

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95
83	112	128	127	124	123	134	94	67	124	155	105	100	112	141
104	132	98	146	132	93	85	94	116	113					
tructions:							-	-						

Instructions:

- Select Descriptive Statistics ...

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Dedartment of Statistics. Faculty of Sciences. KAU

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95
83	112	128	127	124	123	134	94	67	124	155	105	100	112	141
104	132	98	146	132	93	85	94	116	113					

Instructions: \quad ancon

- Click on Input range
- Select your data "column A"
- Unselect all choices
- Select Stem and Leaf Plot
- Click OK

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

- Select your data

"column A"
- Unselect all choices
- Select Stem and Leaf Plot
- Click OK
- Copy the graph into your document

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Grouped Frequency Distributions

Example: Sample of birthweight (oz) from 40 consecutive deliveries

58	118	92	108	132	32	140	138	96	161	120	86	115	118	95

83	112	128	127	124	123	134	94	67	124	155	105	100	112	141

$\begin{array}{llllllllll}104 & 132 & 98 & 146 & 132 & 93 & 85 & 94 & 116 & 113\end{array}$
Instructions:

- Edit the graph

Stem and Leaf plot for Birthweight Frequency Stem Leaf

Summary

\square When data are collected in the original form, they called raw data.
\square Since little information can be obtained from raw data, they must be organized in a frequency distribution.
\square Categorical frequency distribution is used for qualitative data (nominal or ordinal)
\square Ungrouped frequency distribution is used for discrete data.
\square Grouped frequency distribution is used for continuous data.
\square Pie chart is used mostly to represent nominal data.
\square Bar chart are used mostly to represent discrete and ordinal data.
\square Histogram, frequency polygon and ogive graphs are used to represent continuous data.
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Summary

\square Time series graph is used to represent data that occur over specific period of time.
\square Stem and leaf plot is a combination of sorting and graphing. It retains the actual data while showing them graphically.

Dr. Saeed A. Dobbah Alghamdi

Department of Statistics

 Faculty of Sciences Building 90, Office 26F41King Abdulaziz University http:// saalghamdy.kau.edu.sa

Main Reference

Elementary Statistics
A Step by Step Approach
By
Allan Bluman

Objectives

\square Summarize data using measures of central tendency, such as the mean, weighted mean, median and mode.
\square Describe data using the measures of variation, such as the range, variance, and standard deviation.
\square Identify the position of a data value in a data set using quartiles.
\square Use the techniques of exploratory data analysis such as the fivenumber summary and boxplot to discover various aspects of data.

Introduction

\square Data can be summarized numerically using measures of central tendency, measures of variation and measures of position.

- Measures of central tendency such as the mean, weighted mean, median and mode are used to describe a data set with a single value that represents the middle or center of the data's distribution.
\square Measures of variation such as the range, variance, and standard deviation are used to describe a data set with a single value that represents the spread of the data's distribution.
- Measures of position such as standard scores, percentiles and quartiles are used to tell where a specific value falls within a data set .
- Another type of statistics is called exploratory data analysis which is used to get information about the center, spread, symmetry and outliers of a data set.
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics. Faculty of Sciences, KAU

Introduction

Before going any further, we need to distinguish between the measures that are calculated using the values of a sample and using all values of a population.
\square A statistic is a characteristic or measure calculated using the data values of a sample, e.g., the sample mean.
\square A parameter is a characteristic or measure calculated using all the data values of a specific population, e.g., the population mean.

Measures of Central Tendency

The mean is the sum of the values divided by the number of values.

Population Mean	Sample Mean
$\mu=\frac{\sum_{i=1}^{N} x_{i}}{N}$	$\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$

The weighted mean is used when the values in a data set are not all equally represented. It is found by multiplying each value by its corresponding weight and dividing the sum of the products by the sum of the weights.
Formula

$\bar{x}_{w}=\frac{x_{1} w_{1}+x_{2} w_{2}+\cdots+x_{n} w_{n}}{w_{1}+w_{2}+\cdots+w_{n}}=\frac{\sum_{i=1}^{n} x_{i} w_{i}}{\sum_{i=1}^{n} w_{i}}$ | $=\left(x_{1} * w_{1}+x_{2} * w_{2}+\cdots+x_{n}\right.$ |
| :--- |
| $\left.* w_{n}\right) /\left(w_{1}+w_{2}+\cdots+w_{n}\right)$ |

Where $w_{1}, w_{2}, \ldots, w_{n}$ are the weights for $X_{1}, X_{2}, \ldots, X_{n}$
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics. Faculty of Sciences, KAU

Measures of Central Tendency

The median (MD) is the halfway point in a data set. It is found by arranging the data in order and selecting the middle point.
The mode value is the value that occurs most often in a data set.

- A data set with one value that occurs with greatest frequency is said to be unimodal ,e.g., $(3,2,1,2,4,5,6)$.
- A data set with two values that occur with greatest frequency is said to be bimodal , e.g., (3,2, 1,2,4,5,1).
- A data set with more than two values that occur with greatest frequency is said to be multimodal , e.g., (4,5,3,3,2, 1,2,6,1)
- When all the values in a data set occur with the same frequency is said to have no mode , e.g., (3,2,3,2, 1,5,5,1)

Properties of Central Tendency Measures

The mean
\square is computed by using all the values of a data set.

- varies less than the median or mode.
\square is unique, and not necessarily one of the data values.
\square is affected by extremely high or low values and may not be the appropriate average.
The median
- is used when one must find the center or middle value of a data set.
\square is used when one must determine whether the data values fall into the upper half or lower half of the distribution.
- is affected less than the mean by extremely high or extremely low values.

Properties of Central Tendency Measures

The mode
\square is used when the most typical case is desired.
\square is the easiest average to compute.

- can be used when the data are nominal, such as religious preference or gender.
- is not always unique. A data set can have more than one mode, or the mode may not exist for a data set.

Distribution Shapes

\square Frequency distributions may assume different shapes. The most important shapes are positively skewed, symmetrical, negatively skewed.
\square A coefficient of skewness may calculated to measure the degree of the skewness in a distribution. It ranges from -3 to 3 . Negative value means negative skewness, zero means symmetrical and positive value means positive skewness. As the coefficient of skewness gets further away from zero as the shape became more skewed.
\square A comparison of the mean, median and mode values indicates the type of skewness in the shape of a distribution.

Distribution Shapes

In a positively skewed or right skewed distribution, the majority of the data values fall to the left of the mean and cluster at the lower end of the distribution. Mode < Median < Mean

(C) All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Distribution Shapes

In a symmetrical distribution, the data values are evenly distributed on both sides of the mean. Mean = Median = Mode

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Distribution Shapes

In a negatively skewed or left skewed distribution, the majority of the data values fall to the right of the mean and cluster at the upper end of the distribution. Mean < Median < Mode

Measures of Variation

\square The range is the highest value minus the lowest value in a data set.
\square The variance is the average of the squares of the distance each value is from the mean.

$$
\begin{array}{c|c}
\hline \text { Population Variance } & \text { Sample Variance } \\
\sigma=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N} & s=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}
\end{array}
$$

\square The standard deviation is the square root of the variance.

Measures of Variation

\square The coefficient of variation is a measure of the dispersion of data values around the mean value of the data. It is calculated by dividing the standard deviation by the mean expressed as a percentage.
\square The coefficient of variation is mostly used to compare standard deviations of two variables or more when the units or the values of the means are different.
\square Large coefficient of variation means large variability.

Measure of Position

\square A standard score or \underline{z} score is used when direct comparison of raw scores is impossible.
\square The \underline{z} score represents the number of standard deviations a data value falls above or below the mean.

