4. A block of mass 3.5 Kg slides on horizontal surface the coefficient of kinetic friction is 0.47, the kinetic friction force between the block and the surface is: A) 13N B) 16N C) 15N D) 11N The coefficients μ and μ : A) both opposite to each other B) are vectors D) always parallel to the surface C) have no units The centripetal force accelerates a body by changing the direction of the body's without changing the body's speed. A) acceleration B) displacement C) velocity D) path 7. The components of a car's position as a function of time are given by $r_r = 2t + 3$, and $r_* = 4t - 1$. The position vector at t = 2s is: A) $\vec{r} = 5\hat{i} + 3\hat{j}$ B) $\vec{r} = 11\hat{i} + 15\hat{j}$ C) $\vec{r} = 9\hat{i} + 11\hat{j}$ D) $\vec{r} = 7\hat{i} + 7\hat{j}$ 8. In Newton's First law, If no net force act on a body A) the body's velocity cannot change, that is, the body can accelerate B) the body's velocity can change, that is, the body can accelerate C) the body's velocity can change, that is, the body cannot accelerate D) the body's velocity cannot change, that is, the body cannot accelerate Use the following to answer questions 9-10: A 5 Kg box is held at rest on a frictionless inclined plane by a force \bar{F} 9. The magnitude of F is: A) zero B) 100 N C) 24.5 N D) 50 N 10. The normal force F_N on the box is: A) mg sin 30° B) 0 C) mg cos 30° D) mg 11. The SI unit of weight is: A) Kilogram B) gram C) pound D) Newton 12. In the figure a 2Kg mass slide over a horizontal frictional plane, the object

- A) accelerates at 1.5 m/s2 (right)
- B) dose not accelerate
- C) accelerates at 3 m/s2 (right)
- D) accelerates at 10 m/s² (right)

THE PERSON NAMED IN THE PROPERTY OF THE PROPER A force of 50N is: A) 50 kg.m/s B) 50 kg. m²/s C) 50 g.m/s² D) 50 kg.m/s² 2. In the figure the block will move on the floor if F equals A) 13N B) 14N C) 15N D) 16N

3. You are standing on the floor, the push on you from the floor is

A) Gravitational force B) Tension C) Friction D) Normal force

23. Three forces $\vec{F_1} = 3\hat{i}$, $\vec{F_2} = 4\hat{j}$ and $\vec{F_3}$ act on a body which is moving with a constant velocity . F, is:

A) $\vec{F_3} = -3\hat{i} - 4\hat{j}$ B) $\vec{F_3} = -3\hat{i} + 4\hat{j}$ C) $\vec{F_3} = 3\hat{i} + 4\hat{j}$ D) $\vec{F_3} = 3\hat{i} - 4\hat{j}$

24. The coefficient of static friction between a 5kg block and horizontal surface is 0.4. The maximum static frictional force is:

A) 49N B) 5.5N C) 10N D) 19.6N

\$\hbegin{align*} \hbegin{align*} \hbegin{alig acceleration is:

A) $4\hat{i}+3\hat{j}$ B) $2\hat{i}+5\hat{j}$ C) $6\hat{i}+8\hat{j}$ D) $2\hat{i}+2\hat{j}$

\$6. A man of mass m stands on a scale (مبرات) in an elevator, the general solution for the scale reading is:

A) $F_N = m(-a_r - g)$ B) $F_N = ma_r$

- C) $F_N = m(a_y g)$ D) $F_N = m(a_y + g)$
- 27. Two blocks are suspended (معنو) by a rope as shown, the tension in the top rope is:

- A) 196 N
- B) 88.2 N
- C) 19.6 N
- D) 107.8 N
- 18. From Newton's 2nd law

A) $\vec{F_1} - \vec{F_2} - \vec{F_3} = 0$ B) $\vec{F_1} - \vec{F_2} - \vec{F_3} = ma$ C) $\vec{F_1} + \vec{F_2} + \vec{F_3} = ma$ D) $\vec{F_1} + \vec{F_2} + \vec{F_3} = 0$

19. A 22 kg mass is sliding horizontally on a frictionless surface, the normal force F_N is:

A) 334N B) 215.6N C) 121N D) 204N

26. Two bodies A and B interact, the magnitude of the forces on the bodies from each other are:

- A) $F_{AB} \langle F_{BA} \rangle$
- B) $F_{AB} = F_{BA}$
- C) $F_{AB} = F_{BA} = 0$
- D) $F_{AB} \rangle F_{BA}$

