الأشعة السينية وبعض تطبيقاتها

الهيئة العربية للطاقة الذرية

الأشعة السينية وبعض تطبيقاتها

بسم اللّه الرحمن الرحيم

7	
9	 :
9	 1.1
11	 2.1
14	 3.1
16	 4.1
18	 5.1
21	 6.1
23	 :
23	 1.2
26	 2.2
29	 3.2
31	 4.2
37	 5.2
41	 :
41	 1.3
48	 2.3
49	 3.3
51	 :
51	 1.4
52	 2.4
55	 3.4
58	 4.4
62	5.4
71	 6.4
75	 7.4

 :
 1.5
2.5
 3.5
 4.5
5.5
 6.5
7.5
 8.5
 9.5
10.5
 :
 1.6
 2.6
3.6
4.6
5.6
6.6
 :
 1.7
2.7
 3.7
4.7

		5.7
123		
127		6.7
127		7.7
131		8.7
		9.7
134		
135		:
135		1.8
136		2.8
142		3.8
146		4.8
150	•••	5.8
152		:
152		1.9
160		2.9
		3.9
167		
169		:
169		1.10
174		2.10
179		3.10
182		
185		
187		

توطئة

(LORENTZ)

(Becquerel)

.

(Laue)

(... .

1.1
1895 ()
(Würzburg) (Röntgen)

(Morgan) 1785

(Hittorf) (Plucker) 1895
) 1869
((W. 1879 Crookes)

9

() (Würzburg) x (x rays)

(Röntgen)

. (Lenard)

:

(V. Kölliker)

•

2.1

. ...

.

·

. ()

. (Photon)

. (Compton)

(De Broglie) . ":

n .

 $\begin{array}{ccc} & & & \lambda \\ & : N & & C \\ & & \end{array}$

 $\lambda = \frac{C}{N}$

(Planck)

·

E = hN

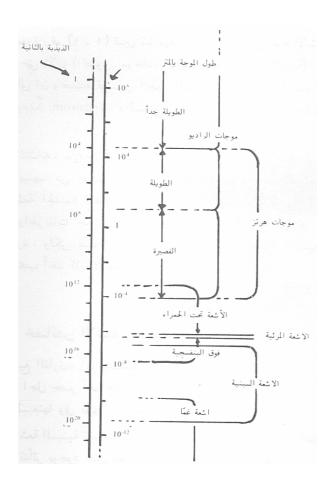
. (

и и :

()

.

•


.(1 1)

. (Angstrom :Å)

3.1

. 0,001 Å <λ< 1000 Å Å

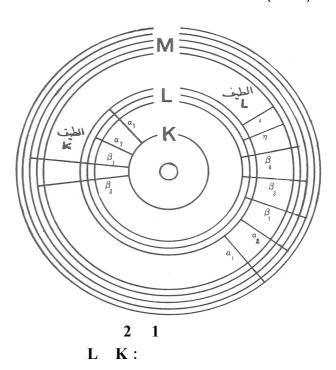
.

1 1

()

)

4.1


:

; ;

.

: K L M...

M L K . (2 1)

. 11 11 11 11

. z ()

. A

•

5.1

. " " 1

: $\lambda_m \leq \lambda \leq \lambda_M$

2

. . .

)

. (

 $\begin{array}{c} .\lambda_m \\ \text{(Anode)} \end{array}$

. 1914 (Hunt) (Duane)

300 000

 $\lambda = 0,005 \text{ Å}$

.

•

()

•

. λ_m

.(Laue)

· .

K, L, M, N, O... K

(Moseley's Law) 6.1 () K L K K L M . (2 1) K L K K K ... L ... M L K 1915 K K

21

$$\sqrt{\frac{N}{R}} = \sqrt{\frac{3c}{4}} (Z^{-1})$$

$$= R$$

$$= C$$

$$= Z$$

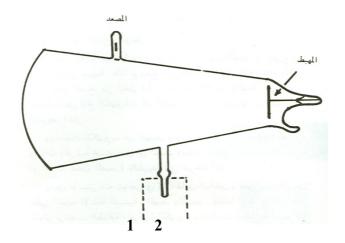
"L" (Lyman)

(Hafnium) (Coster) (Masurium) (Tacke et Noddak)

. ... (Rhénium)

.

. $E_c = Ve \\ = E_c$


 $= E_c$ = V = e

:

.

1.2

. (1 2)

. (Edison)

•

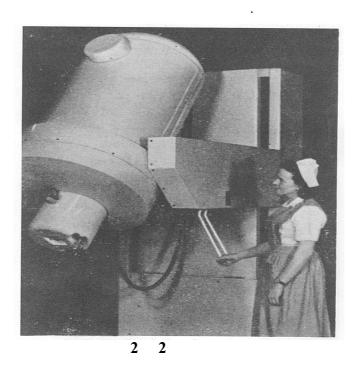
(Coolidge) (General electric Company) (Joule) (K

50)

1.2.2

) 60 50 400 220 110 (Ampère) 12 5 . (12 volts) () (Redressé) (SF_6) (5.1) (SF_6) (Magnetic Core wound)

.


(Demi.onde)
(Graetz) (Onde entière)

(Van de Graaff) 2.2.2

)

28

(2 2) (N_2)

340 (Betatron) .

(Synchrotron) . (synchrocyclotron)

. (System of Florida)

) . (3.2

1

. 2

.

()

4.2

(%97)

31

.

. ()

.

(Photo-électrons)

()

· :

```
200
                                                    .(
      )
                                       . (
(Geiger)
 )
                                                               (
                                                                 3.4.2
                                                  1946
                   (30.10<sup>-6</sup>Ampere)
                                                                (CdS)
```

34

(Si) (Ge)

77 : . (

(Roentgen)) (U.E.S) 0.001293 . (

röentgen – equivalent – physical) (rep)

(93 ergs) 93 .