Population z-score	Sample z-score	In Excel
$z=\frac{x-\mu}{\sigma}$	$z=\frac{x-\bar{x}}{s}$	$=(x-\bar{x}) / s$

Measure of Position

Percentiles divide the data set into 100 equal groups.
\square The percentile corresponding to a given value X is computed using the following formula:

Formula	In Excel
$P=\frac{(\text { number of values below } X)+0.5}{\text { total number of values }} * 100$	$=($ countif $($ data; " $<\mathrm{X} ")+\mathbf{0 . 5}) / n * \mathbf{1 0 0}$

Measure of Position

Finding a data value corresponding to a given percentile
1- Arrange the data in order from lowest to highest.

In Excel		
Select Data \rightarrow HOME \rightarrow Sort \& Filter \longrightarrow Sort Smallest to Largest		
bstitute into the formula	Formula	In Excel
	$c=\frac{n * p}{100}$	$=n * p / 100$

3- If c is not a whole number, round up to the next number. Starting at the lowest value, count over to the value that corresponds to the rounded-up number.

4- if c is a whole number, use the mid-value between the cth and $(c+1)$ st values when counting up from lowest value.
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Measures of Position

Quartiles divide the distribution into four groups, denoted by Q_{1}, Q_{2}, Q_{3}. Note that Q_{1} is the same as the $25^{\text {th }}$ percentile; Q_{2} is the same as the $50^{\text {th }}$ percentile or the median; and Q_{3} corresponds to the $75^{\text {th }}$ percentile.
\square An outlier is an extremely high or an extremely low data value when compared with the rest of the data values.

Outliers can be identified using the interquartile range (IQR) which is a measure of variation that can be used when the data contains outlier values. $\quad \mathrm{IQR}=Q_{3}-Q_{1}$

Outliers can be the result of measurement or observational error.
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Exploratory Data Analysis

Exploratory data analysis includes the box plot and the five-number summary.
\square Boxplots are graphical representations of a five-number summary of a data set.
\square The five specific values that make up a five-number summary are minimum, Q_{1}, Q_{2}, Q_{3} and maximum.

Skewness and boxplot

Using the box:

- If the median is near the center of the box, the distribution is approximately symmetric.

- If the median is to the left of the box, the distribution is positively skewed.

- If the median is to the right of the box, the distribution is negatively skewed.

[^10]
Applying the Concepts

\square The following data represent salaries from a school district

10,000	11,000	11,000	12,500	14,300	17,500	18,200	14,700
18,000	16,600	19,200	21,100	15,400	50,000	15,700	15,200

\square If you work for the school board and do not wish to increase salaries. Compute the measures of central tendency and decide which one would best support your position.
\square If you work for the teachers' union and want a raise for the teachers. Use the best measure of central tendency to support your position.
\square Explain how outliers can be used to support one or the other position.

- If the salaries represented every teacher in the school district, would the averages be parameters or statistics?
- Which measure of central tendency can be misleading when a data set contains outliers?
\square When you are comparing the measures of central tendency, does the distribution display any skewness? Explain.

Applying the Concepts

\square The following data represent salaries from a school district

10,000	11,000	11,000	12,500	14,300	17,500	18,200	14,700
18,000	16,600	19,200	21,100	15,400	50,000	15,700	15,200

- If you work for the school board and do not wish to show a large variation in salaries. Compute the measures of variation and decide which one would best support your position.
\square If you work for the teachers' union and want to show a large variation in salaries. Use the best measure of variation to support your position.
- Which measure of variation can be misleading when a data set contains outliers?
\square From the coefficient of skewness, does the distribution display any skewness? Explain.
\square If you take the first eight salaries as one group and the rest as another group, which group is more variable?
\square Find the z score for a teacher's salary of 14000 and for a teacher's salary 18000. Explain.
\square Find the percentile rank of a teacher's salary of 15400. Explain.
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Applying the Concepts

\square The following data represent salaries from a school district

10,000	11,000	11,000	12,500	14,300	17,500	18,200	14,700
18,000	16,600	19,200	21,100	15,400	50,000	15,700	15,200

\square What value corresponds to the $30^{\text {th }}$ percentile?

- What value corresponds to the $50^{\text {th }}$ percentile?

Calculate the values of Q_{1}, Q_{2} and Q_{3} and decide in which quartile a teacher's salary of 17000 falls.

- How many observations falls between the minimum and the median?
\square Is the data contains any outlier values?
\square From the boxplot, comment on the skewness of the distribution.

Applying the Concepts

2-23

- Example: The following data represent salaries from a school district

10,000	11,000	11,000	12,500	14,300	17,500	18,200	14,700
18,000	16,600	19,200	21,100	15,400	50,000	15,700	15,200

Instructions:

Applying the Concepts

\square Example: The following data represent salaries from a school district

10,000	11,000	11,000	12,500	14,300	17,500	18,200	14,700
18,000	16,600	19,200	21,100	15,400	50,000	15,700	15,200

Instructions:

- Select DATA
- Select MegaStat

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Applying the Concepts

\square Example: The following data represent salaries from a school district

10,000	11,000	11,000	12,500	14,300	17,500	18,200	14,700
18,000	16,600	19,200	21,100	15,400	50,000	15,700	15,200

Instructions:

- Select Descriptive Statistics

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Applying the Concepts

- Example: The following data represent salaries from a school district

10,000	11,000	11,000	12,500	14,300	17,500	18,200	14,700
18,000	16,600	19,200	21,100	15,400	50,000	15,700	15,200

Instructions:

- Click on Input range
- Select your data "column A"
- Check the boxes in front of
- Mean
- Sample var ...
- Minimum .
- Median
- Boxplot
- Skewness ...
- Click OK
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences. KAU

Applying the Concepts

- Example: The following data represent salaries from a school district

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Applying the Concepts

\square Example: The following data represent salaries from a school district

10,000	11,000	11,000	12,500	14,300	17,500	18,200	14,700
18,000	16,600	19,200	21,100	15,400	50,000	15,700	15,200

Instructions:

- Select HOME
- Select Sort \& Filter

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

Applying the Concepts

- Example: The following data represent salaries from a school district

10,000	11,000	11,000	12,500	14,300	17,500	18,200	14,700
18,000	16,600	19,200	21,100	15,400	50,000	15,700	15,200

Instructions:

- Select your Data
- Select HOME
- Select Sort \& Filter ${ }^{5}$
- Select Sort Smallest to Largest

(C) All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Applying the Concepts

- Example: The following data represent salaries from a school district

10,000	11,000	11,000	12,500	14,300	17,500	18,200	14,700

Summary

\square Measures of central tendency such as the mean, median and mode are used to summarize data.

- The mean is the sum of values divided by the total number of values.
- The median is the middle value of an ordered data set.
- The mode is the most frequent data value.
\square Measures of variation such as the range, variance and standard deviation are used to describe the spread of data.
\square The range is the distance between highest value and lowest value.
- The variance is the average of the squares of the distance between the mean and each value in a data set.
- The standard deviation is the square root of the variance.

Summary

Measure of position such as the standard scores, percentiles and quartiles are used to identify the position of a data value.

- Standard score is the number of standard deviation that a data value is above or below the mean.
- Percentile is the position in hundredths that a data value holds in the distribution.
- Quartile is the position in fourths that a data value holds in the distribution.

Dr. Saeed A. Dobbah Alghamdi

Department of Statistics Faculty of Sciences Building 90, Office 26F41
King Abdulaziz University http://saalghamdy.kau.edu.sa

Chapter 4

Probability and
\section*{Counting Rules}

Objectives

Determining sample space.
\square Finding the probability of an event and compound events.
\square Finding the total number of outcomes in a sequence of events.
\square Finding the total number of selecting r objects from n objects.

Introduction

- Probability as a general concept can be defined as the chance of an event occurring.
\square Probability are used in games of chance, insurance, investments, weather forecasting and in various other areas.
\square Rules such as the fundamental counting rule, permutation rule and combination rule allow us to count the number of ways in which events can occur.

