تجميع رياضيات

فاينل 2018

Let a be a complex number and $f(x)=x^{4}-x^{2}-12$. If $x-a$ is a factor of $f(x)$ then
$0 x+a$ is a factor of f too.
$0-x+a$ is a factor of f too.
$0-x-a$ is a factor of f too.

- $f(x+a)=0$.

Question No. 22

Write the equation of this parabola in vertex form.

$y=2(x+3)^{2}+2$
$y=(x-3)^{2}-2$
. $y=2(x+3)^{2}-2$
$y=2(x-3)^{2}-2$

Save \& Next 131, tin

Question No. 2

If $x \in \mathbb{N}$, then the value of $i^{4 x-1}$ is

- -1

1
-i
$0 i$
is
save diox mation

Scanned with CamScanner

Question No

Factoring $x^{3}-8 y^{3}$ gives
$(x-2 y)\left(x^{2}+2 x y+4 y^{2}\right)$
$(x+2 y)\left(x^{2}-2 x y+4 y^{2}\right)$
$(x-2 y)\left(x^{2}-2 x y+y^{2}\right)$
$x^{3}-8 y^{3}$
$x^{\wedge} 3-y^{\wedge} 3=(x-y)\left(x^{\wedge} 2+x y+y^{\wedge} 2\right)$ $8 y^{\wedge} 3=(2 y)^{\wedge} 3$

Is

Question No. 4

Factor: $9-6 c d+c^{2} d^{2}$
$(3+c d)(3-c d)$
$(3+c d)(c d-3)$
$(3-c d)^{2}$

- $(3+c d)^{2}$

> C
> $(x-y)^{\wedge} 2=x^{\wedge} 2-2 x y-y^{\wedge} 2$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{3}$

Question No. 4

The supplement of the angle 45° is:
45°
60°
80°
135°
supplement $=180$ $180=45+x$
180-45 = x
$x=135$

Total questions in exam: 40 | Answered: 4

Question No. 5

Let f be the one-to-one function defined by this set of ordered pairs $\{(-3,2),(4,5),(7,4),(10,19)\}$.
Then $f^{-1}(5)=$

4
5
$\frac{1}{5}$
$\frac{1}{4}$

Scanned with CamScanner

Question No. 18

The function has an inverse if

- None of these answers
- doesn't satisty the horizontal line testit is one-to-one
O it is quadratic

Scanned with CamScanner

Scanned with CamScanner

Total questions in exam: $\mathbf{4 0} \mid$ Answered 7

Question No. 8

Let $U=\{1,2,3,4,5,6,7\}, A=\{1,3,5,7\}$, and $B=\{3,4,6\}$. Find $A \cup B^{\prime}$

- $\{2,4,3\}$
- $\{1,2,3,5,7\}$
- $\{4,6\}$
- $1,2,3,4\}$

Sterenexthris

```
Que=tin= *- -
The horizontal asymptote to the graph of }f(x)=\mp@subsup{2}{}{x}-3\mathrm{ .
O y=-3
x=-2
O}y=
x=2
```

```
S
```

Save \& Next Mhtio

Question No. 3

Evaluate $\lim _{x \rightarrow-\infty} \frac{x^{3}+x^{2}-1}{x^{2}-x-1}=$

- -1

0

- $-\infty$

1

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{5}$

Question No. 6

Evaluate $\lim _{x \rightarrow \infty}\left(x^{3}+x-3\right)=$
$\bigcirc 0$
3
-3
∞

The function $f(x)=\left\{\begin{array}{ll}k x-k & \text { if } x \geq 3 \\ 4 & \text { if } x<3\end{array}\right.$ is continuous if

○ $k=2$
○ $k=3$
ㅇ. $k=\frac{4}{3}$

- $k=1$

A

Total questions in exam: 40 /Answered 2

If $f(x)=1-\sqrt{x+2}$, then the domain of $f^{-1}(x)$ is
$0(-\infty, \infty)$
$0[1, \infty)$

- $[-2, \infty)$
$0(-\infty, 1]$

Question No. 18
The function $f(x)=-2 x^{2}+4 x+1$ is equivalent to
$f(x)=-2(x-1)^{2}-3$
$f(x)=-2(x-1)^{2}+3$
$f(x)=2(x-1)^{2}+3$
$f(x)=-2(x+1)^{2}+3$

B

Question No. 6

Evaluate $\lim _{x \rightarrow-\infty} \frac{x+5}{2 x+3}=$
${ }^{\circ}$
${ }^{\circ} 0$

- $\frac{1}{2}$

5
$\frac{5}{3}$
\square

Swa Mast van.

Total questions in exam: $\mathbf{4 0} \mid$ Answered 7

Question No. 8

Let $U=\{1,2,3,4,5,6,7\}, A=\{1,3,5,7\}$, and $B=\{3,4,6\}$. Find $A \cup B^{\prime}$

- $\{2,4,3\}$
$\{1,2,3,5,7\}$
($\{4,6\}$
($\{1,2,3,4\}$

Stere Nexthrisu

Total questions in exam: 40 /Answered 2

Question No. a

If $f(x)=1-\sqrt{x+2}$, then the domain of $f^{-1}(x)$ is
$0(-\infty, \infty)$

- $[1, \infty)$
- $(-2, \infty)$
$0(-\infty, 1]$

Ouestion No. 2

Suppose $a \in \mathbb{R}$. Give the value of a such that the equation $|2 x+3|=|x+a|$ has one solution.
0 $a=-\frac{2}{3}$
$0=-\frac{3}{2}$
${ }^{0} a=\frac{2}{3}$

- $a=\frac{3}{2}$

Seraleriphen

Question No. 33

$$
\text { if } f(x)=\left\{\begin{array}{lll}
\frac{x^{2}-1}{x-1} & \text { if } & x=1 \\
1 & \text { if } & x=1
\end{array} \text { then } \lim _{x \rightarrow 1} f(x)\right. \text { is }
$$

B?