 $^{7}10x4,18$: . (1 cal=4,18x10 7 ergs)

()

180 . (Drosophile)

. ...%90 500 %50

5.2

E = h N

 $N = \frac{C}{\lambda}$

·

 $E = \frac{hC}{\lambda}$

1 2

.

·

. (Porosity)

,

1 2 3 (... d

39

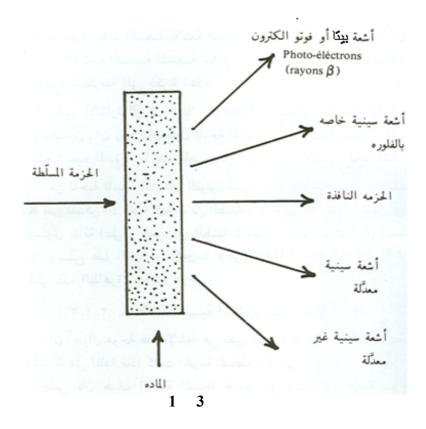
(Bragg)

 $2d \sin \theta = n\lambda$

: n

n = 1, 2, 3...

θ.


 λ d

.

: .

. п п

1.3

:

. ()

. ()

k . K

(Barkla)

K L

.L L (Auger)

2.1.3

K

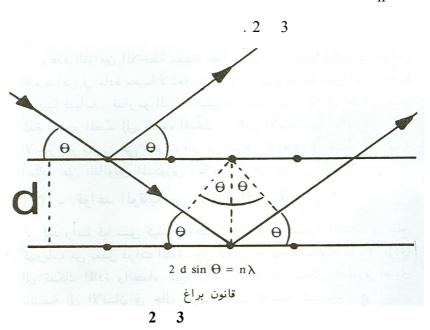
K (Compton) 3.1.3 (Debye) (Compton))) (.(E_0 E $. E_0 \\$

 $(\beta \text{ rays}) \qquad \qquad 4.1.3$

(De Broglie)

. K,L,M...

(Geiger)


5.1.3

) . (1912)

 $2d \sin \theta = n \, \lambda$

= d $= \lambda$

= n

1

 $I_x = I_0 e^{\mu}$

 $= I_{x}$ = X

. = μ

·

ho ($\mu/
ho$) . . .

•

·

.

.

() . 0,5

·

. п п

и и

·

2.4

...
(molécules)

...

. ()

.

 (S_iO_2) (Quartz) () :

. "

. (C)

.

•

.

.

()

. (

.()

60 40 . 60

(Motif) ()

(Vecteurs)

•

 \vec{c} \vec{b} \vec{a}

: .γ β α

:

a = b = c

 $() \qquad 90 = \gamma = \beta = \alpha$

 $(\qquad \neq) \ a = b \neq c$

 $90 = \gamma = \beta = \alpha$

.

 $a \neq b \neq c$ $90 = \gamma = \beta = \alpha$

:

$$a = b = c$$

 $90 \neq \gamma = \beta = \alpha$ و

:

$$a = b \neq c$$
$$90 = \beta = \alpha$$

$$120 = \gamma$$

:

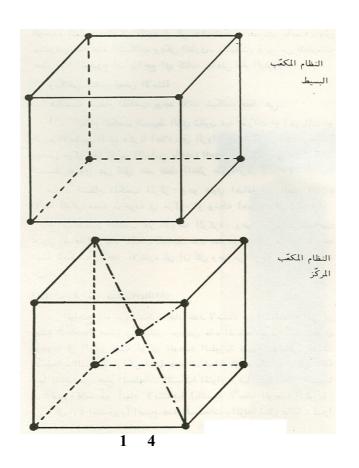
$$a \neq b \neq c$$

$$90 = \gamma = \alpha$$

$$90 \neq \ \beta$$

:

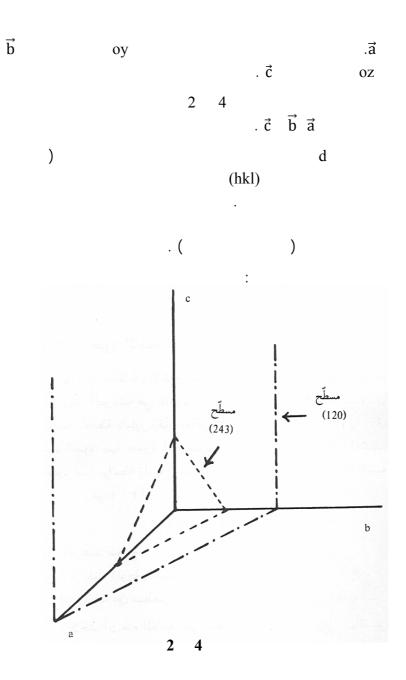
$$a \neq b \neq c$$


$$90 \neq \gamma \neq \beta \neq \alpha$$

.

()

.


(Bravais) 14 (noeud) 4 . (1 . (1 4 (Miller) 4.4 (noeud) (20)

:

 $(ox, oy \ et \ oz)$ $(\vec{a}, \vec{b} \ et \ \vec{c})$ \vdots $ox \qquad (x,o,o)$ $oy \qquad (o,y,o)$ $oz \qquad (o,o,z)$

y \mathbf{X} $(\frac{1}{x}, \frac{1}{y} \text{ et } \frac{1}{z}) : \qquad \qquad z$ $\cdot \frac{1}{z} \quad \frac{1}{y} \quad \frac{1}{x} \qquad (h, k, l)$ (1,0,0)ox . (0,0,2) oz (0,3,0) $1 = \frac{1}{1} = 1$ $\frac{1}{3} \quad 3$ $\frac{1}{2} \quad 2$. 3 2 6: (6 2 3) (hkl) (2,00) ox (0,0,4)(0,6,0)oz oy $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{4}$ 2 3 2 6 ox (3,00) $\vec{\mathsf{a}}$ ox

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + + \frac{l^2}{c^2}$$

3)

θ

. (2

$$2 d \sin \theta = n \lambda$$

$$= n$$

 $= \lambda$

= d

d

 $2 d \sin \theta = n \lambda$

$$2\frac{d'}{2}\sin\,\theta = n\;\lambda$$

 $2 d' \sin \theta = 2n\lambda = n'\lambda$

n'
(n =1)

 $.(h,k,l) \\ .$

θ

: θ

 $_{ heta}$

.