Basic Concepts

\square A probability experiment is a chance process that leads to welldefined results called outcomes.
\square An outcome is the result of a single trial of a probability experiment.
\square A sample space is the set of all possible outcomes of a probability experiment.
\square An event consists of a set of outcomes of a probability experiment.
\square An event with one outcome is called a simple event and with more than one outcome is called compound event.

Basic Concepts

4-4 Example

Find the sample space for the gender of the children if a family has three children and give an example for a simple event and another one for a compound event. Use B for boy and G for girl.
There are two genders and three children, so there are $\mathbf{2}^{\mathbf{3}}=\mathbf{8}$ possibilities as shown here;

BBB BBG BGB GBB BGG GBG GGG GGB

So, the sample space is

$$
S=\{\mathrm{BBB}, \mathrm{BBG}, \mathrm{BGB}, \mathrm{GBB}, \mathrm{BGG}, \mathrm{GBG}, \mathrm{GGB}, \mathrm{GGG}\}
$$

- Simple event as $E=\{B B B\}$
- Compound event as $E=\{\mathrm{BBG}, \mathrm{BGB}, \mathrm{GBB}\}$

Basic Concepts

A tree diagram is a device used to list all possibilities of a sequence of events in a systematic way.

Basic Concepts

4-6 Example

Find the sample space for the gender of the children if a family has three children. Use B for boy and G for girl.

Basic Concepts

- Equally likely events are events that have the same probability of occurring.
\square Venn diagrams are used to represent probabilities pictorially.

[^11]
Classical Probability

- Classical probability uses sample spaces to determine the numerical probability that an event will happen. It assumes that all outcomes in the sample space are equally likely to occur.
\square The probability of an event E can be defined as

$$
P(E)=\frac{n(E)}{n(S)}=\frac{\text { Number of outcomes in } E}{\text { Number of outocmes in the sample space }}
$$

Classical Probability

If a family has three children, find the probability that two of the children are girls .
The sample space is
$S=\{\mathrm{BBB}, \mathrm{BBG}, \mathrm{BGB}, \mathrm{GBB}, \mathrm{GGG}, \mathrm{GGB}, \mathrm{GBG}, \mathrm{BGG}\}$
The event of two girls is

$$
E=\{G G B, G B G, B G G\}
$$

Hence, the probability that two of the children are girls is

$$
P(E)=\frac{n(E)}{n(S)}=\frac{3}{8}=0.375
$$

Probability Rules

The probability of an event E is a number (either a fraction or decimal) between and including 0 and 1 . Thus, $0 \leq P(E) \leq 1$.
2. If an event E cannot occur (i.e., the event contains no members in the sample space), the probability is zero.
3. If an event E is certain, then the probability of E is one.
4. The sum of the probabilities of the outcomes in the sample space is one.

Probability Rules

4-11 Example

When a single die is rolled, find the probability of getting a nine.
Since the sample space is $S=\{1,2,3,4,5,6\}$, it is impossible to get a
9. Hence,

$$
P(9)=\frac{0}{6}=0
$$

When a single die is rolled, what is the probability of getting a number less than 7 ?

Since all outcomes in the sample space are less than 7, then

$$
P(<7)=\frac{6}{6}=1
$$

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Complementary Events

4-12

- The complement of an event E is the set of outcomes in the sample space that are not included in the outcomes of event E. The complement of E is denoted by \bar{E}.
\square Rule for Complementary Events, $P(E)+P(\bar{E})=1$
Thus, $P(\bar{E})=1-P(E)$ or $P(E)=1-P(\bar{E})$.
\square Complementary events are mutually exclusive.

Simple Probability

Complementary Events

4-13 Example

Find the complement of each event.
a. Rolling a die and getting a 4.

Getting 1,2,3,5 or 6
b. Selecting a letter of the alphabet and getting a vowel.

Getting a consonant

c. Selecting a month and getting a month that begins with a J.

Getting February, March, April, May, August, September, October, November or December
d. Selecting a day of the week and getting a weekday.

Getting Friday or Saturday

Complementary Events

4-14 Example

If the probability that a person lives in an industrialized country of the world is $\frac{1}{5}$, find the probability that a person does not live in an industrialized country.
$P($ not living in an industrialized country $)=1-\frac{1}{5}=\frac{4}{5}=0.8$

Empirical Probability

- Empirical probability relies on actual experience to determine the likelihood of outcomes. It doesn't assumes that all outcomes in the sample space are equally likely to occur.
\square Given a frequency distribution, the probability of an event being in a given class is:

$$
P(E)=\frac{\text { frequency for the class }}{\text { sample size }}=\frac{f}{n}
$$

Empirical Probability

In a sample of 50 people, 21 had type O blood. 22 had type $A, 5$ had type B blood and 2 had type AB blood. Set up a frequency distribution and find the following probabilities:
a. A person has type O blood.

$$
P(0)=\frac{21}{50}=0.42
$$

b. A person has type A or type B blood.

$$
P(A \text { or } B)=\frac{22+5}{50}=0.54
$$

c. A person has neither type A nor type O blood.

Blood Type	Frequency
A	22
B	5
O	21
AB	2
Total	50

$$
P(\text { neither } A \text { nor } 0)=\frac{5+2}{50}=1-\frac{22+21}{50}=0.14
$$

d. A person does not have type AB blood.

$$
P(\operatorname{not} A B)=1-2 / 50=0.04
$$

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Mutually Exclusive Events

\square Two events are mutually exclusive if they cannot occur at the same time (i.e., they have no outcomes in common).
\square Example: rolling a die and getting an even or an odd number.
\square In the case of mutually exclusive events, the probability of two or more events can be determined by the addition rules.

Mutually Exclusive Events

Determine which events are mutually exclusive and which are not, when a single die is rolled.
a. Getting a 3 and getting an odd number.

The events are not mutually exclusive, since the first event is a 3 and then second event is 1,3 or 5 . Hence, 3 is contained in both events.
b. Getting an odd number and getting a number less than 4.

The events are not mutually exclusive, since the first event can be 1,3 or 5 and the second event is 1,2 or 3 . Hence, 1 and 3 are contained in both events.
c. Getting a number greater than 4 and getting a number less than 4. The events are mutually exclusive, since the first event is 5 or 6 and the second event is 1,2 or 3 .

Addition Rules

\square When two events A and B are mutually exclusive, the probability that A or B will occur is

$$
P(A \text { or } B)=P(A P)+P(B)
$$

\square When two events A and B are not mutually exclusive, the probability that A or B will occur is

$$
P(A \text { or } B)=P(A P)+P(B)-P(A \& B)
$$

Mutually Exclusive Events

Nonmutually Exclusive Events

Addition Rules

4-20 Example

A box contains 3 glazed doughnuts, 4 jelly doughnuts and 5 chocolate doughnuts. If a person selects a doughnut at random, find the probability that it is either a glazed doughnut or a chocolate doughnut.