Question No. 7
 The horizontal asymptote to the graph of $f(x)=2^{x}-3$.
 O $y=-3$
 O $x=-2$
 O $y=3$
 $x=2$

0

```
Save & Next Mryto
```

If x-4 is a factor of the polynomial f(x) then
${ }^{0} f(-4)=0$
${ }^{0} f(0)=4$
${ }^{0} f(4)=0$
$f(0)=-4$

C

Question No. 5

Let f be the one-to-one function defined by this set of ordered pairs $\{(-3,2),(4,5),(7,4),(10,19)\}$.
Then $f^{-1}(5)=$

4
5
-
5
$\frac{1}{4}$

[^0]Scanned with CamScanner

Total questions in exam: $\mathbf{4 0}$ | Answered: 5

Question No. 6

Evaluate $\lim _{x \rightarrow \infty}\left(x^{3}+x-3\right)=$

0
O 3
-3
∞

Scanned with CamScanner

C

\square

Ouestion No. 4

If $f(x)=1-\sqrt{x+2}$, then the domain of $f^{-1}(x)$ is
$0(-\infty, \infty)$
$0[1, \infty)$
$\left.{ }^{0} \mid-2, x\right)$
${ }^{0}(-\infty, 1]$

MKCLOES

Total questions in exam $40 \mid$ Answered 7

Question No. 8
Let $\mathrm{U}=\{1,2,3,4,5,6,7\}, \mathrm{A}=\{1,3,5,7\}$, and $\mathrm{B}=\{3,4,6\}$. Find $\mathrm{A} \cup \mathrm{B}^{\prime}$
\{ $\{2,4,3\}$

- $1,2,3,5,7\}$
- $\{4,6\}$
- $\{1,2,3,4\}$

swanctinfon

Scanned with CamScanner

Ouestion No. 2

Suppose $a \in \mathbb{R}$. Give the value of a such that the equation $|2 x+3|=|x+a|$ has one solution.

0 $a=-\frac{2}{3}$
○ $a=-\frac{3}{2}$

- $a=\frac{2}{3}$
a $a=\frac{3}{2}$
anecimanh

Scanned with CamScanner

```
135 of 202
```

Question mu. as
The inverse of $f(x)=\frac{\sqrt[3]{x}-5}{2}$ is

- $f^{-1}(x)=(2 \mathrm{r}+5)$
$f^{-1}(x)=\frac{1}{3}(2 x+5)$
- $f^{-1}(x)=3(2 x+5)$
$f^{-1}(x)=(2 x+5)^{3}$

$$
\begin{aligned}
& D \\
& x=(3 \sqrt{ } y-5) / 2 \\
& 2 x=3 \sqrt{y}-5 \\
& 2 x+5=3 \sqrt{y} \\
& (2 x+5) \wedge 3=y
\end{aligned}
$$

Question NO. 4

If $f(x)=1-\sqrt{x+2}$, then the domain of $f^{-1}(x)$ is
$0(-\infty, \infty)$
${ }^{0}[1, \infty)$
${ }^{0}[-2, \infty)$
${ }^{0}(-\infty, 1]$

Range of $1-\sqrt{x}+2=(-\infty, 1\}$ domain of if $f^{\wedge}-1(x)$ is range of $f(x)$

If $p(x)=\sqrt{x+3}$ and $q(x)=\sqrt{x-4}$. Determine the domain of $(p \cdot q)(x)$.

- $x \in(-\infty,-3) \cup(4, \infty)$
- $x \in[-3,4]$
- $x \in[4, \infty)$
- $x \in(-3,4)$

Question No. 6

Evaluate $\lim _{x \rightarrow-\infty} \frac{x+5}{2 x+3}=$
$\bigcirc \infty$
${ }^{\circ} 0$

- $\frac{1}{2}$

5
$\frac{5}{3}$
\square
swa Mast van.

Question No. 20

Given that $f(x)=6 x^{3}+x^{2}+5 x-12$, then one of the following is a factor of $f(x)$

Save a Next 18 , in

135 of 202
question mu. .as
The inverse of $f(x)=\frac{\sqrt[3]{x}-5}{2}$ is
$f^{-1}(x)=(2 x+5)$
$f^{-1}(x)=\frac{1}{3}(2 x+5)$
$f^{-1}(x)=3(2 x+5)$
$f^{-1}(x)=(2 x+5)^{3}$

Ouestion No. 2

Suppose $a \in \mathbb{R}$. Give the value of a such that the equation $|2 x+3|=|x+a|$ has one solution.

0 $a=-\frac{2}{3}$
$0_{a}=-\frac{3}{2}$

- $a=\frac{2}{3}$
$a=\frac{3}{2}$
mequeryhum

Scanned with CamScanner

Ouestion No. 4

If $f(x)=1-\sqrt{x+2}$, then the domain of $f^{-1}(x)$ is
$0(-\infty, \infty)$
$0[1, \infty)$
$\left.{ }^{0} \mid-2, \infty\right)$
${ }^{0}(-\infty, 1]$

Question No. 8

Let $U=\{1,2,3,4,5,6,7\}, A=\{1,3,5,7\}$, and $B=\{3,4,6\}$. Find $A \cup B^{\prime}$
$\{2,4,3\}$
(1,2,3,5,7\}

- $\{4,6\}$
- $\{1,2,3,4\}$

C
C

If x - is a factor of the polynomial f(x) then
${ }^{0} f(-4)=0$
${ }^{0} f(0)=4$
${ }^{0} f(4)=0$
${ }^{0} f(0)=-4$

Question Nn ,

The horizontal asymptote to the graph of $f(x)=2^{x}-3$.
$y=-3$
$x=-2$
$y=3$
$x=2$

Ouestion No. 2

Suppose $a \in \mathbb{R}$. Give the value of a such that the equation $|2 x+3|=|x+a|$ has one solution.
$0=-\frac{2}{3}$
$0_{a}=-\frac{3}{2}$

- $a=\frac{2}{3}$
$a=\frac{3}{2}$

The function $f(x)=-2 x^{2}+4 x+1$ is equivalent to
e $f(x)=-2(x-1)^{2}-3$
$f(x)=-2(x-1)^{2}+3$
$f(x)=2(x-1)^{2}+3$
$f(x)=-2(x+1)^{2}+3$