.

θ . F (h,k,l)

. (F = facteur de structure) : f

 $F = \sum_{J_j} f_j \exp [-2 \pi i (hx_j + k y_j + l z_j)]$

= h,k,l= j

.j = x_j , y_j et z_j $1/2 = z_j$ $1/2 = x_j$ (Nombres purs)

 $I = Lp F^2$

(Coefficient de Lorentz) = L

d = P

)
$$.(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$
 (0,0,0)

$$F = f \left[exp - e\pi i (0+0+0) + exp - 2\pi i (h/2+k/2+1/2) \right]$$

$$F = f \left[1 + exp - \pi i (h+k+1) \right]$$

$$(...7 5 3 1) (h+k+1) = F$$

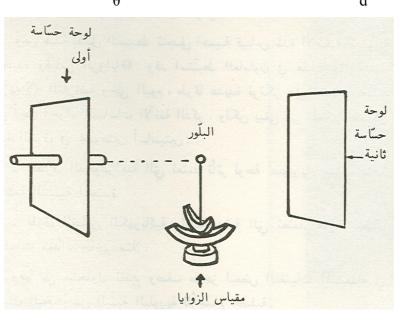
$$(...8 6 4 2) (h+k+l) 2f = F$$

h+k+l h+k+l

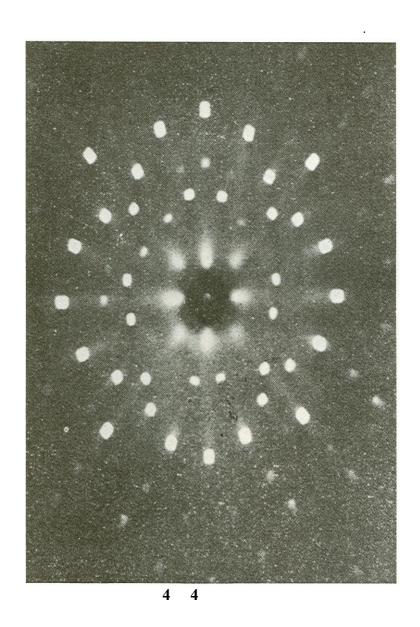
.

: θ

:


.

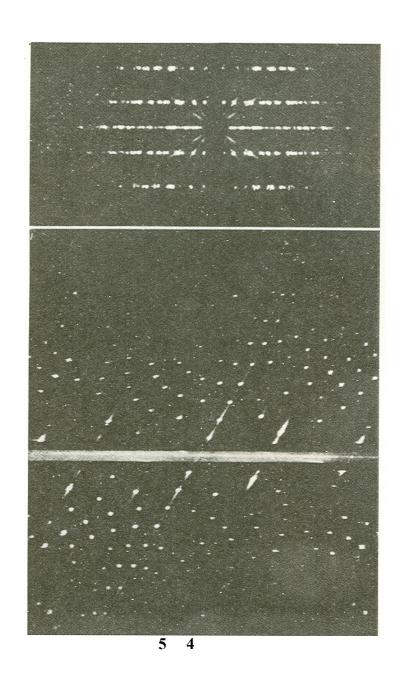
.


·

(Laue) 1.5.4

a . c b .

) (3 ()) . . (.(3


2.5.4 θ .

 $2d \sin \theta = n \lambda$

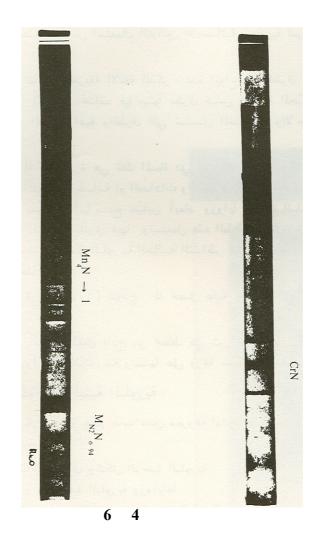
(weisenberg)
. 360
. (5 4)

. 45 **3.5.4**

(a)

(Debye-Scherrer)

(6 4)


. 6.4

; ; ;

: :

. ()

•

θ

.d

.

... : ... :

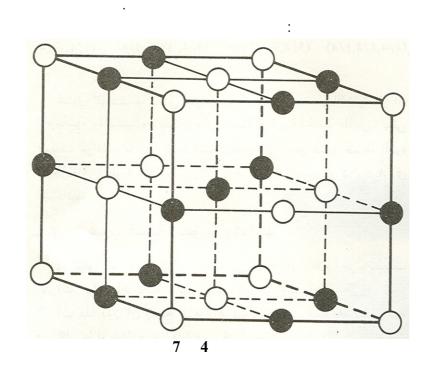
... : .

