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Triple Integrals

Definition

If f is a continuous function defined over a bounded solid Q, then the
triple integral of f over Q is defined as

y

Q

f(x, y, z)dV = lim
‖P‖→0

n∑
k=1

f(xk, yk, zk)∆Vk (1)

provided the limit exists, where Qk is the k−th subregion of Q, Vk is the
volume of Qn, (xk, yk, zk) is a point, ‖P‖ is length of the longest
diagonal of all the Qk.
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Application of a triple integral is the volume of the solid region Q is
given by

Volume of Q =
y

Q

dV

Example:

Evaluate the iterated integral
y

Q

dzdxdy., where

Q = {(x, y, z) : −1 6 x 6 1, 3 6 y 6 4, 0 6 z 6 2}.
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Notes

Note 1:
To evaluate a triple integral in order dzdydx, hold both x and y constant
for inner most integral, then hold x constant for the second integration.
Note 2:
The symbol on the right-hand side of the equation is an
iterated triple integral.
Note 3:

A triple integral
y

Q

dV can be evaluated in six different orders, namely

dV = dzdydx = dydxdz = dxdzdy = dzdxdzy = dxdydz = dydzdx.
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Some important graphs
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Evaluation theorem:
Triple integrals can be defined over a region more complicated han a
rectangular box. Suppose that R is a region in the xy−plane that can be
divided into Rx and Ry regions and that Q is the region in three
dimensions defined by
Q = {(x, y, z) : (x, y)is in R and k1(x, y) 6 z 6 k2(x, y)}, where
k1 and k2 are continuous functions, then triple integral defines as

y

Q

f(x, y, z)dV =
x

R

[ ∫ k2(x,y)

k1(x,y)

f(x, y, z)dz
]
dA (2)
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Example 1

Express the iterated integral
y

Q

dV., if Q is the region in the first

octant bounded by the coordinate plane, paraboloid z = 2 + x2 + 1
4y

2

and the cylinder x2 + y2 = 1.
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Example 2
Find the volume V of the solid that is bounded by cylinder y = x2 and by
the plane y + z = 4 and z = 0.
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Evaluation theorem:
Let f be a continuous functions on the solid region Q defined by
b 6 x 6 d, h1 6 y 6 h2 and k1 6 z 6 k2, where h1, h2, k1 and k2 are
continuous functions, then

y

Q

f(x, y, z)dV =
∫ d

b

∫ h2(x,y)

h1(x,y)

∫ k2(x,y)

k1(x,y)

f(x, y, z)dydzdx (3)
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Example 3
Find the volume of the region Q bounded by graphs of z = 3x2,
z = 4− x2, y = 0 and z + y = 6.
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Definition of mass

m = δV , where δ is mass density and V is Volume.

Mass of Solid

m =
y

Q

δ(x, y, z)dV .

Mass of Lamina

m =
x

R

δ(x, y)dA.
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Examples
(1) A lamina having area mass density δ(x, y) = y2 and has the shape of
the region bounded by the graphs of y = e−x, x = 0, x = 1, y = 0. Set
up an iterated double integral that can be used to find the mass of the
lamina.
(2) A solid having density δ(x, y, z) = z + 1 has the shape of the region
bounded by the graphs of z = 4− x2 − y2, z = 0. set up an iterated
triple integral that can be used to find the mass of the solid.
(3) A solid having density δ(x, y, z) = x2 + y2 has the shape of the region
bounded by the graphs of x+ 2y + z = 4, x = 0, y = 0, z = 0. set up an
iterated triple integral that can be used to find the mass of the solid.
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Examples
(1) Sketch and find the volume of the region Q bounded by graphs of
z = 9− x2, z = 0, y = −1 and y = 2.
(2) Sketch and find the volume of the region Q bounded by graphs of
z = x2, z = x3, y = z2 and y = 0.
Sketch 1
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Sketch 2
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Center of mass and Moment of inertia

Definition

Let L be a lamina that has the shape of region R in the xy−plane. If the
area mass density at (x, y) is δ(x, y) and if δ is continuous on R, then
the mass m, the moments Mx and My, and the center of mass (x, y) are

(i) m =
x

R

δ(x, y)dA.

(ii) Mx =
x

R

yδ(x, y)dA, My =
x

R

xδ(x, y)dA

(iii) x = My

m =

x

R

xδ(x, y)dA
x

R

δ(x, y)dA
, y = Mx

m =

x

R

yδ(x, y)dA
x

R

δ(x, y)dA
.
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Center of mass and Moment of inertia

Note: If L is homogeneous with constant mass density, the center of
mass is also called the centroid

Moments of inertia of a Lamina

Ix =
x

R

y2δ(x, y)dA about the x−axis.

Iy =
x

R

x2δ(x, y)dA about the y−axis.

IO = Ix + Iy =
x

R

(x2 + y2)δ(x, y)dA about the origin.
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Center of mass and Moment of inertia

Moments and Center of mass in 3D

(i) m =
y

Q

δ(x, y, z)dV .

(ii) Mxy =
y

Q

zδ(x, y, z)dV , Mxz =
y

Q

yδ(x, y, z)dV

Myz =
y

Q

xδ(x, y, z)dV

(iii) x = Myz

m =

y

Q

xδ(x, y, z)dV

y

Q

δ(x, y, z)dV
, y = Mxz

m =

y

Q

yδ(x, y, z)dV

y

Q

δ(x, y, z)dV
.

z = Mxy

m =

y

Q

zδ(x, y, z)dV

y

Q

δ(x, y, z)dV
.
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Center of mass and Moment of inertia

Note: If L is homogeneous with constant mass density, the center of
mass is also called the centroid

Moments of inertia of solids

Iz =
y

Q

(x2 + y2)δ(x, y, z)dV moment of inertia about the z−axis.

Ix =
y

Q

(y2 + z2)δ(x, y, z)dV moment of inertia about the x−axis.

Iy =
y

R

(x2 + z2)δ(x, y, z)dV moment of inertia about the y−axis.
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Center of mass and Moment of inertia

Examples
(1) A lamina having area mass density δ(x, y) = kx and has the shape of
the region R in the xy−plane bounded by the parabola x = y2 and the
line x = 4. Find the center of mass.
(2) A lamina having area mass density δ(x, y) = ky and has the
semicirclar illustrated in Figure. Find the moment of inertia with respect
to the x−axis.
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Center of mass and Moment of inertia

Examples
(3) Set up an iterated integral that can be used to find the center of
mass of the solid Q bounded by the paraboloid x = y2 + z2 and the
palne x = 4 and density δ(x, y, z) = x2 + y2.
(4) Let Q be the solid in the first octant bounded by the coordinates
planes and the graphs of z = 9− x2 and 2x+ y = 6. Set up iterated
integrals that can be used to find the centroid, find the centroid, find the
moment of inertia with respect to the z−axis.
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