Q.1 A car mov	and the st date that o			m = 0 = -1-0	
(A) Increasing	(B) Decreasing		Zero	(D) 9.8 m/s2	
Q.2 The Newto	n's Second Law is given	by:			
$(A) \ \overrightarrow{w} = m \overrightarrow{g}$	(B) $\vec{F}_N = -m\vec{g}$	(C)	$\vec{p} = m\vec{v}$	(D) $\vec{F}_{net} = m\vec{a}$	
Q.3 A car trave (A) less than ze	ls north at constant veloc	ity, the net force (C) 9.	on the car is: .8 N	(D) greater than zero	
Q.4 A constant	force $\vec{F} = (24 \text{ N})\hat{i} + (18 \text{ N})\hat{i}$	N)j acts on an obj	ect of mass 6 kg.	The magnitude of the	
acceleration of (A) 6.0 m/s ²	the object is: (B) 5.0 m/s ²		(C) 4.0 m/s ²	(D) 3.0 m/s ²	
Q.5 The accele	ration of gravity on the m	oon is 1.67 m/s ² .	A person of weig	ht 93.5 N on the moon. His ma	
is: (A) 61 Kg	(B) 73 Kg		64 Kg	(D) 56 Kg	
Q.6 A man of n (A) 588 N	nass 55 kg. His weight is: (B) 637 N	(C)	539 N	(D) 686	
3.00x10° m/s. If on it is: (A)1.6x10 ⁻¹⁶ N	(B) 2.28x10 ⁻¹⁶		C) 2.73x10 ⁻¹⁶ N	force on the electron) the net f (D) 3.2x10 ⁻¹⁶ N	
on it is: (A)1.6x10 ⁻¹⁶ N	(B) 2.28x10 ⁻¹⁶ e from the ceiling suspen	N ((C) 2.73x10 ⁻¹⁶ N ht 440 N in static	(D) 3.2x10 ⁻¹⁶ N equilibrium. The tension in the	
on it is: (A)1.6x10 ⁻¹⁶ N Q.8 A light cable cable is: (A) 380N	(B) 2.28x10 ⁻¹⁶ e from the ceiling suspen	N (0 ds a ball of weight (0	c) 2.73x10 ⁻¹⁶ N ht 440 N in static c) 420 N	(D) 3.2x10 ⁻¹⁶ N equilibrium. The tension in the	
Q.8 A light cable cable is: (A) 380N Q.9 A block of n	(B) 2.28x10 ⁻¹⁶ e from the ceiling suspen (B) 400 N	N (Com the ceiling by a	c) 2.73x10 ⁻¹⁶ N ht 440 N in static c) 420 N	(D) 3.2x10 ⁻¹⁶ N equilibrium. The tension in the	
Q.8 A light cable cable is: (A) 380N Q.9 A block of reable is 29.4 N,	(B) 2.28x10 ⁻¹⁶ e from the ceiling suspen	N (Community of the ceiling by a	c) 2.73x10 ⁻¹⁶ N ht 440 N in static c) 420 N	(D) 3.2x10 ⁻¹⁶ N equilibrium. The tension in the	
on it is: (A)1.6x10 ⁻¹⁶ N Q.8 A light cable cable is: (A) 380N Q.9 A block of reable is 29.4 N, (A) 6 Kg	(B) 2.28x10 ⁻¹⁶ e from the ceiling suspen (B) 400 N	N (Community of the ceiling by a (Community of the ceiling by a (Community of the ceiling by a (Community of the ceiling of th	c) 2.73x10 ⁻¹⁶ N ht 440 N in static c) 420 N a light cable in sta	(D) 3.2x10 ⁻¹⁶ N equilibrium. The tension in the (D) 440 N atic equilibrium. If the tension in (D) 4 Kg	
Q.8 A light cable cable is: (A) 380N Q.9 A block of reable is 29.4 N, (A) 6 Kg Q.10 A 1200 kg A) 10780 N	(B) 2.28x10 ⁻¹⁶ e from the ceiling suspen (B) 400 N mass m is suspended from the mass of the block is: (B) 3 Kg elevator is moving up with (B) 7840 N re a 9 kg box is pushed as	N (Committee ceiling by a (Committee ceiling by a (Committee accelera (Committee accelera (Committee accelera accelera accelera (Committee accelera accelera accelera accelera accelera (Committee accelera accele	c) 2.73x10 ⁻¹⁶ N ht 440 N in static c) 420 N a light cable in static c) 5 Kg tion. The tension C) 11760 N	(D) 3.2x10 ⁻¹⁶ N equilibrium. The tension in the (D) 440 N atic equilibrium. If the tension in (D) 4 Kg in the cable is: (D) 8820 N	
Q.8 A light cable cable is: (A) 380N Q.9 A block of reable is 29.4 N, (A) 6 Kg Q.10 A 1200 kg A) 10780 N Q.11 In the figure horizontal force	(B) 2.28x10 ⁻¹⁶ e from the ceiling suspen (B) 400 N mass m is suspended from the mass of the block is: (B) 3 Kg elevator is moving up with (B) 7840 N	N (Committee ceiling by a (Committee ceiling by a (Committee accelera (Committee accelera (Committee accelera accelera accelera (Committee accelera accelera accelera accelera accelera (Committee accelera accele	c) 2.73x10 ⁻¹⁶ N tht 440 N in static c) 420 N a light cable in static c) 5 Kg tion. The tension c) 11760 N ed up the friction	(D) 3.2x10 ⁻¹⁶ N equilibrium. The tension in the (D) 440 N atic equilibrium. If the tension in (D) 4 Kg in the cable is: (D) 8820 N	
Q.8 A light cable cable is: (A) 380N Q.9 A block of reable is 29.4 N, (A) 6 Kg Q.10 A 1200 kg A) 10780 N Q.11 In the figure horizontal force (A) 53.9 N	(B) 2.28x10 ⁻¹⁶ e from the ceiling suspen (B) 400 N mass m is suspended from the mass of the block is: (B) 3 Kg elevator is moving up with (B) 7840 N re a 9 kg box is pushed at the properties of F. The magnitude of F. (B) 44.1 N	nds a ball of weight (C) In the ceiling by a (C)	c) 2.73x10 ⁻¹⁶ N ht 440 N in static c) 420 N a light cable in static c) 5 Kg tion. The tension c) 11760 N ed up the friction	(D) 3.2x10 ⁻¹⁶ N equilibrium. The tension in the (D) 440 N etic equilibrium. If the tension in (D) 4 Kg in the cable is: (D) 8820 N	
Q.8 A light cable cable is: (A) 380N Q.9 A block of reable is 29.4 N, (A) 6 Kg Q.10 A 1200 kg (A) 10780 N Q.11 In the figure horizontal force (A) 53.9 N Q.12 A1000 kg (A) 11800 N	(B) 2.28x10 ⁻¹⁶ e from the ceiling suspen (B) 400 N mass m is suspended from the mass of the block is: (B) 3 Kg elevator is moving up wit (B) 7840 N re a 9 kg box is pushed at the magnitude of F (B) 44.1 N elevator is moving up wit (B) 12800 N	of the ceiling by a constant sperior (C) 63.7 N The acceleration 5 (C) 14	c) 2.73x10 ⁻¹⁶ N ht 440 N in static c) 420 N a light cable in static c) 5 Kg tion. The tension C) 11760 N red up the friction (E	(D) 3.2x10 ⁻¹⁶ N equilibrium. The tension in the (D) 440 N etic equilibrium. If the tension in (D) 4 Kg in the cable is: (D) 8820 N eless ramp by (D) 58.8 N en in the cable is: (D) 13800 N	
Q.8 A light cable cable is: (A) 380N Q.9 A block of recable is 29.4 N, (A) 6 Kg Q.10 A 1200 kg A) 10780 N Q.11 In the figure horizontal force (A) 53.9 N Q.12 A1000 kg 6 (A) 11800 N	(B) 2.28x10 ⁻¹⁶ e from the ceiling suspen (B) 400 N mass m is suspended from the mass of the block is: (B) 3 Kg elevator is moving up wit (B) 7840 N re a 9 kg box is pushed at a F. The magnitude of F (B) 44.1 N elevator is moving up wit (B) 12800 N	of the ceiling by a constant sperior (C) 63.7 N The acceleration 5 (C) 14	c) 2.73x10 ⁻¹⁶ N ht 440 N in static c) 420 N a light cable in static c) 5 Kg tion. The tension C) 11760 N red up the friction (E	(D) 3.2x10 ⁻¹⁶ N equilibrium. The tension in the (D) 440 N etic equilibrium. If the tension in (D) 4 Kg in the cable is: (D) 8820 N eless ramp by (D) 58.8 N en in the cable is: (D) 13800 N	