1.6.4

Na Cl

;

 $(\vec{a}, \vec{b} \text{ et } \vec{c})$. 90


$$(5,63^{\circ}) \qquad 5,63$$

$$: (7 \qquad 4 \qquad)$$

$$: \qquad (0,0,0) \left(\frac{1}{2},\frac{1}{2},0\right) \left(\frac{1}{2},0,\frac{1}{2}\right) \left(0,\frac{1}{2},\frac{1}{2}\right)$$

$$: \qquad (\frac{1}{2},\frac{1}{2},\frac{1}{2}) \left(0,0,\frac{1}{2}\right) \left(\frac{1}{2},0,0\right) \left(0,\frac{1}{2},0\right)$$

2.6.4

 $(3,56^{\circ}A) {^{\circ}A} 3,56$ \vdots $(0,0,0) (\frac{1}{2},\frac{1}{2},0) (\frac{1}{2},0,\frac{1}{2}) (0,\frac{1}{2},\frac{1}{2})$ (1/4,1/4,1/4) (3/4,3/4,1/4) (3/4,1/4,3/4) (1/4,3/4,3/4)

.

°A 5,65 °A 5,43

7.4

· ·

·

(

(Oxides, sulfides...)

 Mn_2N (Azote)

 $Mn_2N_{0,92}$

 $Mn_2N_{0,86} \label{eq:mn2N086} .(N) \qquad \qquad (Mn)$

.

•

·

.()

 (Mn_2N) (Mn_4N)

(Mn)

 $(Mn_2N) \qquad \qquad (Mn_4N) \qquad \qquad .$

. (Mn₂N) (Mn₄N)

<u>.</u>

 $(Mn_2N_{0.86}$.et $Mn_2N_{0.92})$

.

 Mn_2N

F . **f**

.

0,9

```
f
      (0,9f)
      (l-x)f
                                     (x)
          . X
               . M n_2 N \\
                                 (
                 Mn_{2}M_{0.86}
             )
                                                    .(Mn_2N_{0.92})
                                         (
                                    f
                . %1
                                                            3.5
                            )
                                                         (
                     75
                                          25
           ( )
%75
                                    %25
```

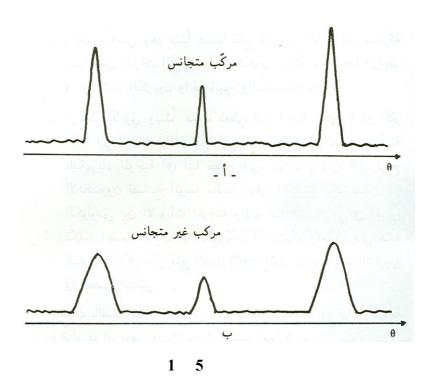
```
(
                                (Nœud)
                     X
                                             .(1-x)
                           Fe_xCu_{(1-x)}
В
                     A
                                           .(A_xB_{l-x})
         X
                          B A
           f_A
                  A
                                           f_{\mathrm{B}}
                                                В
                                                . f
                        f = xf_A + (l-x)f_B
                  f
                                      . X
A
                             В
                                A
                A
                                              В
                                        .B
                                            A
(0,0,0)
                                          A
        (1/2 , 1/2 , 1/2)
                                                      В
,1/2)
                                              F
                                      .(0,0,0)
                    F
                                                  В
                                                       1/2 ,1/2
```

%50 %50

.%50 %45

.

 $\begin{matrix} \theta \\ d \end{matrix} \qquad .d \\ \theta \end{matrix}$


KCl NaCl 5,63:

NaCl . 6,29

KCl

 $(Na_xK_{l-x}Cl)$

KCl NaCl . d θ [ממל] ממל d NaCl KCl d .d θ $Cr_{l-x}V_xN$.NaCl (1

(Van der waals – London) .(Ar) (Ne)

. (NaCl)

.

 θ

. ()

.Na₆Cl (1/2 , 1/2 , 1/2)

(7 4)

: .

.

(1/8)

:

 $4 = (1/4 \times 12) + 1$

:

 $4 = (1/8 \times 8) + (1/2 \times 6)$

. NaCl:

.

•

.

.

7.5

(Moseley)

)

. (

(K,L ou M)

()

·

·

.

·

 \mathbf{f}

•

1953 (Guinier)

8.5

1920

.14000 1 .

;

...

9.5

. ()

· :

. 1945

. ()

()

 $.(CO_2)$

(...

HCOOH = H_2 + CO_2

 $(Ur\acute{e}e) .(H₂O)$

. (dextrose)

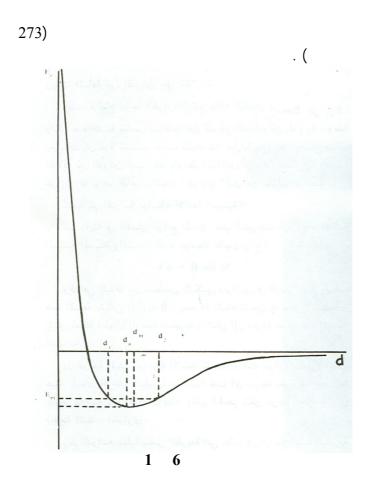
900

10.5

(Molécules géantes ou (monomère)

macromolécules)

(Polymérisation)


(Laue) . ()

.

2.6

. 4

. ...

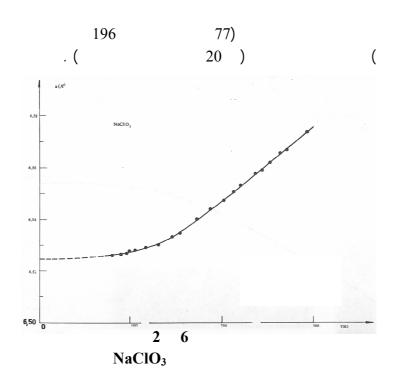
(1 6) . "d₀"

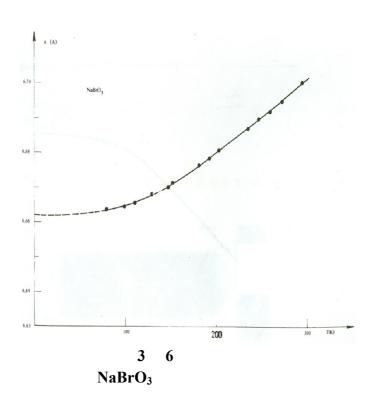
 $d_0 \\$

 E_{pl} $\begin{array}{cc} E_{po} & \\ .d_2 & d_1 \end{array}$ $.d_2$

 d_0 $d_{m} \\$ $.d_{m} \\$

 $2d \sin \theta = n \lambda$


d


θ.