The total number of doughnuts in the box is 12 and the events are mutually exclusive, so

$$
P(G \text { or } C)=P(G)+P(C)=\frac{3}{12}+\frac{5}{12}=\frac{8}{12}=0.667
$$

Addition Rules

A day of the week is selected at random. Find the probability that it is a weekend day (Friday or Saturday)

The total number of days in a week is 7 (5 weekdays and 2 weekend) and the events are mutually exclusive, so

$$
P(F \text { or } S)=P(F)+P(S)=\frac{1}{7}+\frac{1}{7}=\frac{2}{7}=0.286
$$

Addition Rules

Independent and Dependent Events

\square Two events A and B are independent if the fact that A occurs does not affect the probability of B occurring.
\square When the outcome or occurrence of the first event affects the outcome or occurrence of the second event in such a way that the probability is changed, the events are said to be dependent.
\square The multiplication rules can be used to find the probability of two or more events that occur in sequence.
\square When two events are independent, the probability of both occurring is:

$$
P(A \text { and } B)=P(A) * P(B)
$$

Independent and Dependent Events

4-24 Example

An urn contains 3 red balls, 2 blue balls and 5 white balls. A ball is selected and its color noted. Then it is replaced. A second ball is selected and its color noted. Find the probability of each of these.
a. Selecting 2 blue balls

$$
P(B \text { and } B)=P(B) * P(B)=\frac{2}{10} * \frac{2}{10}=\frac{4}{100}=0.04
$$

b. Selecting 1 blue ball and then 1 white ball

$$
P(B \text { and } W)=P(B) * P(W)=\frac{2}{10} * \frac{5}{10}=\frac{10}{100}=0.1
$$

c. Selecting 1 red ball and then 1 blue ball

$$
P(R \text { and } B)=P(R) * P(B)=\frac{3}{10} * \frac{2}{10}=\frac{6}{100}=0.06
$$

Independent and Dependent Events

4-25 Example

Approximately 9\% of men have a type of color blindness that prevents them from distinguishing between red and green. If 3 men are selected at random, find the probability that all of them will have this type of red-green color blindness.

Let C denote red-green color blindness. Then

$$
P(C \text { and } C \text { and } C)=P(C) * P(C) * P(C)=\frac{9}{100} * \frac{9}{100} * \frac{9}{100}=0.000729
$$

Hence, the rounded probability is 0.0007

Counting Rule

\square The multiplication rule can be used to determine the total number of outcomes in a sequence of events.
\square Fundamental counting rule
In a sequence of n events in which the first one has k_{1} possibilities and the second event has k_{2} and the third has k_{3} and so forth, the total number of possibilities of the sequence will be:

$$
k_{1} * k_{2} * k_{3} * \cdots * k_{n}
$$

\square Note: "And" in this case means to multiply.

Counting Rule

4.27 Example

A paint manufacturer whishes to manufacture several different paints.
The categories include
Color Red, blue, white, black, green, brown, yellow
Type Latex, oil
Texture Flat, semi gloss, high gloss
Use Outdoor, indoor
How many different kinds of paint can be made if a person can select one color, one type, one texture and one use?

Since there are 7 color choices, 2 type choices, 3 texture choices and 2 use choices, then the total number of possible different paints is

$$
7 * 2 * 3 * 2=84
$$

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Counting Rule

4-28 Example

The digits $0,1,2,3,4,5,6,7,8$ and 9 are to be used in a four-digit ID card. How many different cards are possible if > repetitions are permitted?
Since there are 4 spaces to fill and 10 choices for each space, then the number of possible different cards is

$$
10 * 10 * 10 * 10=10^{4}=10000
$$

> repetitions are not permitted?
Since there are 4 spaces to fill and 10 choices for first space, 9 choices for the second space, 8 choices for the third space and 7 choices for fourth space, then the number of possible different cards is

$$
10 * 9 * 8 * 7=5040
$$

Permutations

\square The arrangement of n objects in a specific order using r objects at a time is called a permutation of n objects taking r objects at a time. It is written as ${ }_{n} P_{r}$, and the formula is

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

where

$$
\begin{aligned}
n! & =n \times(n-1) \times(n-2) \times \cdots \times 1 \\
0! & =1
\end{aligned}
$$

Permutations

Suppose a business owner has a choice of five locations in which to establish his business. He decide to rank each location according to certain criteria, such as price of the store and parking facilities. How many different ways can he rank the five locations?

Since there are 5 choices for the first location, 4 choices for the second location, 3 choices for the third location, 2 choices for the fourth location and 1 choice for the last location, then the number of ways is

$$
{ }_{5} P_{5}=\frac{5!}{(5-5)!}=5!=5 * 4 * 3 * 2 * 1=120
$$

Application Using Excel

Application Using Excel

Permutations

4-33 Example

A television news director wishes to use three news stories on an evening show. One story will be the lead story, one will be the second story and the last will be a closing story. If the director has a total of eight stories to choose from, how many possible ways can the program be set up?

Since the order is important, then the number of ways to set up the program is

$$
{ }_{8} P_{3}=\frac{8!}{(8-3)!}=\frac{8!}{5!}=\frac{8 * 7 * 6 * 5!}{5!}=8 * 7 * 6=336
$$

Application Using Excel

Application Using Excel

Combinations

\square A selection of distinct objects without regard to order is called a combination.
\square The number of combinations of r objects selected from n objects is denoted ${ }_{n} C_{r}$ and is given by the formula

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!* r!}
$$

Combinations

4.37 Example

How many combination of 4 objects are there, taken 2 at a time?

Since this is a combination problem, then

$$
{ }_{4} C_{2}=\frac{4!}{(4-2)!* 2!}=\frac{4 * 3 * 2!}{2!* 2!}=\frac{4 * 3}{2 * 1}=6
$$

Application Using Excel

Application Using Excel

Combinations

4-40 Example

In a club there are 7 women and 5 men. A committee of 3 women and 2 men is to be chosen. How many different possibilities are there?

Here, one must selects 3 women from 7 women and selects 2 men from 5 men. Then, using the fundamental counting rule we can find the total number of different possibilities.

$$
{ }_{7} C_{3} *{ }_{5} C_{2}=\frac{7!}{(7-3)!* 2!} * \frac{5!}{(5-2)!* 2!}=350
$$

Application Using Excel

Summary

\square The two types of probability are classical and empirical.
\square Classical probability uses sample spaces and assumes that all outcomes in the sample space are equally likely to occur.
\square Empirical probability uses frequency distributions and is based on observations.
\square Two events are said to be mutually exclusive if they cannot occur together at the same time.
\square Events can be independent or dependent if they occur in sequence.
\square If events are independent, whether or not the first event occurs does not affect the probability of the next event occurring.
\square If the probability of the second event occurring is changed by the occurrence of the first event, then the events are dependent.

Summary

Rule	Definition
Multiplication rule	The number of ways a sequence of n events can occur; if the first event can occur in k_{1} ways, the second event can occur in k_{2} ways, etc.
$k_{1} \cdot k_{2} \cdot k_{3} \cdots \cdots k_{n}$	The arrangement of n objects in a specific order Permutation rule ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$
Combination rule r objects at a time (order is important)	
${ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$	The number of combinations of r robjects selected from n objects (order is not important)

Review Examples

A combination lock consists of the 26 letters of the alphabet. If a 3-letter combination is needed, find the probability that the combination will consist of the letters $A B C$ in that order. The same letter can be used more than once.

Review Examples

There are 8 married couples in a tennis club. If 1 man and 1 woman are selected at random to plan the summer tournament, find the probability that they are married to each other.

Review Examples

Given the letters A, B, C, and D, list the permutations and combinations for selecting two letters.
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Review Examples

A school musical director can select 2 musical plays to present next year. One will be presented in the fall, and one will be presented in the spring. If she has 9 to pick from, how many different possibilities are there?

Review Examples

Suppose a business owner has a choice of 5 locations in which to establish his business. He decides to rank only the top 3 of the 5 locations. How many different ways can he rank them?

Review Examples

There are four blood types, $\mathrm{A}, \mathrm{B}, \mathrm{AB}$, and O . Blood can also be +ve or -ve. Finally, a blood donor can be classified as either male or female. How many different ways can a donor have his or her blood labeled?

Review Examples

A coin is tossed and a die is rolled. Find the number of outcomes for the sequence of events.

Review Examples

A Harris poll found that 46\% of Americans say they suffer great stress at least once a week. If three people are selected at random, find the probability that all three will say that they suffer great stress at least once a week.

Review Examples

A coin is flipped and a die is rolled. Find the probability of getting a head on the coin and a 4 on the die.

