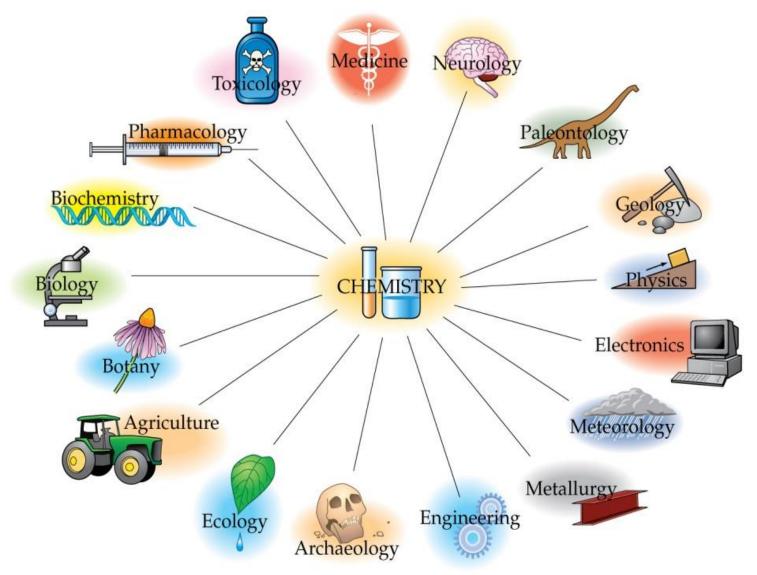

INTRODUCTION TO CHEMISTRY

Lecture Presentation Chapter 1 Matter and Measurements

CHEM 101

<u>Topic 01</u>

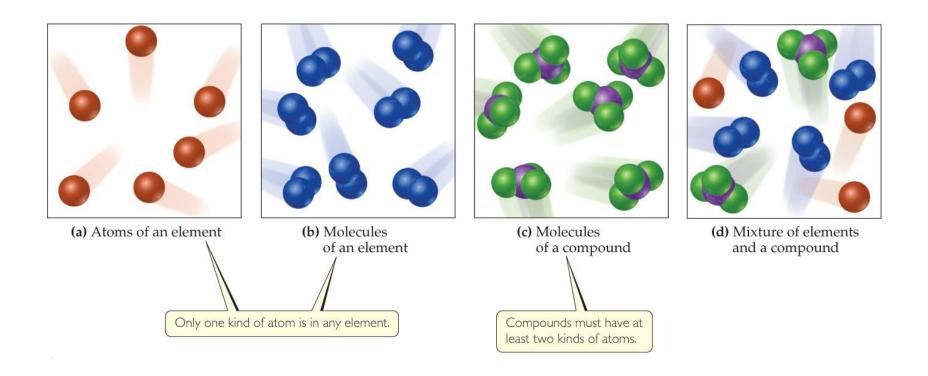
Classification and States of Matter


Chemistry:

The science that seeks understanding the properties and behavior

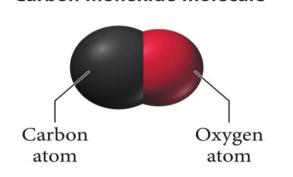
of matter by studying atoms and molecules.

- Chemistry is central to understand many other scientific fields.
- Virtually, everything around you is composed of "chemicals".


Chemistry: The Central Science

@ 2013 Pearson Education, Inc.

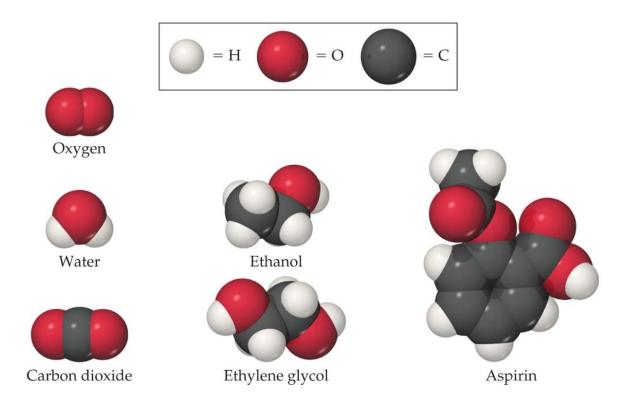
- Atoms are the building-blocks of matter.
- Each <u>element</u> is made of a unique kind of <u>atoms</u> (so far, 120 elements are identified in the universe, they are represented in the periodic table of elements).
- The <u>compound</u> is made of two or more atoms of different <u>elements</u>, bonded together to form <u>molecules</u> (molecules are the building-blocks of compounds).
- The properties of a substance are determined by the properties of its constituent molecules and atoms.


