

Let a be a complex number and $f(x) = x^4 - x^2 - 12$. If x - a is a factor of f(x) then

• x + a is a factor of f too. • -x + a is a factor of f too. • -x - a is a factor of f too. • f(x + a) = 0.

Conjugate: x-a / x+a

Total questions in exam: 40 | Answered: 0

Question No.

Factoring $x^3 - 8y^3$ gives (x - 2y)($x^2 + 2xy + 4y^2$) (x + 2y)($x^2 - 2xy + 4y^2$) (x - 2y)($x^2 - 2xy + y^2$) x^3 - 8y^3

hr

Save & Next all and a

 $x^{3} - y^{3} = (x-y)(x^{2}+xy+y^{2})$ 8y^3 = (2y)^3

Question No. 8	
Let $U=\{1,2,3,4,5,6,7\},\$	A={1,3,5,7}, and B={3,4,6}. Find AU B'
◎ {2,4,3}	
{1,2,3,5,7}	
○ {4,6}	
{1,2,3,4}	
	D
	В

Total questions in exam: 40 | Answered: 2 Question No. 3 Evaluate $\lim_{x\to -\infty}$ = x - x -0 -1 0 0 0 -00 © 1 С

Question No. 33

Total questions in exam: 40 | Answered: 2

Question No. 18 The function $f(x) = -2x^2 + 4x + 1$ is equivalent to $\Im f(x) = -2(x-1)^2 - 3$ $\circ f(x) = -2(x-1)^2 + 3$ • $f(x) = 2(x-1)^2 + 3$ • $f(x) = -2(x+1)^2 + 3$ 8-

Total questions in exam: 40 [Answered: 1

MACE UES Question No. 33 $= \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$ then $\lim_{x \to 1} f(x)$ is if $f(\mathbf{x}) = \mathbf{x}$ 0 -2 0.3 **B**?

Question No. 3 $x^{3}+x^{2}-1$ Evaluate $\lim_{x \to -\infty} \frac{x^2 + x^2 - 1}{x^2 - x - 1}$ = Ada ○ _1 0 ⊙ _∞ 0 1

D X-1

135 of 202
Question invo. 20
The inverse of
$$f(x) = \frac{\sqrt[3]{x} - 5}{2}$$
 is
a $f^{-1}(x) = (2x + 5)$
b $f^{-1}(x) = 3(2x + 5)$
c $f^{-1}(x) = (2x + 5)^3$
D
D
X = $(3\sqrt{y} - 5)/2$
 $2x = 3\sqrt{y} - 5$
 $2x + 5 = 3\sqrt{y}$
 $(2x + 5)^3 = y$

Total questions in exam: 40 | Answered: 2

Question No. 4

If $f(x) = 1 - \sqrt{x+2}$, then the domain of $f^{-1}(x)$ is

 $^{\bigcirc}$ (- ∞,∞) (- ∞,∞) (- ∞,∞)

 $\begin{array}{c} \odot \\ [-2,\infty) \\ \odot \\ (-\infty,1] \end{array}$

Range of $1-\sqrt{x+2} = (-\infty, 1]$ domain of if -1(x) is range of f(x)

7

Total questions in exam 4	IO Answered 7		
Question No. 8	đaj.		la _{or}
Let U={1,2,3,4,5,6,7	7), A={1,3,5,7}, and B	={3,4,6}. Find AU B'	
◎ {2,4,3}			
[©] {1,2,3,5,7}			
[©] {4,6}			
(1,2,3,4)	_		
	· · · · · · · · · · · · · · · · · · ·		
		\frown	
	1		
		В	
Save & Nextpath, 34			

Question No. 3 Evaluate $\lim_{x \to -\infty} \frac{x^3 + x^2 - 1}{x^2 - x - 1} =$ ◎ _1 0 0 ⊙ _∞ O 1 \square

Total questions in exam: 40 | Answered: 2

Total questions in exam: 40 [Answered: 1

Question No. 18 The function $f(x) = -2x^2 + 4x + 1$ is equivalent to • $f(x) = -2(x-1)^2 - 3$ • $f(x) = -2(x-1)^2 + 3$ • $f(x) = 2(x-1)^2 + 3$ • $f(x) = -2(x+1)^2 + 3$ g-

