



Final Examination (Summer Term)

Date: 18.08.2014

Fundamentals of Mathematics MATH 001

**Student Name (ARABIC):** 

Student ID:

**Instructor Name:** 

**CRN**:

#### **Instructions:**

This exam duration is **2 hours.** This is NOT an open book exam. The use of calculators is permitted. The use of mobile phones is NOT permitted. Please answer all the **5** questions. The number of pages is **8 pages** including this page.

### **Marking Scheme:**

|   | Question   | Score |           |
|---|------------|-------|-----------|
| 1 | (40 Marks) |       |           |
| 2 | (6 Marks)  |       |           |
| 3 | (8 Marks)  |       |           |
| 4 | (8 Marks)  |       |           |
| 5 | (8 Marks)  |       | Signature |
|   | TOTAL      |       |           |

# **Question 1:** (40 points)

Choose the correct answer, write your answer in the table below:

| 1. | The degree of the polynomic                      | ial $4x-5$ is:           |                       |                       |
|----|--------------------------------------------------|--------------------------|-----------------------|-----------------------|
|    | a) 4                                             | b) 5                     | c) 0                  | d) 1                  |
| 2. | One of the following number                      | ers hasn't a reciprocal: |                       |                       |
|    | a) 1                                             | b) 0                     | c) $\sqrt{2}$         | d) $-\frac{1}{2}$     |
| 3. | The $\mathbf{y} - \mathbf{intercept}$ for the li | ine $y = 5$ is:          |                       |                       |
|    | a) $(0,5)$                                       | b) (5,0)                 | c) $(0,0)$            | d) (5,5)              |
| 4. | $(a-b)^2 =$                                      |                          |                       |                       |
|    | a) $a^2 - b^2$                                   | b) $a^2 - 2ab + b^2$     | c) $a^2 + b^2$        | d) $a^2 + 2ab + b^2$  |
| 5. | The equation of the line pas                     | ssing through the points | (2,2) and $(3,3)$ is: |                       |
|    | a) $y = 3x + 3$                                  | b) $y = 2x + 2$          | c) $y = x$            | d) $y = 5x + 5$       |
| 6. | The solution set for the equ                     | ation $2 x  = -4$ is :   |                       |                       |
| a) | φ t                                              | b) {-2}                  | c) {2}                | a) $\{2, -2\}$        |
| 7. | The second coordinate is al                      | ways negative in quadran | ts:                   |                       |
|    | a) I and II                                      | b) II and III            | c) I and IV           | d) III and IV         |
| 8. | The simplification of $8^{\frac{1}{3}}$ is       | :                        |                       |                       |
| a) | 8                                                |                          | c) $\frac{3}{8}$      | . 1                   |
|    | $\frac{8}{3}$                                    | b) 2                     | $\frac{1}{8}$         | d) $\frac{1}{8^3}$    |
|    | $\frac{5}{3}$ The set of numbers for which       |                          |                       | (1) $\frac{8^3}{8^3}$ |

10. The result of  $\sqrt{-8}$  is :

| a) $2\sqrt{2}$                                                                                      | b) $-2\sqrt{2}$                                                                                             | c) $-2\sqrt{2}i$                                      | d) $2\sqrt{2}i$                   |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------|
| <b>11.</b> The factorization of $x^2$ +                                                             | -5x+4 is:                                                                                                   |                                                       |                                   |
| a) $(x+4)(x+1)$                                                                                     | b) $(x+5)(x-1)$                                                                                             | c) $(x+4)(x+5)$                                       | d) $(x-4)(x-1)$                   |
| <b>12.</b> The Least common multi                                                                   | iple ( <i>LCM</i> ) of $12x^6$ and 2                                                                        | $20x^2$ is:                                           |                                   |
| a) $240x^8$                                                                                         | b) 2 <i>x</i>                                                                                               | c) $4x^2$                                             | d) $60x^6$                        |
| <b>13.</b> The domain of the functi                                                                 | on $f(x) = \frac{\sqrt{2x-8}}{5}$ is:                                                                       |                                                       |                                   |
| a) $\{x \mid x \text{ is a real number}$                                                            |                                                                                                             | b) $\left\{ x \mid x \text{ is a real numb} \right\}$ | per and $x \neq 5$                |
| c) $\{x \mid x \text{ is a real number}$                                                            | $r and x \ge 4$                                                                                             | d) $\{x \mid x \text{ is a real numb}\}$              | per and $x \le 4$                 |
| <b>14.</b> The interval notation for                                                                | the set $\{x \mid -2 < x\}$ is:                                                                             |                                                       |                                   |
|                                                                                                     |                                                                                                             | X                                                     | 4) <b>[ 2</b> -)                  |
| a) $(-2,\infty)$                                                                                    | b) $\left(-\infty,-2\right]$                                                                                | c) $\left(-\infty,-2\right)$                          | d) $\left[-2,\infty\right)$       |
| a) $(-2,\infty)$<br><b>15.</b> The solution set of the equation                                     |                                                                                                             | c) (−∞,−2)                                            | d) [−2,∞)                         |
|                                                                                                     |                                                                                                             | c) $(-\infty, -2)$<br>c) $\{-3, 6\}$                  | d) $[-2,\infty)$<br>d) $\{3,-6\}$ |
| <b>15.</b> The solution set of the eq                                                               | puation $x^2 - 3x - 18 = 0$ :<br>b) $\{-3, -6\}$                                                            | c) {-3,6}                                             |                                   |
| <ul><li><b>15.</b> The solution set of the eq</li><li>a) {3,6}</li></ul>                            | puation $x^2 - 3x - 18 = 0$ :<br>b) $\{-3, -6\}$                                                            | c) {-3,6}                                             |                                   |
| <ul> <li>15. The solution set of the equal (3,6)</li> <li>16. The result of the multiple</li> </ul> | puation $x^2 - 3x - 18 = 0$ :<br>b) $\{-3, -6\}$<br>ication $(\sqrt{x} + 1)(\sqrt{x} - 1)$ is<br>b) $x - 1$ | c) {-3,6}                                             | d) {3,-6}                         |