1.1 Atoms and Molecules

Important Note: some elements are present as "**molecules**" instead of "**free atoms**", they are called:

"Molecular Elements", such as: H₂, N₂, O₂, F₂, Cl₂, Br₂, l₂

1.1 Atoms and Molecules: Example 1



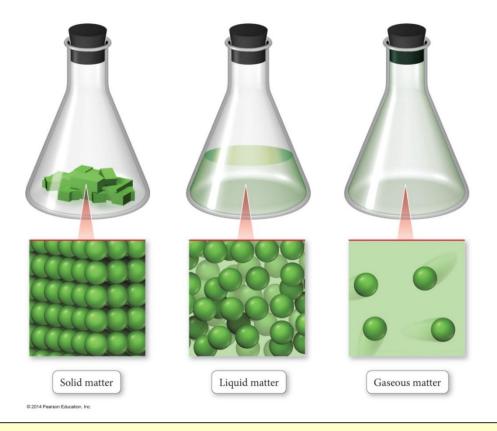
Carbon monoxide molecule

✓ The air contains carbon monoxide pollutant.

 Each molecule contains a carbon atom and an oxygen atom held together by a chemical bond.

1.1 Atoms and Molecules: Example 2

Note: Balls of different colors are used to represent **atoms** of different **elements**. Attached balls represent connections between atoms that are seen in nature. These groups of atoms are called **molecules**.


• Matter is anything that occupies space and has mass.

Examples: your textbook, your desk, the air around you, and even

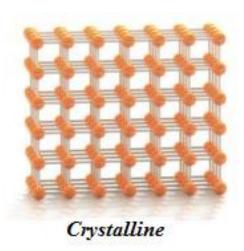
your body, are all composed of matter. Matter is everything around us.

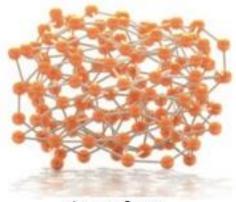
- Matter can be classified according to:
 - 1. <u>State</u> (the physical form)
 - 2. <u>Composition</u> (the components that make it up)

Matter can exist in one of three main states: solid, liquid, or gas.

The state of matter changes from solid to liquid to gas by **increasing temperature**, and vice versa!

- Solid Matter: is composed of tightly packed particles (atoms or molecules). Solids retain their shapes because the particles are not free to move.
- Although the atoms and molecules vibrate in solids, they do not move around or past each other.




- Consequently, solid matter has a <u>fixed</u> (definite) volume and a <u>fixed (rigid) shape</u>.
 - Examples of solids: Ice, aluminum, iron, wood, salt, and diamond.

Solid Matter: Crystalline or Amorphous?

- Crystalline Solids: atoms or molecules are arranged in "patterns" with a long-range repeating order.
 - Important Examples on crystalline solids:
 - table salt (NaCl) and diamond.
- Amorphous Solids: atoms or molecules are not arranged in long-range patterns.
 - Important Examples on amorphous solids:
 - graphite, rubber, glass and plastic.

Amorphous

- Liquid Matter: is made of more loosely packed particles than in solids. Particles can move about within a liquid, but they are packed densely enough that volume is maintained.
 - The ability of liquids to flow, makes them <u>take the shapes</u> of their containers.

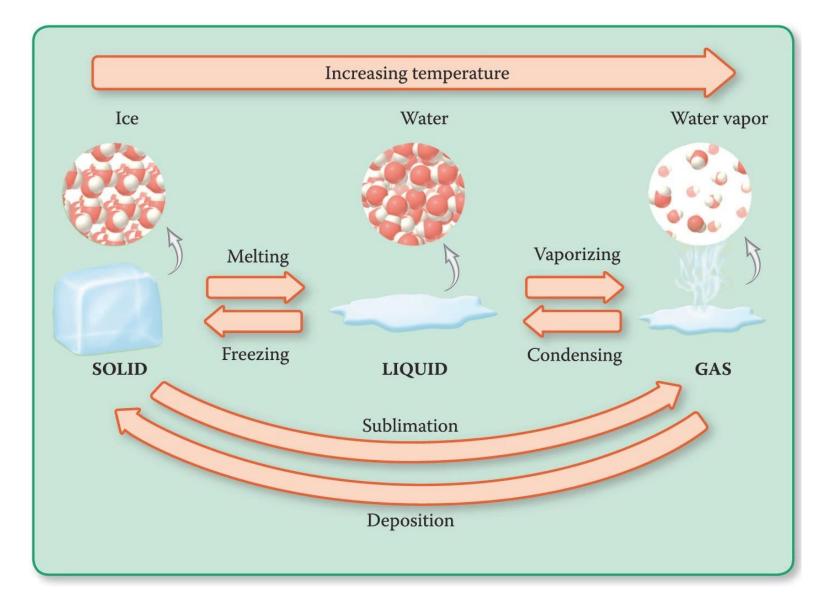
- Liquids have <u>fixed volume</u> but <u>no fixed shape</u>.
 - Examples of liquids: water, oil, and gasoline.