The function $f(x)=\left\{\begin{array}{lll}k x-k & \text { if } & x \geq 3 \\ 4 & \text { if } & x<3\end{array}\right.$ is continuous if

○ $k=2$
○ $k=3$
${ }^{\circ} k=\frac{4}{3}$

- $k=1$
$k x-k=4$
$k(3)-k=4$
$k(3-1)=4$
$2 k=4, k=2$

Scanned with CamScanner

```
Question No. }
Evaluate }\mp@subsup{\operatorname{lim}}{x->-\infty}{}\frac{x+5}{2x+3}
    \infty
    0
- }\frac{1}{2
5
\frac{5}{3}
x/2x=1/2
```

saye onext man in

Total questions in exam: 40 /Answered. 2

Question No. 1

If $f(x)=1-\sqrt{x+2}$, then the domain of $f^{-1}(x)$ is
$0(-\infty, \infty)$
${ }^{0}[1, \infty)$
${ }^{0}[-2, \infty)$
${ }^{0}(-\infty, 1]$
et a be an integer. Give all value of a such that the function F is a one-to-one function
L

$$
F=\{(7 .-1),(5,1-a),(0,5),(-2, a),(1,3)\}
$$

○ $a \in \mathbb{R} \backslash\{-1,5,3,2\}$
O $a \in \mathbb{R} \backslash\{-1,5,3,2,-4,-2\}$

- $a \in \mathbb{R} \backslash\{5,3,2\}$

○ $a \in\{1,5,-2\}$
a should be all real numbers EXCEPT numbers that give you y for any point

Question No. 2
Evaluate $\lim _{x \rightarrow 1}\left(x^{3}+x-6\right)=$

0	-4
0	4
0	0
0	-6

A
 If x-> 1

Save a Next 46, s. 4

If $p(x)=\sqrt{x+3}$ and $q(x)=\sqrt{x-4}$. Determine the domain of $(p \cdot q)(x)$.

- $x \in(-\infty,-3) \cup(4, \infty)$
o $x \in[-3,4]$
- $x \in[4, \infty)$
- $x \in(-3,4)$

1
Let $a \in \mathbb{R}$ and $f(x)=\log _{a-2}(x+1)-a$. Give the condition on a such that $f(x)$ is increasing.

- $a \in[3, \infty)$
- $a \in(3, \infty)$
- $a \in(-\infty, 3)$
- $a \in(1,3)$

\square

$$
\begin{aligned}
& \log _{x+1} a-2(x+1)=(a-2)^{\wedge} a \\
& x
\end{aligned}
$$

$$
\text { a-2 must be greater than } 1 \text { to be increasing }
$$ $a>3$

Dincetion win an

The solution set of the equation $3(x+3)=3 x-9$ is
O the set of real numbers

- $\{2,3\}$
$\bigcirc 1$
- Ø

$$
\begin{aligned}
& 3(x+3)=3 x-9 \\
& 3 x+9=3 x-9 \\
& 3 x-3 x=-9-9 \\
& 0=18(\varnothing)
\end{aligned}
$$

Qupetinn AIn 22
The function $f(x)=\left\{\begin{array}{ll}x^{4} & \text { if } x \leq 1 \\ k-x^{4} & \text { if } x>1\end{array}\right.$ is continuous if
O $k=-1$
O $k=1$
Ok k
Ok=2

D

$$
x=1
$$

$$
1^{\wedge} 4=k-1^{\wedge} 4
$$

$$
1=k-1
$$

$$
\mathrm{k}=2
$$

Question No. 17

The domain of the function $f(x)=e^{x^{2}-3 x+1}-2$ is:
$\bigcirc \mathbb{R}$
O $(0, \infty)$
O $(-1, \infty)$

- $(-\infty, 0)$

A

$x^{\wedge} 2+20-4=0$
 $$
x^{\wedge} 2+16=0
$$
 Mode 5,3

Question No. 8

Let $\mathrm{U}=\{1,2,3,4,5,6,7\}, \mathrm{A}=\{1,3,5,7\}$, and $\mathrm{B}=\{3,4,6\}$. Find $\mathrm{A} \cup \mathrm{B}^{\prime}$

- $\{2,4,3\}$
(1,2,3,5,7\}
. $\{4,6\}$
- $\{1,2,3,4\}$
save biNeximysin

Question No. 2

The solution of the equation $2^{x}=3^{2 x-1}$ is
O $\ln 2$
$0^{2 \ln 3-\ln 2} \ln 2$

- $\frac{\ln 2}{\ln 2-2 \ln 3}$
- $\frac{\ln 3}{\ln 2-2 \ln 3}$
- $\ln 3$
$\frac{1}{2 \ln 3-\ln 2}$

D

$$
\text { in } 2^{\wedge} x=\text { in } 3^{\wedge} 2 x-1
$$

$$
x \text { in } 2=(2 x-1) \text { in } 3
$$

$$
x \text { in } 2=2 x \text { in } 3-\text { in } 3
$$

$$
2 x \text { in } 3-x \text { in } 2=\text { in } 3
$$

$$
x(2 \text { in } 3-\text { in } 2)=\text { in } 3
$$

$$
x=\text { in } 3 /(2 \text { in } 3-\text { in } 2)
$$

conjugate $=1-\mathrm{i}$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 4

Question No. 5

Let f be the one-to-one function defined by this set of ordered pairs $\{(-3,2),(4,5),(7,4),(10,19)\}$.
Then $f^{-1}(5)=$

4
5
-
1

[^1]Scanned with CamScanner

Totalquestons in exam 4014 answered 1
Ouestion No. 2
$0^{0} a=-\frac{3}{3}$$a=-\frac{3}{3}$
$a=\frac{2}{3}$
$a=\frac{3}{2}$

Ques'
If $f(x)$ is a polynomial such that $f(5)=-7$ then the remainder of the
$f(x) \div(x-5)$ equals:

D: -7

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{5}$

Question No. 6

Evaluate $\lim _{x \rightarrow \infty}\left(x^{3}+x-3\right)=$
$\bigcirc 0$
3
-3
∞

Question No. 22

The function $f(x)=\left\{\begin{array}{ll}x^{4} & \text { if } x \leq 1 \\ k-x^{4} & \text { if } x>1\end{array}\right.$ is continuous if

Ok=-1
O $\mathrm{k}=1$
Ok=0
Ok=2

Question No. 8

Let $\mathrm{U}=\{1,2,3,4,5,6,7\}, \mathrm{A}=\{1,3,5,7\}$, and $\mathrm{B}=\{3,4,6\}$. Find $\mathrm{A} \cup \mathrm{B}^{\prime}$

- $\{2,4,3\}$
$\{1,2,3,5,7\}$
($\{4,6\}$
O $\{1,2,3,4\}$

Save anexinny

Question No. 5

If $f(x)=1-\sqrt{x+2}$, then the domain of $f^{-1}(x)$ is
(1, $\infty)$
$(-2, \infty)$
$(-\infty, \infty)$
$(-\infty, 1)$

Question No. 2
Evaluate $\lim _{\rightarrow \rightarrow 2}\left(x^{3}+x-6\right)=$
0.4

04
00

- 6

Savecnextmysth

Evaluate $\lim _{x \rightarrow-3} \frac{x^{2}+7 x+12}{x+3}=$

Question No. 17

The domain of the function $f(x)=e^{x^{2}-3 x+1}-2$ is:
$\bigcirc \mathbb{R}$
O $(0, \infty)$

- $(-1, \infty)$
- $(-\infty, 0)$

A

Scanned with CamScanner

Scanned with CamScanner

```
Let f(x)= -\frac{3}{2}x+4, find the value of a such that f(2a)=7.
O a = 0.
O a=1.
O a=-1
O}=2\mathrm{ .
```


$-3 / 2 x+4=7$
$-3 / 2(2 a)+4=7$
$-3 / 2(2 a)=3$
$2 \mathrm{a}=-6 / 3,2 \mathrm{a}=-2$
$a=-1$

The function $f(x)=\left\{\begin{array}{ll}x^{4} & \text { if } x \leq 1 \\ k-x^{4} & \text { if } x>1\end{array}\right.$ is continuous if

K=-1
$\mathrm{k}=1$
$k=0$
k=2

Question No. 1

Perform the indicated operations $a b\left(a^{-1}-b^{-1}\right)$, where $a \neq 0, b \neq 0$
b-a
$\frac{1}{b}-\frac{1}{a}$
0
$a-b$

Scanned with CamScanner

$a x^{\wedge} 2$, if $a>0$ then open up if a < 0 then open down

Question No. 17

The domain of the function $f(x)=e^{x^{2}-3 x+1}-2$ is:
$\bigcirc \mathbb{R}$
O $(0, \infty)$

- $(-1, \infty)$
- $(-\infty, 0)$

Use the square root property to solve this quadratic equation

- ± 4
- $\sqrt{16}$
- -4
- $\pm \sqrt{24}$

Save 8 Next shy his

Question No. 2
The solution of the equation $2^{x}=3^{2 x-1}$ is

- $\ln 2$
$2 \ln 3-\ln 2$
- $\frac{\ln 2}{\ln 2-2 \ln 3}$
- $\frac{\ln 3}{\ln 2-2 \ln 3}$
- $\ln 3$ $\overline{2 \ln 3-\ln 2}$

Question No. 25
Given that $f(x)=\log _{4}(x+2)$, then $f(2)=$
$0 \begin{array}{ll}0 & \frac{1}{4} \\ 0 & \frac{1}{2} \\ 0 & 2 \\ 0 & -2\end{array}$

$$
\begin{aligned}
& \mathrm{F}(\mathrm{x})=\log 1 / 2(\mathrm{x}+2) \\
& \mathrm{F}(2)=\log 1 / 2(2+2) \\
& \mathrm{F}(2)=\log 1 / 2(4) \\
& \text { By calcuator } \mathrm{f}(2)=-2
\end{aligned}
$$

Question No. 12
Let a be an integer. Give all values of a such that the function F is a one-to-one function

○ $a \in \mathbb{R} \backslash\{-1,5,3,2\}$
○ $a \in \mathbb{R} \backslash\{-1,5,3,2,-4,-2\}$
○ $a \in \mathbb{R} \backslash\{5,3,2\}$

- $a \in\{1,5,-2\}$

Question No. 7

The degree of the polynomial $5 x^{2}+3 x-52$ is
O 5

- 3
$\bigcirc 2$
○ 52

MKCL OES
Total questons in exam: 40 IAnswered 23

Question No. 24
Let $x \in$ Z. Simplify the following expresion $a=3 i^{132 z^{2}+t x-3}$

- $a=3 \mathrm{i}$
- $a=-3 i$
- $a=-3$
$\bigcirc a=3$

Sive encer mintis
save enorachets

- HR Compoa LEㅓㄱII

Scanned with CamScanner

Question No. 11

$$
\begin{aligned}
& \text { Factor : } 5 x^{2}-t x^{2}-5 z+t z \\
& \left(x^{2}-z\right)(5-t) \\
& \left(x^{2}-z\right)(5+t) \\
& \left(x^{2}+z\right)(5+t) \\
& \left(x^{2}+z\right)(5-t)
\end{aligned}
$$

A

$$
\begin{aligned}
& 5 x^{\wedge} 2-t x^{\wedge} 2=x^{\wedge} 2(5-t) \\
& -5 z+t z=-z(5-t) \\
& \text { then }\left(x^{\wedge} 2-z\right)(5-t)
\end{aligned}
$$

Scanned with CamScanner

Question No. 8
Evaluate $\lim _{x \rightarrow-1} \frac{3 x^{4}+x+1}{x+4}=$
$\begin{array}{ll}\bigcirc & -4 \\ \bigcirc & 3 \\ \bigcirc & 1 \\ \bigcirc & 0\end{array}$

P

$$
\begin{aligned}
& 3(-1)^{\wedge} 4+(-1)+1 /(-1+4) \\
& 3 / 3=1
\end{aligned}
$$

Question No. 6
Simplify $\left(x^{\frac{1}{2}}-3\right)\left(x^{\frac{1}{2}}+3\right)$

- $x-9$
- $x+9$
- $x-3$
- $x+3$

A

Question No. 18

Which of the following is a pair of inverse functions?