	to the annual to the	$\vec{F}_N \dot{\uparrow}$
nal force on a movin		
g the motion of the body	(B) normal force on t (D) weight of the body	he body \vec{F}_{g}
	be and m = 50 kg) connects	ed by a cord
mall frictionless pul	ley rest on frictionless plane	s. The
ha blacke is:		D) 4.3 m/s ²
moves 10 m in the r	ositive x direction while being	ng acted upon by a constant force
he work done on th (B) 51 J	e particle by this force is: (C) 36 J	(D) 30 J
uses the 5 kg box to	slide up from point A to po	int B.
by the normal force	on the box is:	1. Sam
(B) zero		D) 58 J
that has kinetic ene	rgy must be:	(D) non of these
(B) falling	(C) at lest	
(B) 2.58 m/s	(0) 0.10 112	The State of the S
of mass 4 kg moves	s with a speed of 3 m/s, its	kinetic energy is:
(B) 30 J	(0)2.0	
nass 85 kg climbs 8 (B) 5831 J	a stair of 4 m height at cons (C) 4165 J	stant speed. The work done by the man is: (D) 4998 J
	in to the ten of 400 m tall	tower. To lift himself to the top in 10 minutes
nner runs up the st	tout?	
(B) 348 W	(C) 523 W	(D) 261 W
241	length 30 cm. This force of	ompressed it to be 25 cm. If the spring cons
s on a spring with	ing is:	
(B) -0.0900	()	(D) -0.1600 J
· norticlo	is 40 J in 5 s. The power i	s: (D) 8 W
	g the motion of the body (s A and B (m _A =100 mall, frictionless pulle blocks is: B) 4.6 m/s² moves 10 m in the properties of moves the 5 kg box to by the normal force of that has kinetic energing particle of mass 3 kg (B) 2.58 m/s of mass 4 kg moves (B) 36 J mass 85 kg climbs a (B) 5831 J	(B) segret of the body (S) A and B (m _A =100 kg and m _B = 50 kg) connected small, frictionless pulley rest on frictionless plane he blocks is: (B) 4.6 m/s ² (C) 3.1 m/s ² (D) 3.1 m/s ² (E) 51 J (C) 36 J (D) 36 J (E) 51 J (E) 36 J (E) 37 J (E) 38 m/s (E) 58 m/s (E) 68 m/s (E) 6