- Gaseous Matter: is composed of particles packed so loosely that it has neither a defined shape nor a defined volume.
- Particles of gases (atoms or molecules) are free to move relative to one another.
- Gases have <u>no fixed volume</u> and <u>no fixed shape</u>, they take the volume and shape of their containers.

These qualities make gases **compressible**.

Examples of gases:

oxygen, nitrogen, CO₂, water vapor



Solid-not compressible

Gas-compressible

Summary of State Changes of Matter

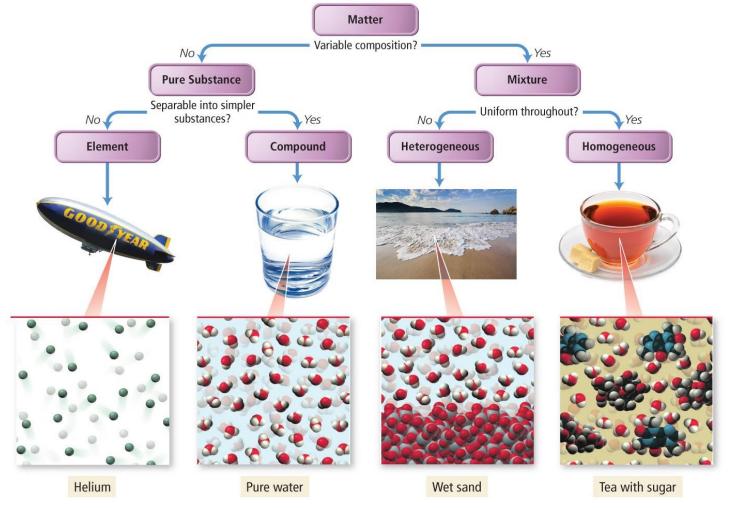
- Matter can be divided into <u>two classes</u>:
- Mixtures: are composed of more than one substance and <u>can be</u> <u>physically separated</u> into its component substances.

- 2. Pure substances: are composed of only one substance and can
 - NOT be physically separated.

There are **two types of mixtures**:

- 1. Heterogeneous mixtures
- 2. Homogeneous mixtures
- Heterogeneous Mixture: does NOT have uniform properties throughout.
 - (sand + water), (oil + water) or (gasoline + water) are examples on heterogeneous mixtures.

✓ Homogeneous Mixture: <u>has uniform properties</u> throughout.


- (salt water), (sugar + water) and alloys are homogeneous mixtures.

There are two types of pure substances:

- 1. Compounds
- 2. Elements
- <u>Compound</u>: can be chemically separated into individual elements.
 There are millions of compounds in the universe.
 - > Water is a compound that can be separated into hydrogen and oxygen.
- <u>Element</u>: cannot be broken down further by chemical reactions.
 - Elements are the 120 members of the periodic table of elements, such as: Sodium, Iron, Gold, Silver, Hydrogen, Oxygen, Carbon etc

Matter can be classified according to its composition into: pure substances

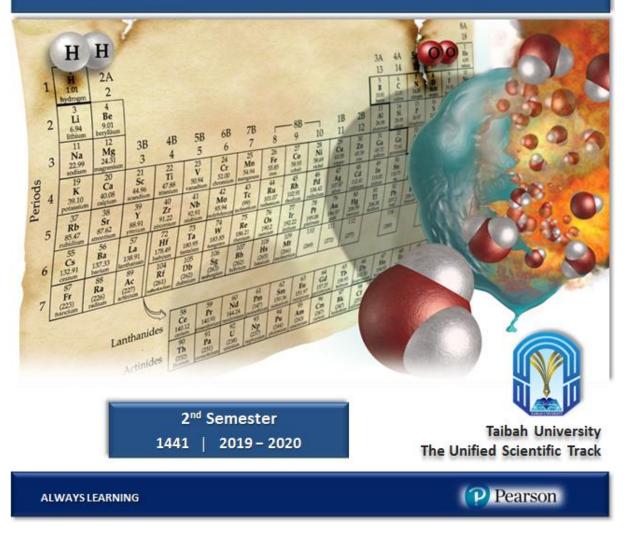
(elements <u>or</u> compounds) and <u>mixtures</u> *(homogeneous <u>or</u> heterogeneous):*

© 2019 Pearson Education, Inc. - This Presentation is NOT an Alternative to the Textbook!

Assessment

1- The process is which a solid substance is transformed directly into a gas is called ______ and it requires ______ of temperature.

2- _____ is the physical process which changes a gas into a liquid, and it needs
 _____ of temperature.


3- Which state of matter has a fixed volume but not a fixed shape.

4- A _____ matter is able to assume both the shape and volume of its container.