- $f(x)=2 x-1$, where $x \in \mathbb{R}$, and $g(x)=x+\frac{1}{2}$, where $x \in \mathbb{R}$.

○ $f(x)=\sqrt{3+x}$, where $x \in[-3, \infty)$, and $g(x)=x^{2}-3$, where $x \in[0, \infty)$.
○ $f(x)=x$, where $x \in \mathbb{R}$, and $g(x)=-x$, where $x \in \mathbb{R}$.
○ $f(x)=\sqrt{3+x}$, where $x \in[-3, \infty)$, and $g(x)=x^{2}+3$. where $x \in[0, \infty)$.

$$
\begin{aligned}
& x \wedge=\sqrt{3+y} \\
& x^{\wedge}=3+y \\
& x^{\wedge} 2-3=y
\end{aligned}
$$

sanechers 4

Scanned with CamScanner

Scanned with CamScanner

The function has an inverse if

O None of these answers

- doesn't satisfy the horizontal line test

O it is one-to-one
O it is quadratic

If $x-2$ is a factor of the polynomial $f(x)$ then

- $f(-2)=0$
- $f(2)=0$
- $f(0)=-2$
- $f(0)=2$

Question No. 25
Given that $f(x)=\log _{3}(x+2)$, then $f(2)=$

O $\frac{1}{4}$
$\bigcirc \frac{1}{2}$

- 2
- -2

Question No. 6
Simplify $\left(x^{\frac{1}{2}}-3\right)\left(x^{\frac{1}{2}}+3\right)$
O $x-9$

- $x+9$
- $x-3$
- $x+3$

Question No. $\mathbf{2}^{\text {n }}$

The function $f(x)=\left\{\begin{array}{ll}x^{4} & \text { if } x \leq 1 \\ k-x^{4} & \text { if } x>1\end{array}\right.$ is continuous if
$k=-1$
$\mathrm{k}=1$
$\mathrm{k}=0$
$\mathrm{k}=2$

Question No. 23
Evaluate $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$
$\bigcirc 0$
$\bigcirc 2$
$\bigcirc 1$
O Does not exist

$$
\text { Scopc }=\frac{-A}{B}=\frac{-(-8)}{4}=2
$$

$$
[\mathrm{C}
$$

Question No. 2

Suppose $a \in \mathbb{R}$. Give the value of a such that the equation $|2 x+3|=|x+a|$ has one solution.

$$
a=-\frac{2}{3}
$$

$$
a=-\frac{3}{2}
$$

$$
a=\frac{2}{3}
$$

$$
a=\frac{3}{2}
$$

Qusshen Ho, 35

If a finction $f(x)$ has in inverse finction and $f(-2)=11$, then
$0 f^{\prime}(01)-1$
$0 f^{\prime}(2)-11$
$0 f^{\prime}(11)-2$
$6 f^{\prime}(2)-11$

Tolal questions in exam $\mathbf{4 0} \mid$ Answered. 0

Question No. 32

The solution set of the equation $2 \log _{2} x-\log _{2}(4 x+5)=0$ is
${ }^{\circ}$ \{5\}
(-1.5)
$\because 0$
(-1)

Sivenetichyme
Scanned with CamScanner

Tola questions in exam 40 | Answered 0

Question No. 36
The solution set of the equation $(\sqrt{2})^{3-5 x}=4^{a+x}$ is

$$
\begin{aligned}
& \left\{\frac{1}{2}-\frac{1}{6} a\right\} \\
& \left\{\frac{3}{2}-\frac{2}{7} a\right\} \\
& \left\{\frac{1}{3}-\frac{1}{9} a\right\} \\
& \left\{3+\frac{1}{4} a\right\}
\end{aligned}
$$

$3-5 x=4 a+4 x$
$-5 x-4 x=4 a-3$

$$
-9 x=4 a-3
$$

$$
x=\frac{4 \varepsilon-3}{-7}={\frac{1}{3}-\frac{4}{9} u_{\text {Scanned with Cam Scanner }}}^{\frac{1}{2}}
$$

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 37

If $\sin \theta=\frac{4}{5}$ then $\cos \theta=$
, where $0^{\circ}<9<90^{\circ}$$\frac{4}{5}$$\frac{3}{5}$
$\frac{5}{4}$$\frac{5}{3}$

$$
\begin{aligned}
& \text { (1) } \sin ^{2} \theta+\cos \theta^{2}=1 \\
& \cos \theta=\sqrt{1-\sin \theta^{2}}
\end{aligned}
$$

$$
\cos \theta=\sqrt{1-\frac{16}{2 a}}
$$

$$
\cos \theta=\frac{3}{5} \rightarrow
$$

Total questions in exam: 40 | Answered 0

Question No. 35
Evaluate $\lim _{1 \rightarrow-\infty} \frac{x^{3}+x^{2}-1}{x^{2}-x-1}=$
$-\infty$
0
-1
1

Question No. 34
Evaluate $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-1}{|x-1|}$
2
6
. 2
1

$=>+1$

Total questions in exam $\mathbf{4 0} \mid$ Answered: 0

Question No. 38

The solution set of the equation $\log _{2} x+\log _{2}(2 x-1)=2 \log _{2}(2-x)$ is$\{1,-4\}$\{1)$\{4,-1\}$$\varphi$
$\log _{2} x \cdot(2 x-1)=\log _{2}(2-x)^{2}$
$2 x^{2}-x=4-4 x+x^{2}$
$-x^{2}$

$$
\begin{aligned}
& x^{2}=4-4 x+x \\
& x^{2}=4-3 x \\
& x^{2}+3 x-4=0
\end{aligned}
$$