Review Examples

The probability of a person driving with a friend is 0.32 , the probability of a person having a driving accident is 0.09 , and the probability of a person having a driving accident while driving with a friend is 0.15 . What is the probability of a person driving with a friend or having a driving accident?

Review Examples

The corporate research and development centers for three local companies have the following number of employees:
U.S. Steel 110

Alcoa 750
Bayer Material Science 250
If a research employee is selected at random, find the probability that the employee is employed by U.S. Steel or Alcoa.

Review Examples

A city has 9 coffee shops: 3 Starbuck's, 2 Caribou Coffees, and 4 Crazy Mocho Coffees. If a person selects one shop at random to buy a cup of coffee, find the probability that it is either a Starbuck's or Crazy Mocho Coffees.

Review Examples

Hospital records indicated that knee replacement patients stayed in the hospital for the number of days shown in the distribution.
Number of days stayed $\begin{array}{lllllll} & 3 & 4 & 5 & 6 & 7 & \text { ₹ }\end{array}$
$\begin{array}{lllllll}\text { Frequency } & 15 & 32 & 56 & 19 & 5 & 127\end{array}$
Find these probabilities.
a. A patient stayed exactly 5 days.
b. A patient stayed at most 4 days.
c. A patient stayed less than 6 days.
d. A patient stayed at least 5 days.

Review Examples

Find the probability of getting identical number of spots when rolling two dice.

Dr. Saeed A. Dobbah Alghamdi

Department of Statistics Faculty of Sciences Building 90, Office 26F41
King Abdulaziz University http://saalghamdy.kau.edu.sa

Chapter 5

Discrete Probability Distributions

Objectives

\square Constructing a probability distribution for a random variable.
\square Finding the mean, variance, and expected value for a discrete random variable.
\square Finding the exact probability for x successes in n trials of a binomial experiment.
\square Finding the mean, variance, and standard deviation for the variable of a binomial distribution.

Introduction

\square Many decisions in business, insurance, and other real-life situations are made by assigning probabilities to all possible outcomes pertaining to the situation and then evaluating the results.
\square This part explains the concepts and applications of probability distributions. In addition, a special probability distribution called binomial distribution is explained.

Discrete Probability Distribution

A random variable is a variable whose values are determined by chance.
A discrete probability distribution consists of the values a random variable can assume and the corresponding probabilities of the values. The probabilities are determined theoretically or by observation.

Discrete Probability Distribution

5-4 \quad Example

Construct a probability distribution for rolling a single die.

Since the sample space is $S=\{1,2,3,4,5,6\}$ and each outcome has a probability $\frac{1}{6}$, the distribution will be

Outcome X	1	2	3	4	5	6
Probability P(X)	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

Discrete Probability Distribution

5-5 Example

Represent graphically the probability distribution for the sample space for tossing three coins.

Number of heads X	0	1	2	3
Probability P(X)	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Discrete Probability Distribution

During the summer months, a rental agency keeps track of the number of chain saws it rents each day during a period of 90 days. The number of saws rented per day is represented by the variable X. The results are shown here. Compute the probability $P(X)$ for each X and construct a probability distribution and graph for the data. \begin{tabular}{l|ccccc}
X \& 0 \& 1 \& 2 \& Total

\cline { 2 - 6 } \& \# of days \& 45 \& 30 \& 15 \& 90

$P(X=0)=\frac{45}{90}=0.5, P(X=2)=\frac{30}{90}=0.333, P(X=2)=\frac{15}{90}=0.167$

X

\hline $\mathrm{P}(\mathrm{X})$
\end{tabular} O

Requirements for a Probability Distribution

\square The sum of the probabilities of all the events in the sample space must equal 1;

$$
\sum X=1
$$

- The probability of each event in the sample space must be between or equal to 0 and 1 ;

$$
0 \leq P(X) \leq 1
$$

Requirements for a Probability Distribution

Example

Determine whether each distribution is a probability distribution.
a.

X	0	5	10	15	20
$\mathrm{P}(\mathrm{X})$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$

X	1	2	3	4
$\mathrm{P}(\mathrm{X})$	$1 / 4$	$1 / 8$	$1 / 16$	$9 / 16$

C. | X | 0 | 2 | 4 | 6 |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{P}(\mathrm{X})$ | -1.0 | 1.5 | 0.3 | 0.2 |

d.

X	2	3	7
$\mathrm{P}(\mathrm{X})$	0.5	0.3	0.4

a. Yes, it is a probability distribution.
b. No, it is not a probability distribution, since $\mathrm{P}(\mathrm{X})$ cannot be 1.5
or -1.0.
c. Yes, it is a probability distribution.
d. No, it is not, since

Mean of a Probability Distribution

In order to find the mean for a probability distribution, one must multiply each possible outcome by its corresponding probability and find the sum of the products.

$$
\mu=X_{1} P\left(X_{1}\right)+X_{2} P\left(X_{2}\right)+\cdots+X_{n} P\left(X_{n}\right)=\sum[X \times P(x)]
$$

Mean of a Probability Distribution

5-10 Example

In a family with two children, find the mean of the number of children who will be girls.
The probability distribution is

\# of girls X	0	1	2
$\mathrm{P}(\mathrm{X})$	$1 / 4$	$1 / 2$	$1 / 4$

Hence,

$$
\mu=\sum[X \times P(x)]=0 \times \frac{1}{4}+1 \times \frac{1}{2}+2 \times \frac{1}{4}=1
$$

Application Using Excel

Application Using Excel

Application Using Excel

Mean of a Probability Distribution

5-14 Example

If three coins are tossed, find the mean of the number of heads that occur.

The probability distribution is

\# of heads X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$
$\mathrm{X} \mathrm{P}(\mathrm{X})$	0	$3 / 8$	$6 / 8$	$3 / 8$

Hence,

$$
\mu=\sum[X \times P(x)]=0+\frac{3}{8}+\frac{6}{8}+\frac{3}{8}=1.5
$$

Application Using Excel

Application Using Excel

Application Using Excel

Mean of a Probability Distribution

5-18 Example

The probability distribution shown represents the number of trips of five nights or more that American adults take per year. Find the mean.

\# of trips X	0	1	2	3	4
$\mathrm{P}(\mathrm{X})$	0.06	0.70	0.20	0.03	0.01
$\mathrm{X} \mathrm{P}(\mathrm{X})$	0	0.70	0.40	0.09	0.04

Hence,

$$
\mu=\sum[X \times P(x)]=0+0.7+0.4+0.09+0.04=1.23
$$

Application Using Excel

Application Using Excel

Application Using Excel

Variance of a Probability Distribution

\square The variance of a probability distribution is found by multiplying the square of each outcome by its corresponding probability, summing those products, and subtracting the square of the mean.
\square The formula for calculating the variance is:

$$
\sigma^{2}=\sum\left[X^{2} \times P(X)\right]-\mu^{2}
$$

\square The formula for the standard deviation is:

$$
\sigma=\sqrt{\sigma^{2}}
$$

Variance of a Probability Distribution

5-23 Example

Find the mean, variance and standard deviation for the probability distribution for the number of spots that appear when a die is tossed is

Outcome X	1	2	3	4	5	6	Σ
Probability $\mathrm{P}(\mathrm{X})$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	1
$X \times P(X)$	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	$6 / 6$	$21 / 6$
$X^{2} \times P(X)$	$1 / 6$	$4 / 6$	$9 / 6$	$16 / 6$	$25 / 6$	$36 / 6$	$91 / 6$

Hence,

$$
\begin{gathered}
\mu=\sum[X \times P(x)]=21 / 6 \\
\sigma^{2}=\sum\left[X^{2} \times P(X)\right]-\mu^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=2.917 \\
\sigma=\sqrt{\sigma^{2}}=\sqrt{2.917}=1.708
\end{gathered}
$$

Application Using Excel

Variance of a Probability Distribution

5-29 Example

Five balls numbered $0,2,4,6$ and 8 are placed in a bag. After the balls are mixed, one is selected, its number is noted and then it is replaced. If this experiment is repeated many times, find the variance and standard deviation of the numbers on the balls.

