Q: Answer with true or false to the following sentences:

- 1. The range is sensitive to extreme values.
- 2. Two events A and B are independent if $P(A \cup B) = P(A) + P(B)$.
- 3. Two events A and B are independent if $P(A \cap B) = P(A) \cdot P(B)$.
- 4. If \mathcal{A} is an algebra on Ω , then $\emptyset \in \mathcal{A}$.
- 5. The interquartile range is the best measure for dispersion.
- 6. Two events A and B are mutually exclusive if $P(A \cap B) = P(A) \cdot P(B)$.

Q: Put the right word or symbol in its proper position:

subset	table	sample	numerical	mean	statistic	mode
highest	lowest	parameter	continuous	$x_s - x_l$	$x_l - x_s$	data
Discrete	Continuous	permutation	combination	Mutually	Mutually	$\Omega \subseteq \mathcal{A}$
space	space			independent	exclusive	22 = 0t
$\emptyset \in \mathcal{A}$	independent	exclusive	$\boldsymbol{\mathcal{A}}\in\boldsymbol{\Omega}$	$\boldsymbol{\Omega} \in \boldsymbol{\mathcal{A}}$	$A \cap B$	$= \emptyset$
$P(A \cap B)$	$P(A) \cdot P(B)$	$P(A \cup B) =$	P(A) + P(B)	$A \cup B = \emptyset$		

- 1. Two events A and B are ----- if they cannot occur at the same time.
- 2. Any arrangement of r distinct objects from a set of n different objects, is called a ------
- 3. If a space Ω consists uncountable number of outcomes, then Ω is called a ------
- 4. Two events *A* and *B* are ----- if they do not affect each other.
- 5. Selection *r* distinct objects at the same time from a set of *n* different objects, is a ------
- 6. If \mathcal{A} is an algebra on Ω , then -----
- 7. Two events A and B are ----- if they have not common elementary events.
- 8. If \mathcal{A} is an algebra on Ω , then -----
- 9. Two events *A* and *B* are mutual exclusive if ------.
- 10. For two events *A* and *B*, if -----. Then *A* and *B* are independent events.

Q: Consider the data: 3, 7, 4, 6, 5, 12, 5, 6. Then:

- a) Calculate Q_1 , D_6 , P_{85} for given data.
- For Q₁: -----
- For D₆: -----
- For P₈₅: -----

b	If the variance of the given data is $S^2 = 8.6436$, then calculate the standard score for the value 7.
Q: C	onsider the data: 7, 5, 3, 1, 5, 4, 5, 9, 6, 26, 9, 3, 8 Then:
a	If the standard deviation of the given data is $S = 6.19$, then calculate the standard score for the value 7.
b	Calculate Q_1, Q_3, HF for given data.
•	For Q ₃ :
•	For <i>HF</i> :
c	Construct the box plot for given data.
Q: C	onsider the data: 9, 5, 3, 9, 5, 7, 1, 7, 6, 16, 9. Then:
a	If the standard deviation of the given data is $S = 3.92$, then calculate the standard score for the value 6.
b	Calculate the coefficient of variation for given data.
c •	Calculate Q_1 , Q_3 , LF , and HF for given data. For Q_1 :

•	For <i>Q</i> ₃ :			
•	For <i>LF</i> :			
•	For <i>HF</i> :			
d)	Check if given data have outliers.			
e)	Construct the box plot for given data and determinate the five numbers on the graph.			
P(A C a) b) c)	We have Ω a space of elementary events, A and $B \in 2^{\Omega}$ with: $D(B) = 0.75, P(A \cap B) = 0.20, P(\overline{B}) = 0.65$, then calculate the following probabilities: $P(A) =$			
P(A\A b) c) d)	we have Ω a space of elementary events, A and $B \in 2^{\Omega}$ with: $P(A) = 0.25, P(B \setminus A) = 0.30, P(A \cap B) = 0.15 \text{ , then calculate the following probabilities:}$ $P(A) =$			
f)	Are the events A and B independent, and why?			

	$[\Omega, \mathcal{A}, P]$ is a probability space of tossing a fair coin three times, then: Determine $[\Omega, \mathcal{A}]$, and $[P]$ for this random experiment.
b)	Calculate the probability of getting at most one tails.
	Calculate the probability of getting three heads or three tails.
production and 2%	factory has four machines M_1 , M_2 , M_3 , M_4 . If these machines have the same capacity to be. Furthermore, we know that, the defective items from these machines are 7%, 5%, 3% of, respectively. Now, if an item selected at random, then: Calculate the probability that the selected item is defective.
b)	If we find that the selected item is defective, what is the probability that this item was made by machine M_2 ?

Q: In a particular population, 30% of people drive Korean cars, 15% of people drive Japanese cars and the rest (55%) of people drive cars made in other countries. It is known that 10% of people driving Korean cars have accidents, 07% of people driving Japanese cars have accidents, and 12% of people driving cars made other countries have accidents. If we selected randomly a person of this population, and we find that he had an accident, what is the probability that this person driving a Korean car?
Q: We selected three balls randomly and at the same time of a box contains 4 black and 3 green balls. If all balls have the same chance of selecting. Now:
a) If A is the event that the selected balls are black, then calculate $P(A)$.

b)	If B is the event that the selected balls have the same colors, then calculate $P(B)$.
	What is the probability that the selected balls have different colors?
	we have Ω a space of elementary events, A and $B \in 2^{\Omega}$ with:
	$(A B) = 0.10, P(A \cup B) = 0.75, P(\bar{A}) = 0.65$, then calculate the following probabilities:
a)	<i>P</i> (<i>B</i>) =
	$P(A \backslash B) = \cdots$
c)	$P(\bar{A} \cap \bar{B}) = \cdots$
	P(A B) =
	Are the events <i>A</i> and <i>B</i> independent, and why?
	we have Ω a space of elementary events, A and $B \in 2^{\Omega}$ with:
$P(A \cap$	$(A \cap B) = 0.15, P(A \setminus B) = 0.25, P(B \setminus A) = 0.35$, then calculate the following probabilities:
a)	$P(A) = \cdots$
b)	P(B) =
	$P(A \cup B) =$
,	$P(\bar{A} \cap \bar{B}) =$
e)	Are the events A and B independent, and why?
O: In a	hospital, there are 8 nurses and 3 doctors. Then:
a)	If a committee of 3 nurses and 2 doctors is to be chosen. How many different possibilities are there?

b)	What is the probability that two doctors in this committee?