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 31
Evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=$
al- N1- air+i-

Sineanerachem

Scanned with CamScanner

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 30

Solve $1<7-x<10$(-6.-3)$(-3,6)$(-6,3)(3,6)

$$
-6<-x<3
$$

$$
(-3,6),
$$

Question No. 40
The graph of $f(x)=3^{x}$ is
Increasing

- Constant

Decreasing and Increasing
Decreasing

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 23
Evaluate: $|-12+(5-2)|$
09
06
-3
4

Evaluate $\lim _{x \rightarrow 1}\left(x^{3}+x-6\right)=$
04
3. 4

0
0.6


```
swecavericts, m
```


Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 21

The function $f(x)=\left\{\begin{array}{lll}k x-k & \text { if } & x \geq 3 \\ 4 & \text { if } & x<3\end{array}\right.$ is continuous if
$k=2$
$k=1$
$k=3$
$k=\frac{4}{3}$

Scanned with CamScanner

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 0

Question No. 25
Find the quotient $\frac{6 x^{2}}{2 x^{5}} \div \frac{3 x}{x^{4}}$, where $\mathrm{x} \neq 0$$\frac{1}{3}1\frac{1}{2}$$-1$

Total questions in exam: 40 | Answered: 0

Question No. 24
The equation $y=\log _{2}(3 x)$ can be written as

$$
x=\frac{2^{y}}{3}
$$$y=\frac{2^{x}}{3}$

$y=3^{x}$$x=2^{y}$
$\log _{2} 3 x=y$

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 8

$$
\csc \theta=
$$

- $\frac{1}{\cos \theta}$$\frac{\cos \theta}{\sin \theta}$$\frac{1}{\sin \theta}$

$$
\frac{\sin \theta}{\cos \theta}
$$

Question No. 5

The solution set of the equation $7(2 x-1)=9+14 x$ is
1
\emptyset
$\{1,2\}$
\{5\}

Scanned with CamScanner

Question No. 9

If θ is an acute angle in a right triangle, then $\tan \theta=$
0 opposite
hypotenuse
U) opposite
adjacent
adjacent
opposite
adjacent
hypotenuse

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 0

Question No. 20
Let $U=\{1,2,3,4,5,6,7\}, A=\{1,3,5,7\}$, and $B=\{3,4,6\}$. Find $A \cup B^{\prime}$$\{4,6\}$$\{1,2,3,5,7\}$
$\sim\{2,4,3\}$
(1,2,3,4\}
$A=\{1,3,5,7\}$
$B^{\prime}=\{1,2,5,7)$

Scanned with CamScanner

MKCL OES

Total questions in exam $40 \mid$ Answered: 0

Question No. 29
$f(x)$ is a polynomial such that the remainder of the division $f(x) \div(x+4)$ equals 10 then
$f(10)=-4$
$f(-4)=10$
$f(4)=10$
$f(10)=4$

Total questions in exam: 40 | Answered. 0

Question No. 3

Evaluate $\lim _{x \rightarrow \infty}\left(x^{4}-x^{2}+x-4\right)=$$-4$40
∞
D

Question No, 4

Find $2 f(x)-3 g(x)$, where $f(x)=x^{2}+2 x-1$ and $g(x)=2 x-4$.$2 x^{2}-2 x-14$$-3 x^{2}-2 x-1$$-3 x^{2}-2 x-7$$2 x^{2}-2 x+10$
$\left(2 x^{2}+4 x-2\right)-(6 x-12)$
$2 x^{2}-2 x+10$

Total questions in exam: 40 I Answered: 0

Question No. 16
Compute the product $(x-2)(x-3)$$x^{2}+5 x+6$$x^{2}-5 x-6$$x^{2}-6 x+5$$x^{2}-5 x+6$

$$
\frac{x^{2}-3 x-2 x+6}{x^{2}-5 x+6}
$$

Question No. 6

Use the quadratic formula to solve this equation

$$
8 x^{2}=6 x-1
$$$x=\left(4, \frac{1}{2}\right\}$$x=\left(-\frac{1}{2}, \frac{1}{4}\right)$$x=\left(\frac{1}{2}, \frac{1}{4}\right)$$x=\left\{2, \frac{1}{4}\right\}$

Question No. 15
Sothe the inequality $\left|x^{2}-5 x+4\right| \leq 0$.$s=(1,+\infty)$$s=\{1,4\}$$s=(1,4)$$s=(4,+\infty)$

Question No. 11

If $x+a$ is a factor of the polynomial $f(x)$ then
$f(-a)=0$
$f(a)=-a$
$f(-a) \neq 0$
$f(a)=0$

MKCL OES

Total questions in exam: 40 | Answered: 0

Question No. 12

The solution of the equation $2^{x}=3^{2 x-1}$ is$\frac{\ln 3}{\ln 2-2 \ln 3}$$\frac{\ln 2}{\ln 2-2 \ln 3}$$\frac{\ln 2}{2 \ln 3-\ln 2}$ $\frac{\ln 3}{2 \ln 3-\ln 2}$

The solution set of the equation $(\sqrt{2})^{3-5 x}=4^{a+x}$ is
($\left\{\frac{1}{2}-\frac{1}{-} a\right\}$
($\left\{\frac{1}{2}-7 a\right\}$
[1 $\frac{1}{5}-\frac{1}{5}$,
$\{3+\{a\}$

Question No. 7

The complement of the angle 65° is:
25°
115°
125°
35°

$\mathrm{Qu}^{\text {est/On }} \mathrm{NO}_{0}$.
exam. $40 /$ Answerea. $^{\text {sw }}$
Suppose$(a-b, a) \cup(a, a, a, b)$
$(a-b) \cup(a, a+b)$
$(a-b, a) \cup(a$,
$(-b, a) \cup(a)(a, b)$
$(a-b) \cup(a, a \times b$
$a, b \in$ \qquad

Question No. 27

If $f(x)=-\frac{1}{3} x+1$, the domain of $f^{-1}(x)$ is
$[-3,1)$
$\left[-\frac{1}{3}, 1\right)$
$[0, \infty)$
all real numbers