Question No. 33

Question No. 2 Evaluate $\lim_{x \to 1} (x^3 + x - 6) =$ 0 -4 04 00 0 -6 If x-> 1 Save & Next منط واقلى

estion No. 8		
et U={1,2,3,4,5,6,7}, A={1,3,5,7	7}, and B={3,4,6}. Find A	AU B'
{2,4,3}		
{1,2,3,5,7}		
{4, 6}		
{1,2,3,4}		
	В	
Save & Next La, La,		

Total questions in exam: 40 | Answered. 0 If f(x) is a polynomial such that f(5) = -7 then the remainder of the $f(x) \div (x-5)$ equals: 05 0 -5 07 0 -7 D: -7

Total questions in exam; 40 | Answered: 0 Question No. 25 Given that $f(x) = \log_{\frac{1}{2}}(x+2)$, then f(2) =01 1 2 0 0 2 0 -2 $F(x) = \log \frac{1}{2} (x+2)$ F(2) = log 1/2 (2+2) F(2) = log 1/2 (4) By calcuator f(2) = -2

Total questions in exam: 40 | Answered: 0 Question No. 12 Let a be an integer. Give all values of a such that the function F is a one-to-one function $F = \{(7, -1), (5, 1-a), (0, 5), (-2, a), (1, 3)\}$ $\begin{array}{l} \bigcirc \ a \in I\!\!R \setminus \{-1, 5, 3, 2\} \\ \bigcirc \ a \in I\!\!R \setminus \{-1, 5, 3, 2, -4, -2\} \\ \bigcirc \ a \in I\!\!R \setminus \{5, 3, 2\} \\ \bigcirc \ a \in \{1, 5, -2\} \end{array}$ منظر التلى Save & Next

Total questions in exam: 4		
Question No. 7		
The degree of the po	blynomial $5x^2 + 3x - 52$ is	
O 5		
◎ 3 ⁽		
© 2		
O 52		
	5 - C - C - C - C - C - C - C - C - C -	
		_

Instant of the second of th	F	MKCL OES
<pre>Present no. 24 The set of a constraint of</pre>		Total questions in exam: 40 Answered: 23
$0 \ a = 3i$ $0 \ a = -3i$ $0 \ a = 3$ $0 \ a = 3$		
		$ \begin{array}{l} \bigcirc \ a = 3i \\ \bigcirc \ a = -3i \\ \bigcirc \ a = -3 \end{array} $
		Save & Next منذ ر هلی Save & Next

Total questions in exam: 40 | Answered: 0 Question No. 8 Evaluate $\lim_{x \to -1} \frac{3x^4 + x + 1}{x + 4} =$ 0 -4 03 01 0 0 3(-1)^4 + (-1) +1 / (-1+4) 3/3 = 1

Question No. 6 Simplify $\left(x^{\frac{1}{2}}-3\right)\left(x^{\frac{1}{2}}+3\right)$ ⊙ x – 9 $\bigcirc x+9$ $\bigcirc x-3$ ○ x + 3

Total questions in exam: 40 | Answered: 17

Question No. 18

Which of the following is a pair of inverse functions?

Question No. 6 Simplify $\left(x^{\frac{1}{2}}-3\right)\left(x^{\frac{1}{2}}+3\right)$ ⊙ x – 9 $\bigcirc x+9$ $\bigcirc x-3$ ○ x + 3

MKCL OES Math_FT Total questions in exam: 40 | Answered: 0 Question No. 33 Give the slope of the line 4y - 8x + 28 = 00.2 0.7 02 07 $= \frac{-A}{R} = \frac{-(-8)}{L}$ Sa Save & Next , Make and