) (Helium)

6) (3 6) (2

.NaBrO₃ NaClO₃

. ()

(Ehrenfest)

:

·

4.6

.

(axe)

•

·

. ()

·

(Hund)
. L

. .

. (Spin)

S

. (S L)

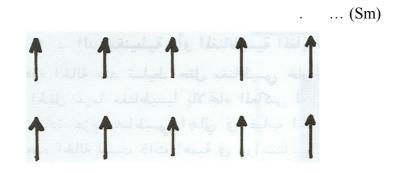
() .

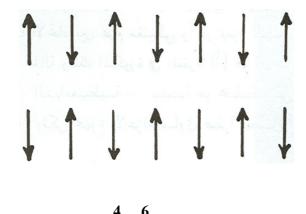
•

1.4.6

2.4.6

·


()


3.4.6

.(4 6)

. (Curie : Tc) :

... (Ti) (Cr) (Mn)
(Tb): (Nb) (Gd)

4.4.6

 $.(N\acute{e}el:T_N)$

(4 6)

.

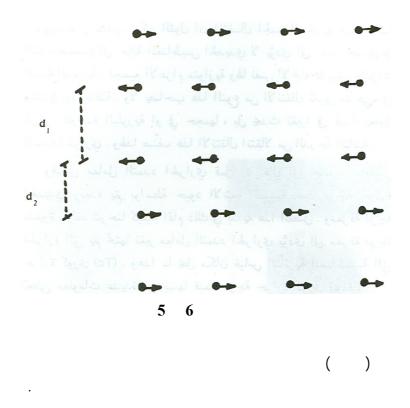
.()

.

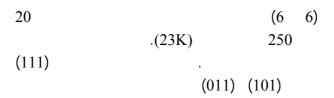
.

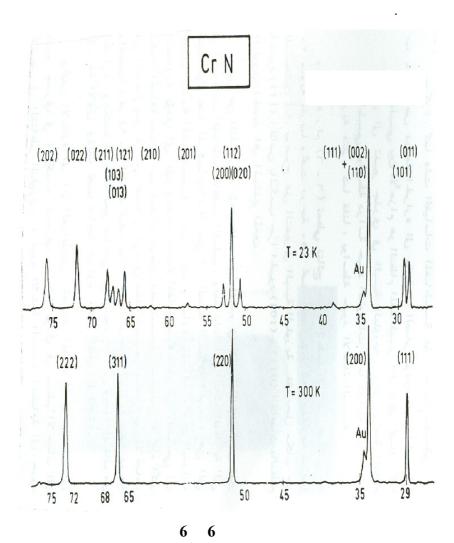
 $(T_N \text{ ou } T_C)$

·

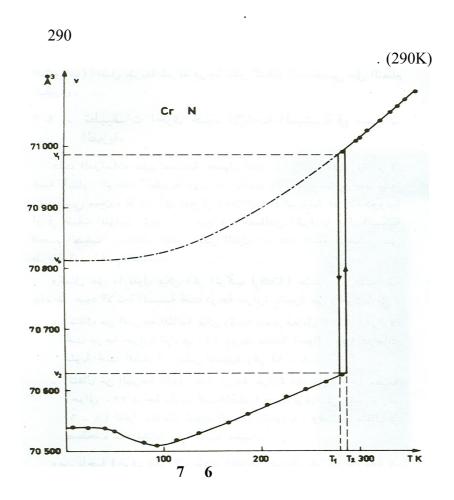

. (Tc) . (Tc)

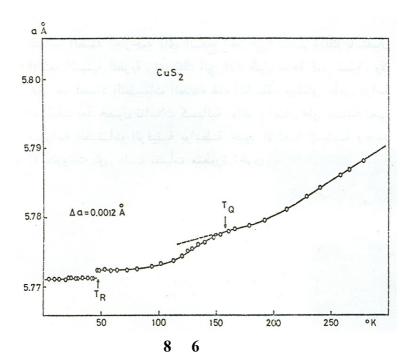
.


. (d (hkl)


. (5 6)

 (d_1) (d_2)


: (CrN)
(20)


(CrN)

(7 6) .

() (CuS₂) ... (CuS₂) ... (CuS₂) ... (8 6) ... (40 (230) (8 6)

. (Mott) ()

. ()

. ()

.

1895 ()

.

(stériles)

()

) . (

2.7

(Albers-Schönberg) 1903

(1 7)
. ()
(C.R. Barden) 1906

.

.

.

.

(1)		
320 300	600 500	
1500 800	3000 1600	
5000	12000	
(2)		
(36 12) 170	(12) 250	
	(4) 800	
(24) 2000 1500		

(1

(1) (2)

1 7

:

:

(Mendel)

. ...

•

400 (Snel) 1933 .

2 7

3 7

(Leucémie)

50 25 . . %70

. 20 18

2 71

...

(ionisé)

(Lacassagne)

()

. ()

.

600

.

%50 .

;

.