Scanned with CamScanner

$$
\begin{aligned}
& \text { MKCL OE } \\
& \text { Tetalauestons exam } 40 \text { | Answered } 18 \\
& \text { Question No. } 24 \\
& \text { Let } a \in R \text {. If the solution set of the inequality }|4 x-8|+a>0 \text { is }(-\infty, 2) \cup(2,+\infty) \text { then } \\
& \begin{array}{l}
0 y_{3}=-1 \\
0_{a}=1
\end{array} \\
& \begin{array}{l}
0 a=1 \\
0 a=0
\end{array} \\
& |4 x-8|>-a \quad|0 x-8|<a \\
& 7 x-8=-9 \\
& 4 x=-a+8 \\
& x=-\frac{a+8}{4} \\
& 4 x-8=a \\
& 4 x=4+8 \\
& x=\frac{a+8}{4}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{a+8}{4}=\frac{u+8}{4} \\
& -4(-a+8)=4(\varepsilon+8) \\
& -a+8=a+8 \\
& -a-\varepsilon=8-8
\end{aligned}
$$

Scanned with CamScanner

Scanned with CamScanner

Question No. 3
Evaluate $\lim _{x \rightarrow \infty}\left(x^{4}-x^{2}+x-4\right)=$
-4
${ }^{\circ} 4$
0
∞

Let a and b be nonzero real numbers. Find the inverse of the function $f(x)=\frac{a+b x}{b-a x}$.$f^{-1}(x)=\frac{b x-a}{a x-b}$$f^{-1}(x)=\frac{b x+a}{a x+b}$$f^{-1}(x)=\frac{a x+b}{b x-a}$$f^{-1}(x)=\frac{b x-a}{a x+b}$

$$
\begin{array}{r}
x=\frac{a+b y}{b-a y} \\
x b-x a y=a+b y \\
-x a y-b y=a-x b
\end{array}
$$

$$
\begin{gathered}
y(-x a-b)=a-x b \\
y=\frac{a-x b}{-x a-b} \\
y=\frac{x b-a}{x a+b}
\end{gathered}
$$

Scanned with CamScanner

Question No. 11
If $f(x)=(x-1)^{2}$ then $f\left(a^{3}\right)=$$a^{6}-2 a^{3}+1$$a^{2}+2 a-1$$a^{6}+a+2$$3 a^{2}+2 a-1$
$f\left(a^{3}\right)=\left(a^{3}-1\right)^{2}$
$=a^{6}-2 a^{3}+1$

Evaluate $\lim _{x \rightarrow-3} \frac{x^{2}+7 x+12}{x+3}=$
O_{4}
○ 1
○-3
$\bigcirc 0$

Scanned with CamScanner

Iotal questions in exam: $\mathbf{4 0}$ | Answered: 12

Question No. 30

The supplement of the angle 20° is:
70°
80°
180°
160°

Scanned with CamScanner

Total questions in exam: $\mathbf{4 0}$ | Answered: 7

Question No. 27
If $f(x)=-\frac{1}{3} x+1$, the domain of $f^{-1}(x)$ is
[-3,1)
${ }^{\circ}\left[-\frac{1}{3}, 1\right)$
$[0, \infty)$
all real numbers

Question No. 27

Evaluate $\lim _{x \rightarrow 1}\left(x^{3}+x-6\right)=$
04
O. 4

00
(3) 6

Scanned with CamScanner

Total questions in exam: $\mathbf{4 0}$ | Answered: 10

Question No. 36

The function $f(x)$ is constant on an interval I if for $x_{1}, x_{2} \in I$,
if $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$,
if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right)=f\left(x_{2}\right)$,
if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,
if $x_{1}>x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,

Total questions in exam 40 I Answered 40

Question No. 37
Let $a>1$. The solution set of the equation $\log _{r}\left(2 x^{2}-a^{2}\right)=2$ is$S=\{a .2 a\}$$S=(a)$$S=\{-a\}$

- $\mathrm{S}=\{-a, a\}$

Total questions in exam $\mathbf{4 0}$ | Answered: 0

Question No. 32

The solution set of the equation $2 \log _{2} x-\log _{2}(4 x+5)=0$ is
${ }^{(5)}$
(-1.5)
10
(-1)

swonerg thety

Scanned with CamScanner

Tome 40 Answered: 0

Question No. 3
Evaluate $\lim _{x \rightarrow \infty}\left(x^{4}-x^{2}+x-4\right)=$
-4
4
∞

Question No. 24
The equation $y=\log _{2}(3 x)$ can be written as
${ }^{0} x=\frac{z^{y}}{3}$
$y=\frac{2^{x}}{3}$
$y=3^{x}$
$x=2^{y}$

Question No. 35
Evaluate $\lim _{x \rightarrow-\infty} \frac{x^{3}+x^{2}-1}{x^{2}-x-1}=$
$-\infty$
' 0
-1
1

Total questions in exam: $40 \mid$ Answered: 0

Question No. 31
Evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=$
$\begin{array}{rr}0 & -\frac{1}{4} \\ 0 & -\frac{1}{6}\end{array}$
$-\frac{1}{6}$
$\frac{1}{2}$
$\frac{1}{2}$
$\frac{1}{6}$

Tetal questions in exam: 40 | Answered: 0

Question No. 21
The function $f(x)=\left\{\begin{array}{lll}k x-k & \text { if } & x \geq 3 \\ 4 & \text { if } & x<3\end{array}\right.$ is continuous if
$k=2$
(1) $k=1$
$k=3$
$k=\frac{4}{3}$

[^2]Questran No. 18
Sorle the iumpmality $\left|x^{2}-5 x+4\right| \leq 0$.
e $3(1,+\infty)$
O $s=(1,4)$

- $8 .(1,4)$
os $(4,+\infty)$

Question No. 29
If $f(x)$ is a polynomial such that the remainder of the division $f(x) \div(x+4)$
equals 10 then
$f(10)=-4$
$f(-4)=10$
$f(4)=10$
$f(10)=4$