\# on ball X	0	2	4	6	8	Σ
$P(X)$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$	1
$X \times P(X)$	0	$2 / 5$	$4 / 5$	$6 / 5$	$8 / 5$	$20 / 5$
$X^{2} \times P(X)$	0	$4 / 5$	$16 / 5$	$36 / 5$	$64 / 5$	$120 / 5$

Hence,

$$
\begin{gathered}
\mu=\sum[X \times P(x)]=\frac{20}{5}=4 \\
\sigma^{2}=\sum\left[X^{2} \times P(X)\right]-\mu^{2}=\frac{120}{5}-4^{2}=8 \\
\sigma=\sqrt{\sigma^{2}}=\sqrt{8}=2.828
\end{gathered}
$$

Application Using Excel

Application Using Excel

Application Using Excel

Application Using Excel

Application Using Excel

5-34 Example "Variance and Standard deviation"

Expected Value

- Expected value or expectation is used in various types of games of chance, in insurance, and in other areas, such as decision theory.
\square The expected value of a discrete random variable of a probability distribution is the theoretical average of the variable. The formula is:

$$
E(X)=\mu=\sum[X \times P(x)]
$$

\square The symbol $E(X)$ is used for the expected value.

Expected Value

5-36 Example

One thousand tickets are sold at $\$ 1$ each for a color television valued at $\$ 350$. What is the expected value of the gain if a person purchases one ticket?

	Win	Lose	
X	$\$ 349$	$-\$ 1$	Σ
$P(X)$	$1 / 1000$	$999 / 1000$	1
$\mathrm{X} \times P(X)$	$349 / 1000$	$-999 / 1000$	$-650 / 1000$

Hence, $E(X)=\sum[X \times P(x)]=-\frac{650}{1000}=-0.65$
The meaning of this value is that if a person purchased one ticket each week over a long time, the average loss would be $\$ 0.65$ per ticket, since theoretically, on average, that person would win the set once for each 1000 tickets purchased.

Application Using Excel

Application Using Excel

Application Using Excel

The Binomial Distribution

\square Many types of probability problems have only two possible outcomes or they can be reduced to two outcomes.

- Examples:
- When a coin is tossed it can land on heads or tails,
- When a baby is born it is either a boy or girl,
- A multiple-choice question can be classified as correct or incorrect.

The Binomial Experiment

\square The binomial experiment is a probability experiment that satisfies these requirements:

1. Each trial can have only two possible outcomes; success or failure.
2. There must be a fixed number of trials.
3. The outcomes of each trial must be independent of each other.
4. The probability of a success must remain the same for each trial.

The Binomial Distribution

\square The outcomes of a binomial experiment and the corresponding probabilities of these outcomes are called a binomial distribution which is the probability of exactly x successes in n trials

$$
P(x)={ }_{n} C_{x} \times p^{x} \times q^{n-x}
$$

where
p the symbol for the numerical probability of success
q the symbol for the numerical probability of failure

$$
p+q=1
$$

n the number of trials
x the number of successes; $x=0,1,2, \ldots, n$

The Binomial Distribution

5-43 Example

A coin is tossed 3 times. Find the probability of getting exactly two heads.

- This can solved using the sample space

ННН,HНТ,НТН,THH,НTT,THT,TTH,TTT
There are three ways of getting 2 heads.
So, $P($ getting 2 heads $)=\frac{3}{8}=0.375$

- Using the binomial distribution as following
- we have fixed number of trials (three), so $n=3$
- there are two outcomes for each trial, H or T
- the outcomes are independent of one another
- the probability of success (heads) is $1 / 2$, so $p=1 / 2$
here $\mathrm{X}=2$ since we need to find the probability of getting 2 heads.
Thus, $P($ getting 2 heads $)={ }_{3} C_{2} \times 0.5^{2} \times 0.5^{3-2}=\frac{3}{8}=0.375$
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Application Using Excel

Application Using Excel

Application Using Excel

The Binomial Distribution

5-47 Example

A survey found that one out of five Americans says he or she has visited a doctor in any given month. If 10 people are selected at random, find the probability that exactly 3 would have visited a doctor last month.

In this case $n=10, X=3, p=1 / 5$. So $\mathrm{q}=4 / 5$ and

$$
P(3)={ }_{10} C_{3} \times\left(\frac{1}{5}\right)^{3} \times\left(\frac{4}{5}\right)^{10-3}=0.201
$$

Application Using Excel

Application Using Excel

Application Using Excel

The Binomial Distribution

5-51 Example

A survey from Teenage Research Unlimited found that 30\% of teenage consumers receive their spending money from part-time jobs. If 7 teenagers are selected at random, find the probability that exactly 3 of them will have part-time jobs. the probability that less than 3 of them will have part-time jobs. the probability that at most 3 of them will have part-time jobs. the probability that 5 or 6 of them will have part-time jobs. the probability that greater than 3 of them will have part-time jobs. the probability that at least 3 of them will have part-time jobs.

Application Using Excel

Application Using Excel

Application Using Excel

The Binomial Distribution

\square The mean, variance, and standard deviation of a variable that has the binomial distribution can be found by using the following formulas.

$$
\begin{aligned}
\text { mean } & \mu=n \times p \\
\text { variance } & \sigma^{2}=n \times p \times q \\
\text { standard deviation } & \sigma=\sqrt{\sigma^{2}}
\end{aligned}
$$

The Binomial Distribution

5-56 Example

A survey from Teenage Research Unlimited found that 30\% of teenage consumers receive their spending money from part-time jobs. If 7 teenagers are selected at random, find the mean , variance and standard deviation of the number of teenagers who will have part time jobs.
mean
variance
standard deviation $\sigma=\sqrt{\sigma^{2}}=\sqrt{1.47}=1.212$

Application Using Excel

Application Using Excel

Application Using Excel

Summary

\square A discrete probability distribution can be graphed using bar chart.
\square The mean, variance, and standard deviation can be found for a probability distribution.
\square The mathematical expectation can also be calculated for a probability distribution.
\square The binomial distribution is used when there are only two outcomes for an experiment, a fixed number of trials, the probability is the same for each trial, and the outcomes are independent of each other.

Dr. Saeed A. Dobbah Alghamdi

Department of Statistics Faculty of Sciences Building 90, Office 26F41 King Abdulaziz University http://saalghamdy.kau.edu.sa

Chapter 6

The Normal Distribution

Objectives

\square Identifying the properties of the normal distribution.
\square Finding the area under the standard normal distribution, given various z values.
\square Finding the probability of a normally distributed variable by transforming it into a standard normal variable.
\square Using the central limit theorem to solve problems involving sample means for large samples.

[^12]
Introduction

Many continuous variables have distributions that are bell-shaped and are called approximately normally distributed variables, such as the heights, cholesterol level, etc...
\square A normal distribution is a continuous, symmetric, bell-shaped distribution of a variable, which is also known as the bell curve or the Gaussian distribution.

Normal Distribution Properties

\square The normal distribution curve depends on two parameters, the mean (the position parameter) and the standard deviation (the shape parameter).

[^13]
Normal Distribution Properties

The mean, median, and mode of the normal distribution are equal and located at the center of the distribution.
\square The normal distribution curve is unimodal (i.e., it has only one mode).
\square The curve of the normal distribution is continuous, i.e., there are no gaps. Thus, for each value of X, there is a corresponding value of Y.

- The total area under a normal distribution is equal to 1 or 100%. This fact may seem unusual, since the curve never touches the x axis, but one can prove it mathematically by using calculus.