| <b>18.</b> The set $\left\{ \frac{a}{b} \mid a \& b \in \mathbb{Z} \right\}$ | $\begin{bmatrix} and & b \neq 0 \end{bmatrix}$ is called | the set of :       |                     |
|------------------------------------------------------------------------------|----------------------------------------------------------|--------------------|---------------------|
| a) Integers b)                                                               | Whole numbers                                            | c) Natural numbers | d) Rational numbers |
| <b>19.</b> The opposite of $-\frac{4}{5}$<br>a) $\frac{4}{5}$                | is:<br>b) $-\frac{4}{5}$                                 | c) $\frac{5}{4}$   | d) $-\frac{5}{4}$   |

**20.** The scientific notation of the number 0.000541 is:

| a) $5.41 \times 10^{-4}$ b) $54.1 \times 10^{-5}$ c) $5.41 \times 10^{4}$ d) $54.1 \times 10^{-5}$ | $54.1 \times 10^{5}$ |
|----------------------------------------------------------------------------------------------------|----------------------|
|----------------------------------------------------------------------------------------------------|----------------------|

| Question | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----------|----|----|----|----|----|----|----|----|----|----|
| Answer   |    |    |    |    |    |    |    |    |    |    |
| Question | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Answer   |    |    |    |    |    |    |    |    |    |    |

Question 2: (6 points)

Perform and simplify the following:

$$1. \quad \frac{16}{x^2 - 1} + \frac{8}{x + 1} - \frac{7}{x - 1}$$

2. 
$$\frac{3x+3}{x^2+4x+4} \times \frac{x^2-4}{-2x-2}$$

# Question 3: (8 points)

Solve the following equations:

**1.** 3x + 4(x+2) = 11 + 7x

**2.**  $2x^2 + 2x + 5 = 0$ 

Question 4: (8 points) Solve the following inequalities:

$$1. \quad \frac{2}{3}x - \frac{1}{6} + \frac{1}{2}x \le \frac{7}{6} + 2x$$

**2.**  $|-2x-3| \ge 7$ 

## Question 5: (8 points)

**1.** Graph the solution of the system

$$\begin{cases} x + y \le 4\\ x - y \le 4 \end{cases}$$

|     |   | <br>      |       |        |       | <br>      |        |       |       |       |       |  |
|-----|---|-----------|-------|--------|-------|-----------|--------|-------|-------|-------|-------|--|
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   | <br>      |       |        |       | <br>      |        |       |       |       |       |  |
|     | - |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   | <br>      |       |        |       | <br>      |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   | <br>      |       |        |       | <br>      |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   | <br>••••• | ••••• | •••••• | ••••• | <br>••••• | •••••• | ••••• | ••••• | ••••• | ••••• |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     | • |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   | <br>      |       |        |       | <br>      |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   | <br>      |       |        |       | <br>      |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   | <br>      |       |        |       | <br>      |        |       |       |       |       |  |
|     |   | <br>      |       |        |       | <br>      |        |       |       |       |       |  |
|     |   | <br>      |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
| ↓ ↓ |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |
|     |   |           |       |        |       |           |        |       |       |       |       |  |

2. Solve the system  $\begin{cases} 2x - 3y = 5\\ 4x + 5y = 6 \end{cases}$  using the <u>Elimination</u> method.