•

30) 0,1

. (

(Fluroscopie)

3.7

600 40 243 19 :

%45

%24

%11,9 15 **%9**

%6

... %1,4 ... %1

. 6

25

4.7

(Chesley)

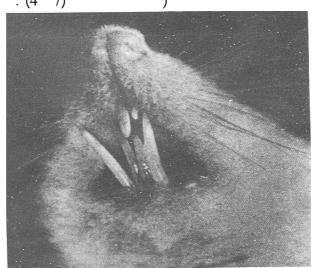
24

123

:

...

200 : . 300


: %5

3200

125

· ·

. (4 7)

4 7

: .

()

.

...

:

. (N_2) . (Enzyme)

.

: : 1.7.7

.

: 2.7.7

1915 .

. (Oestrogènes)

: : 3.7.7

. (Helminthes)

•

.() (Thorax)

. (Testostérone)

. (Goudron)

8.7

· ()

· :

· :

(250 50)

н н .

.

.

.

.(Triton)

·

·

. 20

.

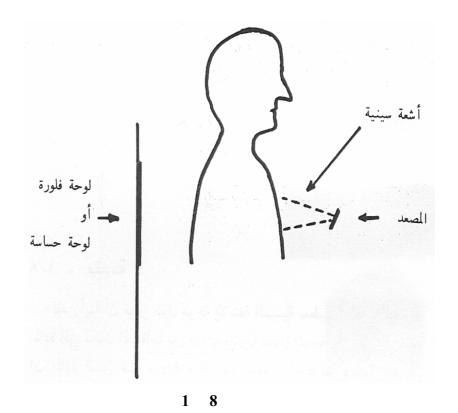
()

. 200

9.7

134

.

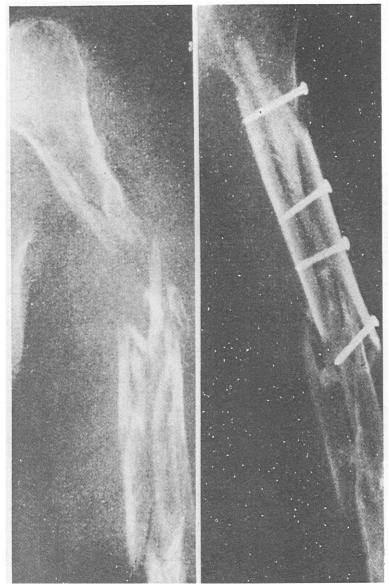

.(1 8) ()

.

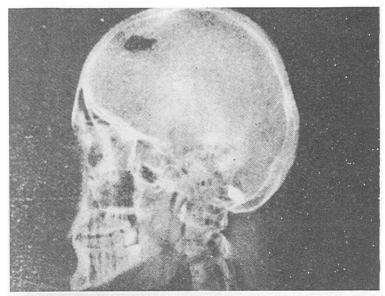
1895 /

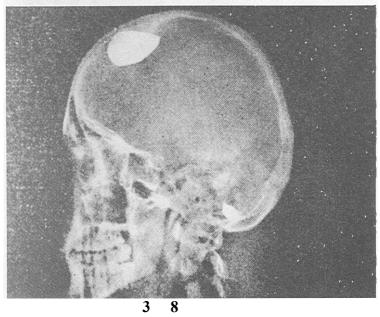
·

135

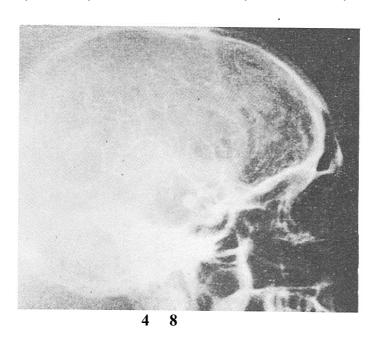

:

и


...


. 2 8

: 3 8


2 8

:

() 4 8
(Anévrisme d'artère cérébrale)
. (J. Staline) (F. D. Roosvelt)


```
.(Vitamine A)
                    (Hypérostose corticale)
                                                      5 8
                                                   (Cubitus)
                                (Vitamines A et D)
)
(densitomètre)
                                                       ( )
            (...
```

:

0,4) . (0,4g/cm³)

()

3.8

1.3.8

. ()

2.3.8

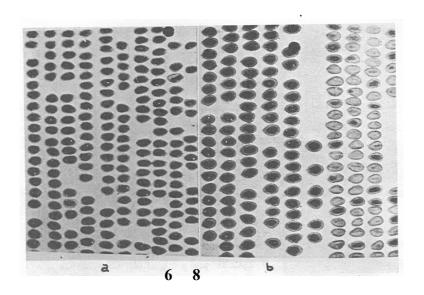
(Diaphragme)
. (fente)

3.3.8

.()

.1949

4.3.8


·

5.3.8

(Polychomatique)

 $(K\alpha)$.

(6 8) (b)

. (

6.3.8

:

(Cope et 1954 . Rose)

.(

7.3.8

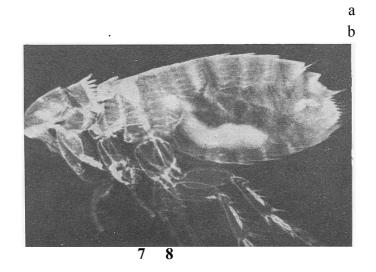
·

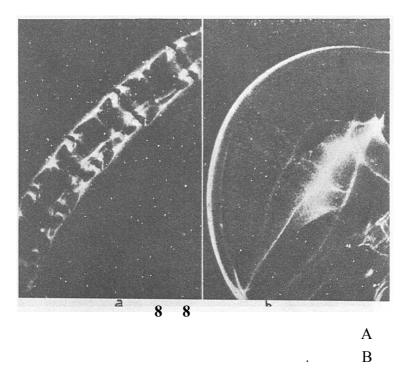
. (35x40cm)

4.8

1898 (Haycock)