Normal Distribution Properties

\square The area under the part of the normal curve that lies within 1 standard deviation of the mean is approximately 0.68 or 68%, within 2 standard deviations, about 0.95 or 95%, and within 3 standard deviations, about 0.997 or 99.7%.

[^14]
Standard Normal Distribution

Because the total area under the normal distribution is 1 , there is a correspondence between area and probability
\square Since each normal distribution is determined by its own mean and standard deviation, we would have to have a table of areas for each possibility !!!
\square To simplify this situation, we use a common standard that requires only one table.
The standard normal distribution is a normal distribution with a mean of 0 and a standard deviation of 1 .
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Standard Normal Distribution

\square All normally distributed variables can be transformed into the standard normally distributed variable by using the z value which is the number of standard deviations that a particular x value is away from the mean

$$
z=\frac{\text { Value }- \text { Mean }}{\text { Standard deviation }}=\frac{x-\mu}{\sigma}
$$

Area Under the Standard Normal distribution Curve

\square The table of the standard normal distribution gives the probability to the left of the values, thus $P(z<a)$.
\square Note the following:

व $P(z<a)=P(z \leq a)$

- $P(a<z<b)=P(a \leq z \leq b)=P(z<b)-P(z<a)$
- $P(z>a)=P(z \geq a)=1-P(z<a)$

Area Under the Standard Normal distribution Curve

6-9 Example

$P(z<2.32)=0.9898$
$P(z>2.32)=1-P(z<2.32)=1-0.9898=0.0102$

z	.00	.01	.02	.03	\ldots	.09
\vdots						
2.0						
2.1						
2.3			0.9898			
2.4						
2.5						
\vdots						

[^15]
Application Using Excel

Application Using Excel

Application Using Excel

Area Under the Normal distribution Curve

6-13 Example

If the income of 10000 family follows a normal distribution with mean 1800 SAR and standard deviation 300 SAR, find
\square The probability of a family income is less than 2550 .

$$
P(x<2550)=0.9938
$$

\square The probability of a family income is greater than 1500 .

$$
P(x>1500)=0.8413
$$

\square The probability of a family income is between 1650 and 2100, $P(1650<x<2100)=P(x<2100)-P(x<1650)=0.5328$
\square The number of families that have income greater than 1500 ,

$$
P(x>1500) * 10000=0.8413 * 10000=8413
$$

Application Using Excel

Application Using Excel

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Application Using Excel

Application Using Excel

Application Using Excel

Application Using Excel

6-23 Example "Probability under the normal distribution curve"

Application Using Excel

Application Using Excel

Area Under the Normal distribution Curve

6-26 Example

The lifetime of a type of microwaves follows a normal distribution with mean 3 years and standard deviation 1 year. If one microwave was chosen randomly,

- What is the probability that its lifetime will be greater than 2 years?

$$
P(x>2)=0.8413
$$

- If the microwaves have warranty for one year, what is the percentage of microwaves that the factory has to exchange with new ones.

$$
P(x<1) * 100=0.0228 * 100=2.28 \%
$$

Application Using Excel

Application Using Excel

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Application Using Excel

Application Using Excel

Application Using Excel

Distribution of Sample Means

\square A sampling distribution of sample means is a distribution obtained by using the means computed from random samples of a specific size taken from a population.
\square Sampling error is the difference between the sample measure and the corresponding population measure due to the fact that the sample is not a perfect representation of the population.

The Central Limit Theorem

\square As the sample size n increases, the shape of the distribution of the sample means taken with replacement from a population with mean μ and standard deviation σ will approach a normal distribution.
\square Thus, the mean of the sample means equals the population mean, $\mu_{\bar{x}}=\mu$, and the standard deviation of the sample means which is called the standard error of the mean is $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$.
\square The central limit theorem can be used to answer questions about sample means in the same manner that the normal distribution can be used to answer questions about individual values.
\square A new formula must be used for the z values:

$$
Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

Standard Error of The Mean

$1-35$ Example

Find the standard error of the mean for a sample of 49 that has been drawn from a population with standard deviation equals to 14.

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{14}{\sqrt{49}}=2
$$

The Central Limit Theorem

Example

A.C. Neilsen reported that children between the ages of 2 and 5 watch an average of 25 hours of TV per week. Assume the variable is normally distributed and the standard deviation is 3 hours. If 32 children between the ages of 2 and 5 are randomly selected, find the probability that the mean of the number of hours they watch TV is greater than 26.3 hours.

$$
P(\bar{x}>26.3)=0.0071
$$

Application Using Excel

Application Using Excel

Application Using Excel

The Central Limit Theorem

Example

The average age of a vehicle registered in the United States is 8 years. Assume the standard deviation is 16 months. If a random sample of 36 cars is selected, find the probability that the mean of their age is between 90 and 100 months.

$$
P(90<\bar{x}<100)=P(\bar{x}<100)-P(\bar{x}<90)=0.921
$$

Application Using Excel

Summary

\square The normal distribution can be used to describe a variety of variables, such as heights, weights, and temperatures.
\square The normal distribution is bell-shaped, unimodal, symmetric, and continuous; its mean, median, and mode are equal.
\square The normal distribution can be used to approximate other distributions.
\square Mathematicians use the standard normal distribution which has a mean of 0 and a standard deviation of 1 .
\square The normal distribution can be used to describe a sampling distribution of sample means. These samples must be of the same size and randomly selected with replacement from the population.

Summary

\square The central limit theorem states that as the size of the samples increases, the distribution of sample means will be approximately normal.
\square The distribution of sample means is much less variable than the distribution of individual data value.

The Nature of Probability
and
Statistics
Objectives \square Demonstrate knowledge of statistical terms.
\square Differentiate between the two branches of statistics.
\square Identify types of data.
\square Identify the measurement level for each variable.
\square Identify the four basic sampling techniques.
\square Explain the difference between an observational and an
experimental study.

> EXAMPLE (Inferential)
> - The estimated average height of KAU students is 1.75 m - There is a relationship between the performance of students in mathematics classes and statistics classes. - The population of Saudi Arabia is estimated to be around 37 million persons by the year 2020 .
For more information see page 4 of Bluman's Book
Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University
-

Qualitative variables can be placed into distinct
 categories according to some characteristic or
 attribute, e.g., flight classes, departments, gender,
 color,
 \square Quantitative or scale variables are numerical in
 nature and can be ordered or ranked, e.g., number
 of passengers, weight, age,

Data Collection	
1.17	
	Data can be collected in a variety of ways. One of the most common ways is the use of surveys that can done by using a variety of methods. Three of he most common methods are: -Telephone surveys -Mailed questionnaire surveys -Personal interview surveys
	Sampling Techniques
$1-18$	
	Random samples are selected using chance methods or random methods. EXAMPLE A group of 10 students is selected using random numbers from 30 students to check the performance of a class. For more information see pages 10 and 11 of Bluman's Book Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

Sampling Techniques

\square
In an observational study, the researcher observes
what is happening or what has happened and tries
to draw conclusions based on these observations.
In an experimental study the researcher
manipulates one of the variables and tries to
determine how that influences other variables.

Observational and Experimental Studies
-

Excel, SPSS, MINITAB, SAS and the TI-83
 graphing calculator can be used to perform
 statistical computations.
 Students should realize that the computer and calculator merely give numerical answers and save time and effort of doing calculations by hand.

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University
$-$
> inferential. Inferential statistics is based on probability ,
> theory.
> Data can be classified as qualitative or quantitative
> \square Quantitative data can be discrete or continuous
> depending on the values they can assume.
> Qualitative data can be nominal or ordinal
> on the category they can assume.
> When the populations to be studied are large,
> statisticians use subgroups called samples.
Dr. Saeed Alghamdi, Statisisis Department, Faculty of Sciences, King Abdulaxiz University

Summary
\square The four basic methods for obtaining samples are
random, systematic, stratified, and cluster.
\square The two basic types of statistical studies are
observational and experimental.
\square When conducting an experimental study, researchers
manipulate one or more of the independent or
explanatory variables and see how this manipulation
influences the dependent or outcome variable.