Let a and b be nonzero real numbers. Find the inverse of the function $f(x)=\frac{a+b x}{b-a x}$.
$f^{-1}(x)=\frac{b x-a}{a x-b}$
○ $f^{-1}(x)=\frac{b x+a}{a x+b}$
$f^{-1}(x)=\frac{a x+b}{b x-a}$
$f^{-1}(x)=\frac{b x-a}{a x+b}$

Tolal questions in exam: 40 Answered 0

Question No. 34
Evaluate $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-1}{|x-1|}26-2$1

Question No. 4

Lat $a \in \mathbb{R}$ and $f(x)=0.9^{\left(a^{2}-3 a+2\right) x-1}-a$. Give the condition on a such that $f(x)$ is increasing.

```
    \(a \in(2, \infty)\)
    \(a \in(-\infty, 1)\)
    \(a \in(1.2)\)
    \(a \in(-\infty, 1] \cup[2, \infty)\)
```


Total questions in exam 40 Answered: 0

Question No. 23
Evaluate: $|-12+(5-2)|$
09
06

- -3

04

Question No. 5

The solution set of the equation $7(2 x-1)=9+14 x$ is1$\emptyset$$\{1,2\}$
\{5\}

Question No. 16

Find the value of ' c ' that will allow this polynomial to be written as a peffect square.

$$
x^{2}-x+c
$$

01
$\frac{1}{2}$

- $\frac{1}{4}$
$\frac{1}{4}$
1
$-\frac{1}{2}$

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 8

$$
\csc \theta=
$$

$$
\frac{1}{\cos \theta}
$$

$$
\frac{\cos \theta}{\sin \theta}
$$

$$
\frac{1}{\sin \theta}
$$

$$
\frac{\sin \theta}{\cos \theta}
$$

If $a \neq 1$ is a positive real number such that $5^{x}=a$ then $x=$
\qquad
$\frac{\ln a}{}$
$\ln \left(\frac{a}{5}\right)$
In a
$\ln 5$
$\ln \left(\frac{5}{a}\right)$

Question No. 28
(If $\theta=90^{\circ}$ then θ is called

U an obtuse angle

- a straight angle
- a light angle
- an acute angle

Mica ors

Question No 26
Let $f(x)=x^{2}+c$ and $g(x)=x$, give the value of c such that $f(x+1)=x g(x)+2 x$.

I

[P Compoq LE17]I

Question No. 16

Compute the product $(x-2)(x-3)$
$x^{2}+5 x+6$
$x^{2}-5 x-6$
$x^{2}-6 x+5$
$x^{2}-5 x+6$

Question No. 11

If $x+a$ is a factor of the polynomial $f(x)$ then
$f(-a)=0$
$f(a)=-a$
$f(-a) \neq 0$
$f(a)=0$

Question No. 22

Let $a \in \mathbb{R}$. Give the ondition on a that makes the relation $F=\{(-1,1),(2,1),(a, 3),(-2, a)\}$ a functi
$a \in\{-1,-2,1,2,3\}$

- $a \in \mathbb{R} \backslash\{1.3\}$
$a \in \mathbb{R}$
$a \in \mathbb{R} \backslash\{-1,2,-2\}$

Tolal questions in exam $\mathbf{4 0}$ । Answered 0

Question No. 34
Evaluate $\lim _{x \rightarrow 1} \frac{x^{2}-1}{|x-1|}$

2
6
.2
1

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{0}$

Question No. 9

If θ is an acute angle in a right triangle, then $\tan \theta=$$\frac{\text { opposite }}{\text { hypotenuse }}$$\xlongequal[\text { opposite }]{\text { adjacent }}$$\frac{\text { adjacent }}{\text { opposite }}$$\frac{\text { adjacent }}{\text { hypotenuse }}$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{0}$

Question No. 40

The graph of $f(x)=3^{x}$ is
Increasing

- Constant

Decreasing and Increasing
Decreasing

Question No. 24
Let $a \in(-\infty, 0]$. Solve the inequality $|2 x-2| \leq|-2 a|$.
$(-\infty, 1+a] \cup[1-a,+\infty)$
$[1-a, 1+a]$
$[1+a, 1-a]$
$[-a, a]$

$$
\begin{aligned}
& 2 a \leq 2 x-2 \\
&+2 \leq-2 a \\
&+2 \\
& 2 a+2 \leq 2 x \leq-2 a+2 \\
& a+1 \leq x \leq-a+1 \\
&(1-a, 1+a
\end{aligned}
$$

Question No. 23

Let $f(x)=-\frac{3}{2} x+4$, find the value of a such that $f(2 a)=7$.$a=0$.$a=1$.$a=-1$.

$$
a=2
$$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 0

Question No. 30

Solve $1<7-x<10$
(-6.-3)
$(-3,6)$
O (-6,3)
(3,6)

Scanned with CamScanner

Question No. 29

Let $f(x)=a x^{2}+b x+1$, find the values of a and b such that $f(x)=f(-x)$, for all $x \in \mathbb{R}$.
$a=b=1$.
$a=-1$ and $b=1$.
$a \in \mathbb{R}$ and $b=0$.
$a \in \mathbb{R}$ and $b=1$.

$$
a x^{2}+b x+1=a(-x)^{2}+b(-x)+1
$$

$$
a^{x^{2}}+b x+1=a x^{2}-b x+1
$$

$$
c \quad a x^{2}+1=a x^{2}+1
$$

Question No. 37
Let $a>1$. The solution set of the equation $\log _{r}\left(2 x^{2}-a^{2}\right)=2$ is$S=\{a, 2 a\}$$S=(a)$$s=\{-a\}$$S=\{-a, a\}$

Question No. 31
Evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=$
$\begin{array}{ll}0 & -\frac{1}{4} \\ 0 & -\frac{1}{6} \\ & \frac{1}{2} \\ & \frac{1}{6}\end{array}$

Sive mercherm

Scanned with CamScanner

[^0]: Sucsioniong

[^1]: Sucswow

[^2]: Sive 3Nextichy