Total questions in exam: 40 (Answered: 1

Ouestion No. 2

MKCL OES	Math_F
Total questions in exam 40 Ansi	wered, O
Question No. 32	•
The solution set of the equat	tion $2\log_2 x - \log_2(4x + 5) = 0$ is
◎ (5)	
♥ (-1.5)	
00	
♀ {-1}	
	\wedge
/	
1	
	+
	1 4 7
ι (
Save & Next "Ma.	
Math_FT MKCL OES Total questions in exam 40 | Answered 0 **Question No. 36** The solution set of the equation $(\sqrt{2})^{3-5x} = 4^{a+x}$ is $\{\frac{1}{2} - \frac{1}{6}a\}$ $\{\frac{3}{5}-\frac{2}{7}a\}$ $(\frac{1}{3}-\frac{1}{3}a)$ (i) $\{3+\frac{4}{6}a\}$ 3-52 14a+4k 3 - 5x = 4a + 4n-5x - 4x = 4a - 3 -9n = 4a - 3 $\chi = 4a - 3$ 5 Scanned with CamScanner

MKCL OES Math_F Total questions in exam: 40 | Answered: 0 **Question No. 37** If $\sin \theta = \frac{4}{5}$ then $\cos \theta =$,where 0°<9<90° 5 5 7 $(1) Sin^2 \Theta + C = 1$ $CSG = JI - Sin G^2$ C=56= 5 C=56= - 16

MKCL OES 13-Intel American Rystem	Math_FT
Total questions in exam. 40 Answered: 0	
Question No. 34	
x ² - 1	
Evaluate $\lim_{x \to 0^+} \frac{x^2 - 1}{ x - 1 }$	
© 2	
○ 6 ○ .2	
0 1	
(x+1)(x+1)	
C	- = × + 1
Vat	
A	= 1+1
	1= 2
	SA \
Save & Next using the second	

MKCL OES Math F Total questions in exam: 40 | Answered: 0 Question No. 38 The solution set of the equation $\log_2 x + \log_2(2x - 1) = 2\log_2(2 - x)$ is ○ {1.-4} 0 (1) 0 (4.-1) 0 o $) \circ g (x \cdot (2x-1)) = \log (2-x)^{2}$ $7x^2 - x = 4 - 4x + x^2$ - 22 $x^{n} = 4 - 4x + x$ $x^{2} = 4 - 3 \times$ $x^{2} + 3x - 4 = 0$ x = -4X= (), Scanned with CamScanner

MKCL OES Childre Lawlandton Spatian	Math_FT
Total questions in exam: 40 Ansi	wered: 0
Question No. 31	
Evaluate $\lim_{x\to 9} \frac{\sqrt{x} - 3}{x - 9} =$	
$ \begin{array}{c} \circ & -\frac{1}{4} \\ \circ & -\frac{1}{6} \end{array} $	
$\frac{1}{2}$	
$\frac{1}{6}$	
	\frown
	4
_	

MKCL OES Math_FT Total questions in exam: 40 | Answered: 0 Question No. 30 Solve 1 < 7 - x < 100 (-6,-3) (-3,6) (-6.3) (3.6)
- X < 3 X 6 >) -7 Save & Next, July and

al questions in exam: 40 Answered: 0 estion No. 40 e graph of $f(x) = 3^x$ is increasing Constant Decreasing and increasing Decreasing
e graph of $f(x) = 3^x$ is Increasing Constant Decreasing and Increasing
Increasing Constant Decreasing and Increasing
Constant Decreasing and Increasing
Decreasing and Increasing
Decreasing
Decreasing

MKCL OES Childre Fassachers Rystein	Math_FT
Total questions in exam. 40 Answered. 0	
Question No. 39	
The supplement of the angle 50° is:	
[©] 50*	
^o 150*	
• 130* • •	
[↔] 40*	
	 -

Total questions in exam: 40 | Answered: 0 **Question No. 27** Evaluate $\lim_{x\to 1} (x^3 + x - 6) =$ 04 () .A 00 0.6 Save & Next , Line

MKCL OES Math_F1 Total questions in exam: 40 | Answered: 0 Question No. 25 Find the quotient $\frac{6x^2}{2x^5} \div \frac{3x}{x^4}$, where $x \neq 0$ 0 1 3 0 1 $\frac{1}{2}$ 0 -1 <u>2 X</u> منذ راكلي Save & Next

Total questions in exam: 40 | Answered: 0

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 5 The solution set of the equation 7(2x - 1) = 9 + 14x is 9 1 Ø ○ {1,2} (5) (2n - 7 = 12n + 9)-14x -14x

Total questions in exam: 40	Answered: 0
-----------------------------	-------------