- 5- The ability of both _____ and _____ states of matter to flow makes them able to change their shape to the shape of their reservoir.
- **6-** Classify each substance as a pure substance or a mixture, and indicate the type of each of them (element, compound or homogeneous, heterogeneous):

a. sweat	b. carbon dioxide	c. aluminum	d. salt	e. rust
f. wet sand	g. air	h. oxygen gas	i. bronze alloy	j. honey

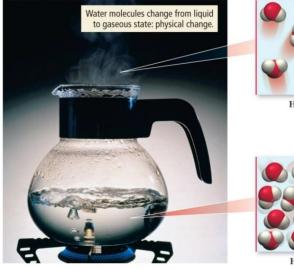
INTRODUCTION TO CHEMISTRY

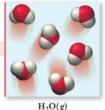
Lecture Presentation Chapter 1 Matter and Measurements

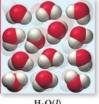
CHEM 101

<u>Topic 02</u>

Physical and Chemical Changes & Properties

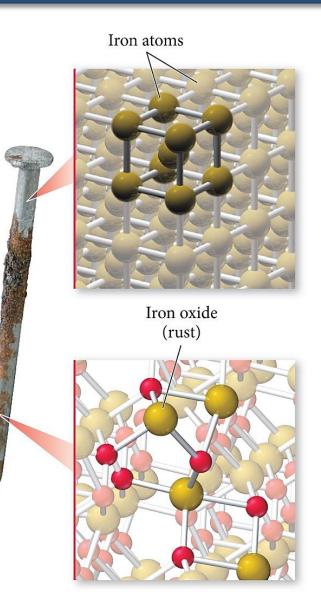

Physical Changes:


- A process that does NOT cause a substance to become a different substance (i.e. only the <u>appearance</u> (state or shape) is changed, but NOT the chemical composition).
- Physical changes are **reversible**.


Example 1: when water (H_2O) boils, it changes its state from liquid to gas.

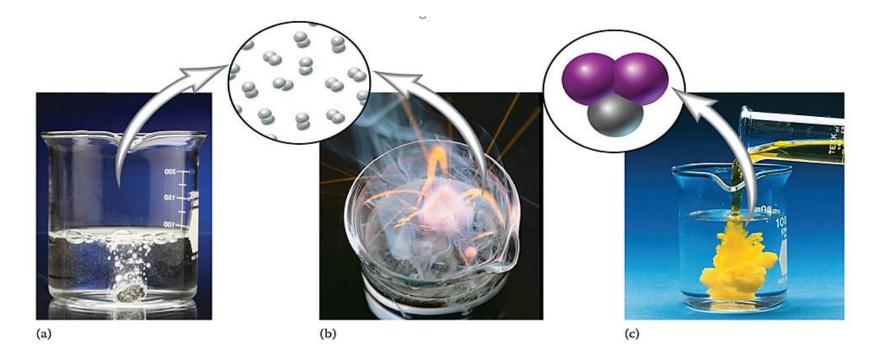
The gas remains composed of H₂O, so this is a "physical change".

Example 2: when a piece of paper is shredded, or a glass window is broken, only their shapes have changed, but their chemical compositions remains unchanged.

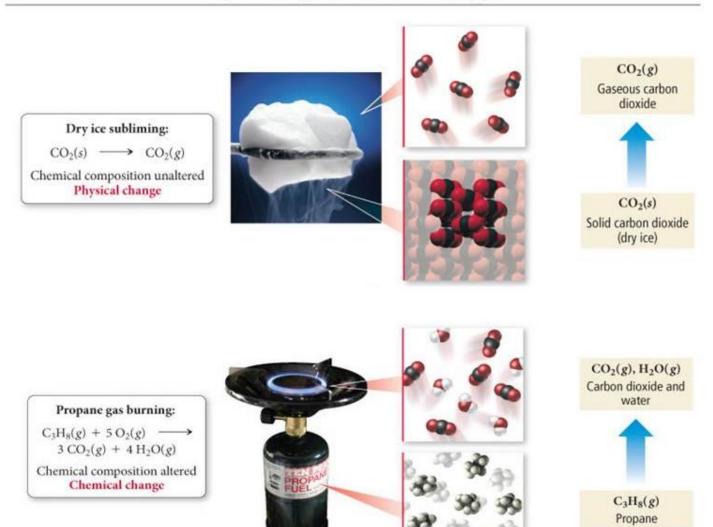


1.3 Physical and Chemical Changes & Properties

Chemical Changes:


- A process that causes a substance to change into a new substance with a <u>new chemical composition</u>.
- During a chemical change, atoms rearrange themselves to make <u>different substances</u>.
- Chemical changes are irreversible.