University of Jeddah Faculty of Science Physics Dept. Physics 101

	Univers	sity of Jeddah		
Home Work # 3 Student Name:	Display Date: 27/	/10/1439H ID:	Chapters Covered	: Ch.4 & Ch.5 Section:
Q.1 A 2.49 × 10 ⁴ N Rolls component of the net force				ncy stop; the x-
Q.2 An elevator and its k 10.0 m/s; it slows to a sto supporting cable while the	p with constant acceleration	on in a distance		
Q.3 You want to move a 230-N horizontal force. Or 200 N. What are the coeffi	nce the crate starts to mov	e, you can keep	ne crate moving, you ha it moving at constant v	ve to pull with a elocity with only

University of Jeddah Faculty of Science Physics Dept. Physics 101

Home Work # 4 Student Name:	Display Date: 10/11/1439H ID:	Chapters Covered: Ch.6 & Ch.7 Section:
Q.1 Suppose the sled's initial s 20 m?	peed v 1 is 2.0 m/s. if W_{tot} = 10 kJ, wha	t is the speed of the sled after it moves
		a stiff spring. In equilibrium, the spring e spring and the total work done on it
that he can do this by giving it a	an initial speed of 5.0 m>s at the botte 1.6 m up the ramp, stops, and slides I	°. A worker, ignoring friction, calculates om and letting it go. But friction is not back down. Find the magnitude of the