Total questions in exam: 40 | Answered: 0 Question No. 20 Let $U=\{1,2,3,4,5,6,7\}$, $A=\{1,3,5,7\}$, and $B=\{3,4,6\}$. Find AU B' ○ {4,6} ○ {1,2,3,5,7} ○ {2,4,3} ○ {1,2,3,4} 3, 5, 73 $g' = \{1, 2, 5, 7\}$ Auß= 21,2,3,6,23 Save & Next, and and

MKCL OES Total questions in exam: 40 | Answered, 0 Question No. 13 Perform the indicated operations $\ a \ b(a^{-1}-b^{-1})$, where $a \ne 0, \ b \ne 0$ ○ b - a ◎ a−b 00 $\bigcirc \frac{1}{b} - \frac{1}{a}$ 60 a 6

Mat Total questions in exam: 40 | Answered: 0 Question No. 4 Find 2f(x) - 3g(x), where $f(x) = x^2 + 2x - 1$ and g(x) = 2x - 4. $\circ 2x^2 - 2x - 14$ \circ $-3x^2 - 2x - 1$ \circ $-3x^2 - 2x - 7$ $2x^2 - 2x + 10$ (2x2+4x=-2)- (5x-12) - 72c Ò

MKCL OES	
Total questions in exam: 40 Answered: 0	
Question No. 14	
The range of the function $f(x) = -x^2 + 1$ is (.=.1] (1.=.) (.=.1] (.=.1]	
$\left(A \right)$	

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 16 Compute the product (x-2)(x-3) $x^{2}+5x+6$ ○ x²-5x-6 $x^2 - 6x + 5$ $0 x^2 - 5x + 6$ X-3K-2x+6 $\mu^2 - 5\kappa + 6$

dip Math_FT_Sei Total questions in exam 40 | Answered 0 Question No. 10 Let $f(x) = x^{q} + c$ and g(x) = x, give the value of c such that f(x + 1) = xg(x) + 2c. 0 c=1 D c=d $f(x+1) = (x+1)^{2} + C = x^{2} + 2x + 1 + C$ $= x^{2} + 2k$ 22+ 2/2+1+C=22+2/2 1 + C = 0

Total questions in exam: 40 | Answered: 0 Question No. 6 Use the quadratic formula to solve this equation: $8x^2 = 6x - 1$ $x = \{4, \frac{1}{2}\}$ • $x = \{-\frac{1}{2}, \frac{1}{4}\}$ $x = \left(\frac{1}{2}, \frac{1}{4}\right)$ $x = \{2, \frac{1}{4}\}$ $8x^2 - 6x + 1 = 0$ Severa News (199) here's

felatimentions in exam. **40** (Answered: 0 Question No. 15 Solve the inequality $|x^2 - 5x + 4| \le 0$. $\odot S = (1, +\infty)$ \odot S = {1,4} \odot S = (1,4) \odot $S = [4, +\infty)$ Save & Next , 181, Jun

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 12 The solution of the equation $2^x = 3^{2x-1}$ is 0 ln 3 ln 2-2 ln 3 O ln 2 ln 2-2 ln 3 nO In 2 2 ln 3-ln 2 Xz O In 3 2 ln 3-ln 2 21n3 - Inz $n^{2} = n^{2} = 1^{2}$ x $n^{2} = 2x n^{3} - n^{3}$ $2n \ln 3 - \chi(n2 = \ln 3)$ = $\chi(2\ln 3 - \ln 2) = \ln 3$ Scanned with CamScanner

MKCL OES Order Understein Sertem	
Total questions in exam: 40 Answered: 0	
Question No. 7	
The complement of the angle 65° is:	
[©] 25°	
⁽¹⁾ 115°	
[©] 125°	
[°] 35°	

Math FT_Sem1_2018 MKCI OFS Total questions in exam 40 | Answered 18 Question No. 24 Let $a \in \mathbb{R}$. If the solution set of the inequality |4x - 8| + a > 0 is $(-\infty, 2) \cup (2, +\infty)$ then 0 a = -1 $\begin{array}{c} --\alpha & \left[(9x-8) \subset \alpha \right] \\ y_{x}-8 = -\alpha \\ y_{x} = -\alpha + 8 \\ x = -\frac{\alpha}{4} + 8 \\ \end{array}$ 0 a=1 x = 0.+8 at8 = 4t8-76 = 6Save & Next, Ltd. 4 (-4+8) HP Compog LE1711 E +8=4+8