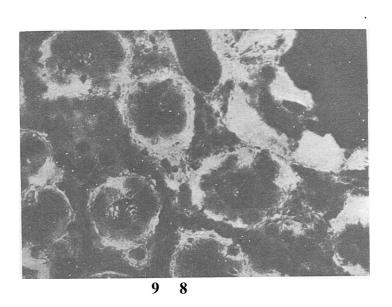
(Neville)

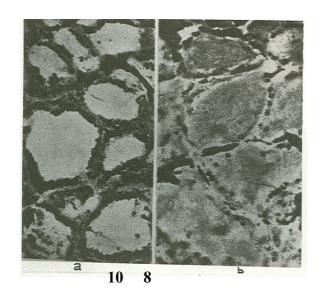

1913
(Dauvilier) (Goby)
. (Ladarque)
(4000 à 8000 V)
()
. ()
. (20000 à 30000 V)


(CLARK)

. 7 8

. (Baryum)

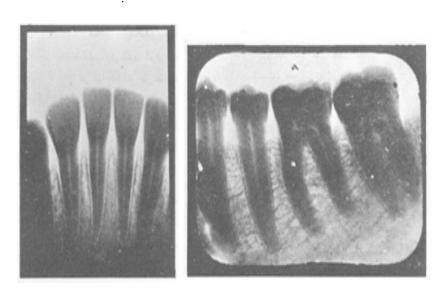

. 8 8 .


(Ladarque)

9

(10 8)

A B


5.8

(abcés)

) () (.

(11 8)

,

1.9

1.1.9

· :

4 (80KV) . (4 cm) (110KV) 110 . (10 cm) 10 (6 6 (200 KV) 200 . cm) (230 KV) (Laiton) 230 . (6 cm) (1000 à 2000 kv) 20 . (10 à 20 cm) 20 10 (75 cm) 75 (100 mA)0,1 (400 mA) 0,4 (150 cm) 150 2.1.9 ()

•

.

•

3.1.9

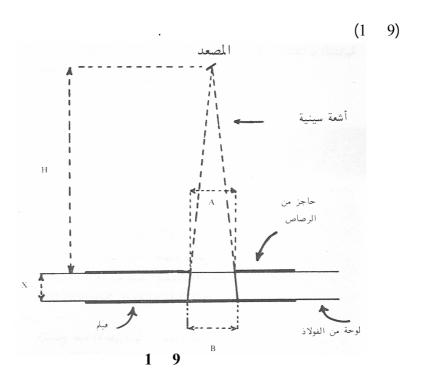
·

 $I_{x}=I_{o}e^{-\mu}x$ $.B\quad A$)

(

 $I_{A} = I_{o}e^{-\mu}x$ $I_{B} = I_{o}e^{-\mu}(x-D)$

(D)

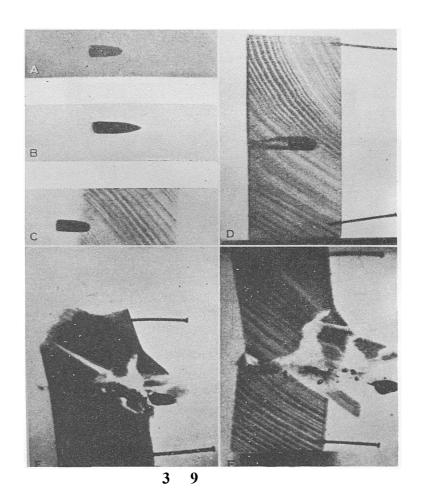

(A)
(B)
. (A)

X

H
: ((

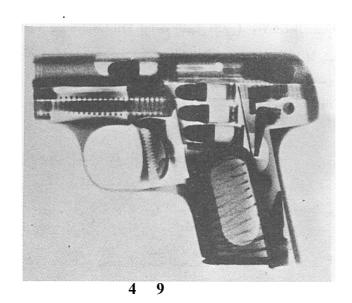
 $H/H+X = \frac{A}{B}$

5.1.9


(600 000 KW)

.

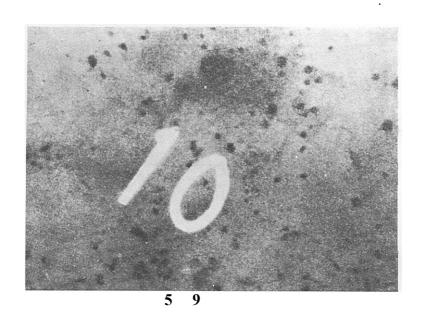
2 9 .

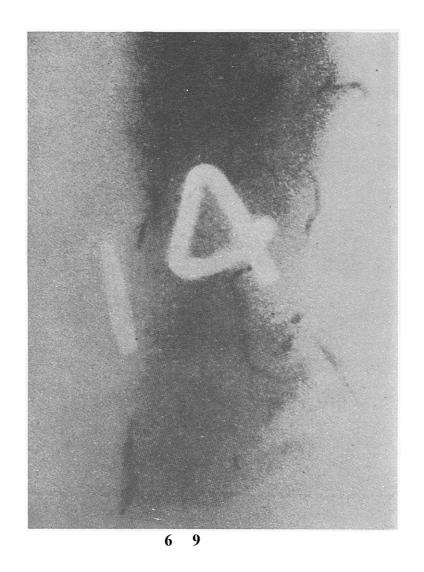

•

(10 à 20 $$\rm .($) MILLIONS DE VOLTS)