Example 1: rusting of iron is a chemical change: $4 Fe + 3 O_2 \rightarrow 2 Fe_2O_3$ **Example 2:** burning of gasoline produces $CO_2 + H_2O$, so, it's a chemical change


Evidences for Chemical Changes

- a) Release of a gas (e.g. bubbles or smoke)
- b) Emission of light or heat (e.g. burning of wood)
- c) Permanent change in color (e.g. the brown layer of iron rust)

Physical and Chemical Changes: Examples

Physical Change versus Chemical Change

1. <u>Physical Properties</u>: any characteristic that can be measured without changing the substance's chemical identity or composition (i.e. without any chemical reactions).

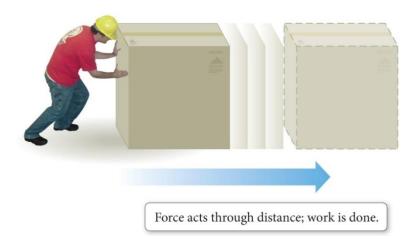
Examples on Physical Properties:

- Color
- > Odor
- Taste
- Density
- Melting Point
- Boiling Point

- > Viscosity
- > Temperature
- ➤ Hardness
- Metallic Luster
- Malleability
- Ductility

Physical and Chemical Properties of Matter

2. <u>Chemical Properties</u>: any characteristic that can be measured only by changing a substance's chemical identity or composition (i.e. in a chemical reaction).


Examples on <u>Chemical Properties</u>:

- Reactivity with other chemicals (acids, water, oxygen,)
- Acidity and Basicity
- Flammability
- Chemical stability
- > Toxicity
- Heat of combustion
- Oxidation state

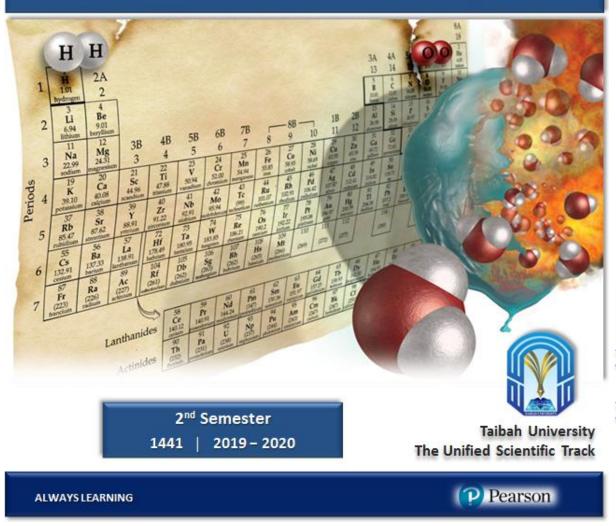
1.4 Energy: A Fundamental Part of Physical and Chemical Changes

Energy is the ability to do work.

Work is defined as the action of a force through a distance.

When you push a box across the floor or pedal your bicycle across the street, you have done work.

The law of conservation of energy: energy can neither be created nor destroyed, but only changes from one form to another.


- Potential energy, PE: is any form of stored energy; it results from position or composition (examples: chemical and nuclear energy)
- Kinetic energy, KE: is the energy matter has as a result of its motion (examples: thermal and electrical energy).
 - \checkmark Energy can be converted between the two types.
 - ✓ All substances have both potential and kinetic energies, regardless to their physical states.
 - Solids have the lowest kinetic energy, and gases have the greatest kinetic energy.
 - ✓ As we increase the temperature of a substance, its kinetic energy increases.

Identify the following as chemical or physical changes or properties:

1. blue color	2. melting point	
4. reaction with water	5. flammability	(
7. toxicity	8. boiling point	(
10. luster	11. perfume odor	
13. coal Burns		14. dry ic
15. Ag (Silver) tarnishes	16. milk s	
17. an apple is cut	18. fruit ro	
19. heat changes H ₂ O to	20. panca	
21. baking soda reacts t	22. grass	
23. iron rusts	24. a tire	
25. alcohol evaporates	26. food i	
27. ice melts	28. paper	

- 3. density
- 6. hardness
- 9. reaction with acid
- 12. sour taste
- ce sublimes
- sours
- rot
- akes cook
- s grows
- is inflated
- is digested
- er absorbs water

INTRODUCTION TO CHEMISTRY

Lecture Presentation Chapter 1 Matter and Measurements

CHEM 101

<u> Topic 03</u>

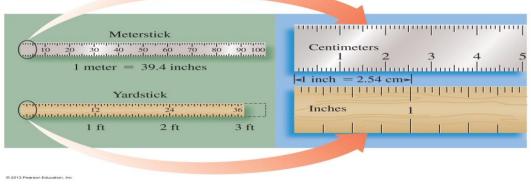
- Units of Measurements
- Density of Materials

We use measurements in everyday life, for example:

- walking 2.25 km to the university campus,
- carrying a backpack with a mass of 12 kg, and
- observing when the outside temperature has reached 40°C.