Dr. Saeed A. Dobbah Alghamdi

Department of Statistics Faculty of Sciences Building 90, Office 26F41
King Abdulaziz University http://saalghamdy.kau.edu.sa

Parts of Chapter 10 and 13

Correlation and
Regression

Objectives

- Draw a scatter plot for a set of ordered pairs.
\square Compute the correlation coefficient.
\square Compute the equation of the regression line.

Introduction

Inferential statistics involves determining whether a relationship between two or more numerical variables exists.
\square Correlation is a statistical method used to determine whether a relationship between variables exists.
$\square \underline{\text { Regression }}$ is a statistical method used to describe the nature of the relationship between variables.
\square When you have two or more variables in your data, you may need to know

1. Are two or more variables related?
2. If so, what is the strength of the relationship?
3. What type or relationship exists?
4. What kind of predictions can be made from the relationship?

Introduction

In a simple relationship, there are only two types of variables under study;

1. An independent variable (explanatory variable or predictor variable) is the variable that is being manipulated by the researcher and used to predict the dependent variable.
2. A dependent variable (outcome variable or response variable) is the resultant variable.

- EXAMPLE

A manager may wish to see whether the number of years the salespeople have been working for the company has anything to do with the amount of sales they make.

Scatter Plots

10-4
The simple relationship can be positive or negative:

- A positive relationship exists when both variables increase or decrease at the same time.
- A negative relationship exists when one variable increases and the other variable decreases.
\square A scatter plot is a visual way to describe the nature of the relationship between the independent and dependent variables.

Positive Linear Relationship

Negative Linear Relationship

No Linear Relationship
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Correlation Coefficient

\square The correlation coefficient is a measure of how variables are related, it measures the strength and direction of a linear relationship between two variables.
\square The symbol for the population correlation coefficient is ρ (rho).
\square The symbol for the sample correlation coefficient is \boldsymbol{r}.
\square The range of the correlation coefficient is from -1 to +1 .

Correlation Coefficient

10-6

\square If there is a strong positive linear relationship between the variables, the value of r will be close to +1 .

- If there is a strong negative linear relationship between the variables, the value of r will be close to -1 .
\square When there is no linear relationship between the variables or only a weak relationship, the value of r will be close to 0 .

© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Correlation Coefficient

Correlation Coefficient Value	Meaning
+1	Complete Positive Linear Relationship
$0.70-0.99$	Strong Positive Linear Relationship
$0.50-0.69$	Moderate Positive Linear Relationship
$0.01-0.49$	Weak Positive Linear Relationship
0	No Linear Relationship
$-0.01--0.49$	Weak Negative Linear Relationship
$-0.50--0.69$	Moderate Negative Linear Relationship
$-0.70--0.99$	Strong Negative Linear Relationship
-1	Complete Negative Linear Relationship
O All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU	

Correlation Coefficient

10-8

- Pearson linear correlation coefficient

$$
r_{p}=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left[n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}\right]\left[n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}\right]}}
$$

where n is the number of data pairs(sample size).

Application Using Excel

The following data are the number of absences and the final grades of seven randomly selected students from a statistics class.
$>$ Draw the scatter plot for the variables.
$>$ Compute the value of the Pearson correlation coefficient.

Number of absences x	6	2	15	9	12	5	8
Final grades y	82	86	43	74	58	90	78

[^16]
Application Using Excel

Application Using Excel

Application Using Excel

The plot indicates that there is a negative linear relationship. Thus, as the absences increased the final grades decreased on average.

Application Using Excel

Application Using Excel

Application Using Excel

The value indicates that there is a strong negative linear relationship. Thus, the more absence a student has the lower is his final grade on average.

Correlation Coefficient

13-16

- Spearman rank correlation coefficient.

$$
r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}
$$

where $d=$ difference in the ranks and
$n=$ number of data pairs

Application Using Excel

13.17 Example

The table shows the total number of tornadoes that occurred in states from 1962 to 1991 and the record high temperatures for the same states.
Use the Spearman rank correlation coefficient to determine the relationship between the number of tornadoes and the record high temperatures.

State	Tornadoes	Record High Temp
AL	668	112
CO	781	118
FL	1590	109
IL	798	117
KS	1198	121
NY	169	108
PA	310	111
TN	360	113
VT	21	105
WI	625	114

[^17]
Application Using Excel

Application Using Excel

Application Using Excel

The value indicates that there is a moderate positive linear relationship between the number of tornados and the record high temperatures. Thus, high temperatures means more tornados on average.

Regression Line

\square If the value of the correlation coefficient is significant (will not be discussed here), the next step is to determine the equation of the regression line which is the data's line of best fit.

- Best fit means that the sum of the squares of the vertical distance from each point to the line is at a minimum.

For more information see pages 551-552 of Bluman's Book
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Equation of the Regression Line

10-22

\square The equation of the regression line is written as $y^{\prime}=a+b x$ where b is the slope of the line and a is the y^{\prime} intercept.
\square The regression line can be used to predict a value for the dependent variable (y) for a given value of the independent variable (x).
\square Caution: Use x values within the experimental region when predicting y values.

Equation of the Regression Line

Formulas for the regression line $y^{\prime}=a+b x$

$$
\begin{aligned}
& a=\frac{\left(\sum y\right)\left(\sum x^{2}\right)-\left(\sum x\right)\left(\sum x y\right)}{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}} \\
& b=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}
\end{aligned}
$$

where a is the y^{\prime} intercept and b is the slope of the line.

Application Using Excel

10-24 Example

The following data are the number of absences and the final grades of seven randomly selected students from a statistics class.
$>$ Determine the equation of the regression line. Remember that no regression should be done when r is not significant.
$>$ Find the expected grade for a student who has been absent for 10 lectures.

Number of absences x	6	2	15	9	12	5	8
Final grades y	82	86	43	74	58	90	78

Application Using Excel

Application Using Excel

Application Using Excel

The plot indicates that there is a negative linear relationship. Thus, as the absences increased the final grades decreased on average.

[^18]
Application Using Excel

Application Using Excel

Application Using Excel

The equation of the fitted regression line is $y^{\prime}=102.493-3.622 x$ Hence, a student who has been absent for 10 lectures, we expect his final grade to be 66 on average in his statistics class.

Summary

\square One way to determine whether a relationship between variables exists is to use the statistical techniques known as correlation and regression.
The strength and direction of the relationship are measured by the value of the correlation coefficient that assumes values between and including -1 and +1 .
The closer the value of the correlation coefficient is to -1 or +1 , the stronger the linear relationship is between the variables.

A value of -1 or +1 indicates a perfect linear relationship.
© All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

Summary

To determine the shape of a relationship, one draws a scatter plot of the variables. If the relationship is linear, the data can be approximated by a straight line, called the regression line, or the line of best fit.
The closer the value of the correlation coefficient is to -1 or +1 , the closer the points will fit the line.

The sign of the slope of the regression line indicates the direction of the relationship. Positive slope value means positive relationship and negative slope value means negative relationship.

[^0]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

[^1]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences. KAU

[^2]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

[^3]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences. KAU

[^4]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

[^5]: (C) All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics, Faculty of Sciences, KAU

[^6]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Dedartment of Statistics. Faculty of Sciences. KAU

[^7]: (C) All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences, KAU

[^8]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences. KAU

[^9]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi. Department of Statistics. Faculty of Sciences. KAU

[^10]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

[^11]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

[^12]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

[^13]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

[^14]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

[^15]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

[^16]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

[^17]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

[^18]: © All rights are preserved for Dr. Saeed A. Dobbah Alghamdi, Department of Statistics, Faculty of Sciences, KAU