Question No. 24 Let a and b be nonzero real numbers. Find the inverse of the function $f(x) = \frac{a+bx}{b-ax}$. $f^{-1}(x) = \frac{bx-a}{ax-b}$ $\bigcirc f^{-1}(x) = \frac{bx+a}{ax+b}$ $^{\bigcirc} f^{-1}(x) = \frac{ax+b}{bx-a}$ $\bigcirc f^{-1}(x) = \frac{bx-a}{ax+b}$ y(-xa-b)=a-nb y = a- 2 b -na-b X= a+by b-ay = 20-4 xb-xay = a + by-nay-by = a - nbnatbi

Scanned with CamScanner

Question No. 11 If $f(x) = (x-1)^2$ then $f(a^3) =$ $a^{6} - 2a^{3} + 1$ $a^{2} + 2a - 1$ 0 a° + a + 2 0_{3a^2+2a-1} $f(a^{3}) = (a^{3} - 1)^{2}$ $=a^{6}-2a^{3}+1$ Save & Next, and a

				and the second second
Question No. 30				
The supplement	of the angle	20°	is:	
⁰ 70°				
⁰ 80°				
[©] 180°				
⁰ 160°				
			(f	
			ر	
				11:25 AN

MKCL OES	Math_FT
Total questions in exam. 40 Answered: 0	
Question No. 32	
The solution set of the equation 21	$\log_2 x - \log_2(4x + 5) = 0$ is
♥ (5)	
◎ (-1.5)	
00	
⊙ (-1)	
	and the second

.

Question No. 24

Let a and b be nonzero real numbers. Find the inverse of the function $f(x) = \frac{a+bx}{b-ax}$.

 $f^{-1}(x) = \frac{bx-a}{ax-b}$ $f^{-1}(x) = \frac{bx+a}{ax+b}$ $f^{-1}(x) = \frac{ax+b}{bx-a}$ $f^{-1}(x) = \frac{ax+b}{bx-a}$ $f^{-1}(x) = \frac{bx-a}{ax+b}$

Math_FT_Sem1_2018

Total questions in exam: 40 | Answered: 35

Question No. 4

Let $a \in \mathbb{R}$ and $f(x) = 0.9^{(a^2 - 3a + 2)x - 1} - a$. Give the condition on a such that f(x) is increasing. $a \in (2, \infty)$ $a \in (-\infty, 1)$ $a \in (1, 2)$ $a \in (-\infty, 1] \cup [2, \infty)$

Total questions in exam: 40 | Answered: 0


```
Total questions in exam: 40 | Answered: 25
```

Question No. 24 Let $a \in (-\infty, 0]$. Solve the inequality $|2x - 2| \le |-2a|$. \bigcirc $(-\infty, 1+a] \cup [1-a, +\infty)$ (1-a,1+a] \bigcirc [1 + a, 1 - a] $\bigcirc [-a,a]$ $= 2 \times -2$ 14 - 24+2 24+2 GJX G SXG-atl G + 1|-a|+9Save & Next , 196

Total questions in exam: 40 | Answered: 32

Question No. 29 Let $f(x) = ax^2 + bx + 1$, find the values of a and b such that f(x) = f(-x), for all $x \in \mathbb{R}$. \bigcirc a = b = 1. a = -1 and b = 1. $\bigcirc a \in \mathbb{R} \text{ and } b \neq 0$, $\bigcirc a \in \mathbb{R} \text{ and } b = 1.$ $ax^{+}+bx+1 = a(-x)^{2}+b(-x)+1$ $a^{x^{2}} + bx + 1 = ax^{2} - bx + 1$ $ax^{t} + l = cx^{2}$ Scanned with CamScanner

Total questions in exam: 40 Answered: 40	
Question No. 37	
Let $a > 1$. The solution set of the equation $\log_{\tau}(2x^2 - a^2) = 2$ is	
\bigcirc S = {a, 2a}	
 ♀ S = (a) ♀ S = {-a} 	
• S = {-a, a}	
Save & Next ut 8, her	