- Units: standard quantities used to specify measurements, they are critical in chemistry.
- The most common systems of units are:
 - 1. The English system: used in the United States.
 - 2. The Metric system: used in most countries.
 - 3. The International System of Units (SI): used by scientists,

and it is based on the metric system.


In the metric and SI systems, one unit is used for each type of measurement:

Measurement	Metric System	(SI) System
Length	meter (m)	meter (m)
Volume	liter (L)	cubic meter (m ³)
Mass	gram (g)	kilogram (kg)
Temperature	Celsius (°C)	Kelvin (K)
Time	second (s)	second (s)

Length (or distance):

- is measured using a meter stick.
- The unit meter (m) is used in both the metric and SI systems.
- Centimeters (cm) is used for smaller lengths.

- Useful relationships between the units of length:
 - 2.54 cm = 1 in.
 - 1 m = 100 cm
 - 1 m = 39.4 in.
 - 1 m = 1.09 yd

The Kilogram: A Measure of Mass

- The **mass** of an object is a measure of the quantity of matter within it.
- The SI unit of mass is kilogram (kg):

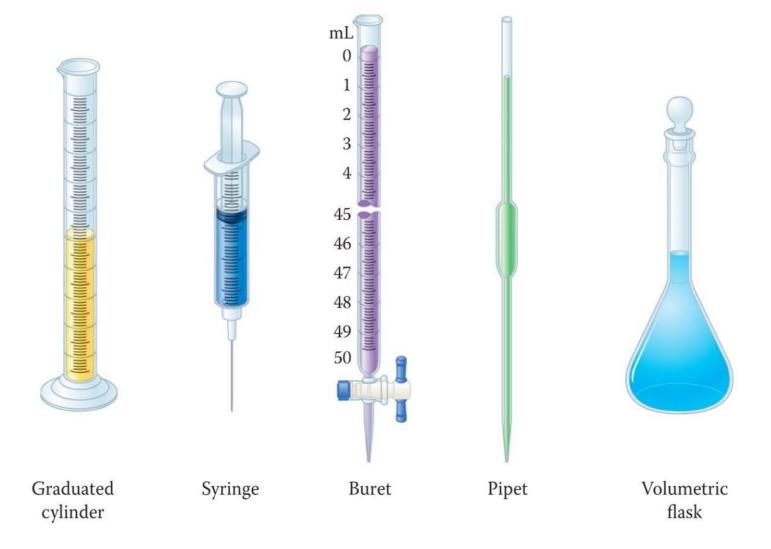
1 kg = 2.21 lb (pound)

1 gram = 1/1000 kg = (10⁻³ kg)

• Weight of an object is a measure of the gravitational pull on its matter:


(weight ≠ mass)

A nickel (5 cents) weighs about 5 grams. The common units for volume measurements are:


Quart (qt), Liter (L), Milliliter (mL), and Cubic Meter (m³)

- Useful relationships between the units of volume:
 - 1 L = 1000 mL
 - 1 L = 1.06 qt
 - 946 mL = 1 qt
 - 1000 L = 1 m³

Some Lab Tools for Volume Measurement

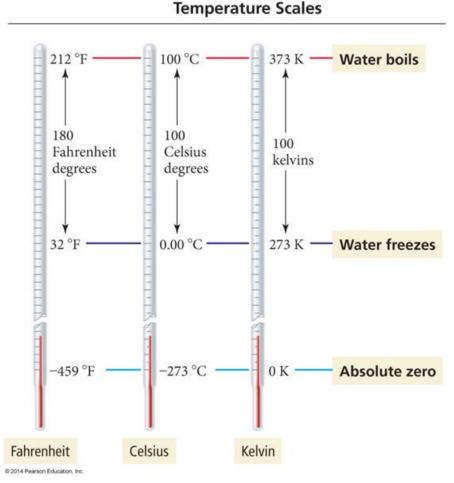
Volume is the amount of space occupied by a substance.

Time measurement:

 uses the unit <u>second (s)</u> in both the metric and SI systems.

Days, Hours, Minutes, Seconds

Useful relationships between the units of time:


- 1 day = 24 h
- 1 h = 60 min
- 1 min = 60 s

Units of Temperature Measurement

- Common Units of <u>Temperature</u>:
 - Fahrenheit (°F) (English system).
 - Celsius (°C) (Metric system).
 - Kelvin (K) (SI system).
- Example 1: Boiling Point of Water: 212 °F = 100 °C = 373.15 K
- Example 2: Freezing Point of Water:

 $32 \text{ }^{\text{o}}\text{F} = 0 \text{ }^{\text{o}}\text{C} = 273.15 \text{ K}$

0 K is called: "**absolute zero**". It is the lowest possible temperature in the universe!

- From °C to K:

$$K = C + 273.15$$

- From K to °C:

$$^{\circ}C = K - 273.15$$

- From °C to °F:

$$^{\circ}F = [1.8 \times (^{\circ}C)] + 32$$

- From °F to °C:

$$^{\circ}C = \frac{(^{\circ}F - 32)}{1.8}$$

1- How much does 350 °F equal in both °C and K?

$$^{\circ}C = (350 - 32)/1.8 = 318/1.8 = 177 \ ^{\circ}C$$

K = 177 + 273 = 450 K

2- Convert (- 40 °C) to °F:

 $^{\circ}F = [1.8 \times (-40)] + 32 = -72 + 32 = -40 ^{\circ}F$

3- Express 298 Kelvin in degree Celsius:

 $^{\circ}C = 298 - 273 = 25 \ ^{\circ}C$

Prefix Multipliers: Changing The Value of The Unit

- The International System of Units (SI) uses the prefix multipliers with the standard units.
- These prefix multipliers change the values of the units (makes units larger or smaller than the initial unit).
- Examples:
- the kilometer has the prefix kilo, meaning 1000 meter (or 10³ m).
- the millimeter has the prefix milli, meaning 1/1000 meter (or 10⁻³ m).

Prefixes that **INCREASE** the size of unit:

Prefix	Symbol	Factor	Example
Kilo	К	10 ³	11 kilometer (km) = 11×10^3 m
Mega	М	10 ⁶	3 megagram (Mg) = 3×10^6 g
Giga	G	10 ⁹	8 gigasecond (Gs) = 8×10^9 s
Tera	т	10 ¹²	5 teraliters (TL) = 5×10^{12} L
Peta	Р	10 ¹⁵	4 petameter (Pm) = 4×10^{15} m

Note: students shall memorize those prefixes: (names, symbols, and factors)!

Prefixes that **DECREASE** the size of unit:

Prefix	Symbol	Factor	Example
deci	d	10 ⁻¹	3 deciliter (dL) = 3×10^{-1} L (0.3 L)
centi	с	10 ⁻²	7 centimeters (cm) = 7×10^{-2} m (0.07 m)
milli	m	10 ⁻³	12 millimoles (mmol) = 12×10^{-3} mol
micro	μ	10 ⁻⁶	9 microliter (μ L) = 9 × 10 ⁻⁶ L
nano	n	10 ⁻⁹	4 nanograms (ng) = 4×10^{-9} g
pico	р	10 ⁻¹²	8 picometer (pm) = 8×10^{-12} m
femto	f	10 ⁻¹⁵	5 femtosecond (fs) = 5×10^{-15} s

Note: students shall memorize those prefixes: (names, symbols, and factors)!

Prefix Multipliers: A Summary with Example

					_
	10-15	Peta	Р	1015	_
ÌΓ	10-12	Tera	Т	1012	
	10-9	Giga	G	10 ⁹	
	10-6	Mega	М	106	
	10-3	Kilo	К	103	
	Example For	Conversion	: To/Fr	rom Meter (m)	
	10-1	Deci	d	10	
	10-2	Centi	с	102	
	10-3	Milli	m	103	
	10-6	Micro	μ	106	
	10-9	Nano	n	109	
	10-12	Pico	р	1012	
	- 10-15	Femto	f	1015	
					-

Density Of Materials

- Material's Density is its mass per unit volume.
- Is measured in g/L for gases.
- Is measured in g/cm³ or g/mL for solids and liquids.
- > **Density Expression**:

$$D = \frac{mass}{volume} = \frac{g}{mL} \text{ or } \frac{g}{cm^3} = g/cm^3$$

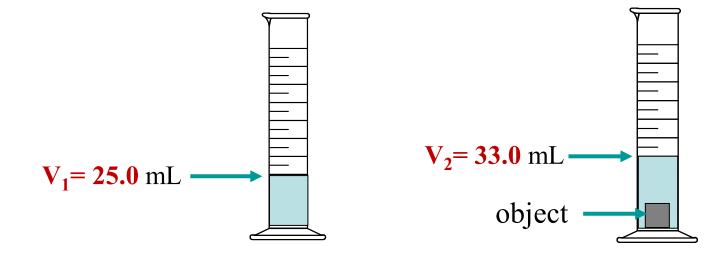
Useful Note: 1 mL = 1 cm³

D = Density m = mass V = volume

Density Formula

If a **0.258 g** sample of HDL has a volume of **0.215 cm³**, what is the density (in **g/cm³**), of the HDL?

<u>Step 1</u>: State the given and needed quantities:


Given	Needed
0.258 g HDL	density of LIDL is subseq
0.215 cm ³ HDL	density of HDL in g/cm ³

<u>Step 2</u>: Use the relation: Density = $\frac{\text{mass of substance}}{\text{volume of substance}}$

Density =
$$\frac{0.258 \text{ g}}{0.215 \text{ cm}^3}$$
 = $\frac{1.20 \text{ g}}{\text{cm}^3}$ = 1.20 g/cm³

Calculating Density Using Volume Displacement

What is the density (in g/cm³) of a <u>48.0 g</u> sample of a metal if the level of water in a graduated cylinder rises from <u>25.0 mL</u> to <u>33.0</u> <u>mL</u> after the metal is added?

Answer:

<u>Step 1</u>: Volume of metal = $V_2 - V_1 = 33.0 - 25.0 = 8.0 \text{ mL}$ <u>Step 2</u>: Density = mass/volume = 48.0 g / 8.0 mL = 6.0 g/mL **1-** Do the following conversions:

a.	55 m	=	km	=	cm
b.	11 s	=	ms	=	ks
c.	2.7 g	=	pg	=	ng
d.	3.6 L	=	mL	=	µL

2- Express the temperature -56 °F in both °C and K.

3- Perform each of the following unit conversions:

a. 13.53 m to yd	b. 2.87 kg to lb
c. 2.45 L to qt	d. 123.7 mm to in

4- Calculate the density of penny that has a mass of 2.49 g and a volume of 0.349 cm³.

	Main	group	Ĺ	Periodic Table of the Elements									▲ Periodic Table of the Elements										1		
Period		Group number			_										8A 18										
1	Hydrogen 1.008	2A 2		Atomic number $- \overset{6}{}_{}_{}_{}_{}$ Symbol										4A 14	5A 15	6A 16	7A 17	² He Helium 4.003	1						
2	Lithium 6.941	Beryllium 9.012		Name Carbon 12.01 atomic mass An element										6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20,18	2						
3	11 Na Sodium	12 Mg Magnesium	3B	4B	5B	6B	Transitio 7B	on metals	— 8B —		1B	2B	10.81 13 Aluminum	14 Si Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Ar Argon	3						
-	22.99 19	24.31 20	3 21	4	5 23	6 24	7 25	8 26	9 27	10 28	11 29	12 30	26.98 31	28.09 32	30.97 33	32.07 34	35.45 35	39.95 36	-						
4	K Potassium 39.10	Calcium 40.08	Sc Scandium 44.96	Ti Titanium 47.87	V Vanadium 50.94	Cr Chromium 52.00	Manganese 54.94	Fe Iron 55.85	Co Cobalt 58.93	Ni Nickel 58.69	Cu Copper 63.55	Zn Zinc 65.41	Gallium 69.72	Germanium 72.64	As Arsenic 74.92	Selenium 78.96	Bromine 79.90	Krypton 83.80	4						
5	37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.1	45 Rh Rhodium 102.9	46 Pd Palladium 106.4	47 Ag Silver 107.9	48 Cd Cadmium 112.4	49 In Indium 114.8	50 Sn Tin 118.7	51 Sb Antimony 121.8	52 Te Tellurium 127.6	53 I Iodine 126.9	54 Xe Xenon 131.3	5						
6	55 CS Cesium 132.9	56 Ba Barium 137.3	57 La Lanthanum 138.9	72 Hf Hafnium 178.5	73 Ta Tantalum 180.9	74 W Tungsten 183.8	75 Re Rhenium 186.2	76 OS Osmium 190.2	77 Ir Iridium 192.2	78 Pt Platinum 195.1	79 Au Gold 197.0	80 Hg Mercury 200.6	81 Tl Thallium 204.4	82 Pb Lead 207.2	83 Bi Bismuth 209.0	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)	6						
7	B7 Fr	Radium	89 Ac Actinium	Rutherfordium	105 Db Dubnium	106 Sg Seaborgium	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	Darmstadtium	Roentgenium	Copernicium	113 Nh Nihonium	Flerovium	Moscovium	Livarmorium	Tennessine	118 Og Oganesson	7						
10	Francium (223)	(226)	(227)	(267)	(268)	(271)	(272)	(270)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(293)	(294)							

Lanthanides 6	58 Ce Cerium 140.1	59 Pr Prase odymium 140.9	60 Nd Neodymium 144.2	Promethium (145)	Samarium 150.4	63 Eu Europium 152.0	Gadolinium 157.3	65 Tb Terbium 158.9	Dysprosium 162.5	67 Ho Holmium 164.9	68 Er Erbium 167.3	69 Tm Thulium 168.9	70 Yb Ytterbium 173.0	71 Lu Lutetium 175.0	6
Actinides 7	⁹⁰ Th	Pa Pa	92 U	93 Np	94 Pu	Am ⁹⁵	Cm ⁹⁶	97 Bk	Of 98	⁹⁹ Es	Fm	Md	¹⁰² No	Lr	-
Acumes	Thorium 232.0	Protactinium 231.0	Uranium 238.0	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)	

© 2019 Pearson Education, Inc. - This Presentation is NOT an Alternative to the Textbook!