6.1.9

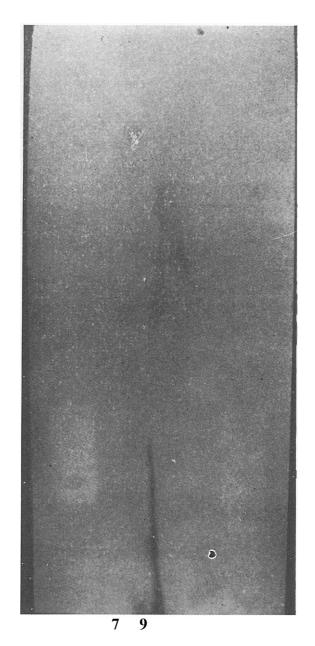
7.1.9

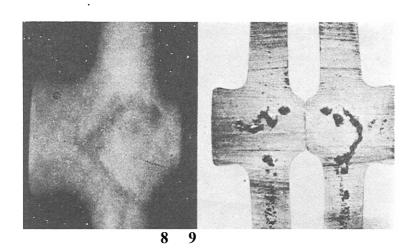

•


. (Kα) (Kα)

) . .(Kα) (

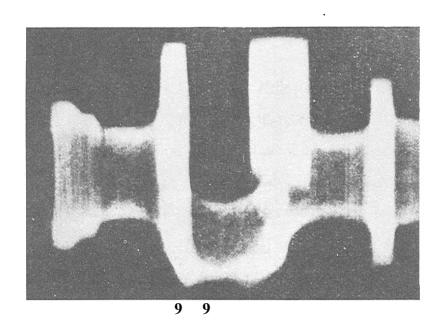
2.9 1.2.9


(5 9)

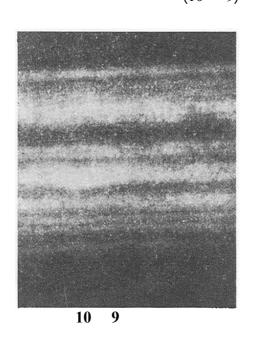


(7 9) .

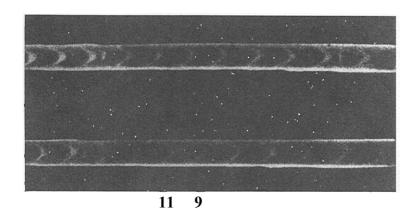
. 23



()


2.2.9

3.2.9

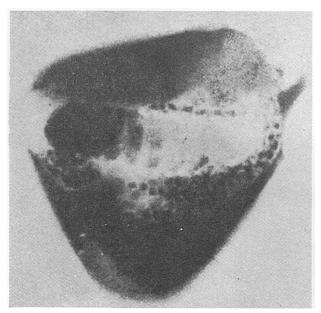


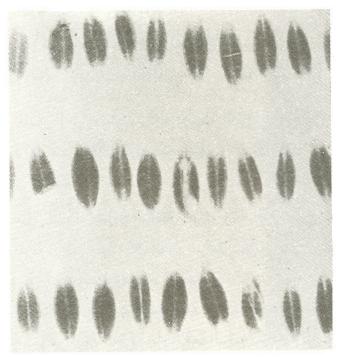
4.2.9

(10 9)

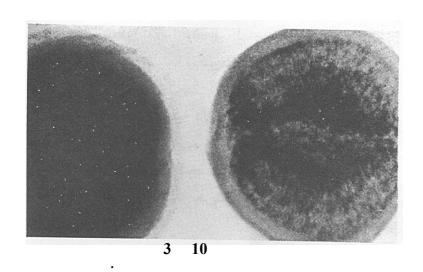
(11 9)

3.9


1.10


1.1.10

.


(1 10) (2 10)

.

: (3 10)

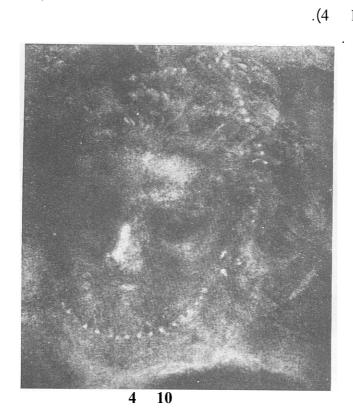
2.1.10

Muller) 1916 (Runner)
(Muller) 1927
(Drosophila)

•

. (Cochliomyia hominivorax)

.(Cobalt 60 : ⁶⁰Co) 60


. (Ceratilus capitata)

: (Dacus dorsalis) (Anestrepha ludens)

.

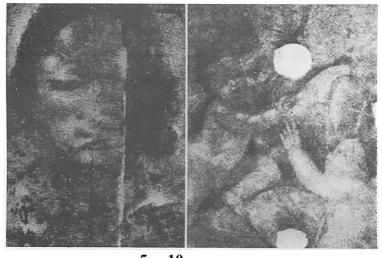
2.10

(Veronèse) (Burroughs)
.(Mars et Venus) " "
(Radiographie)
)
.(4 10


```
(5 10)

(La Madone de la : (Raphaêl)

(La Madone Carvach) Tour)

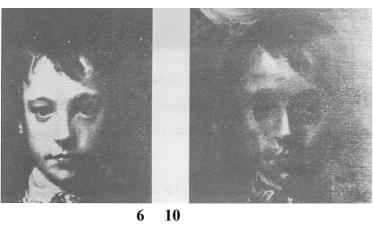

(5 10 )

( )

( )

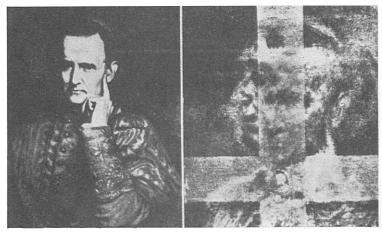
(National Art Gallery)
```

.


5 10

(La madone de la Tour) : (La Madone Carvach) :

.


(Gainsborough) (L'enfant bleu)
. (Huntington Art Museum)

```
.(6
      10
                        )
  (
                  )
```


(Rambrandt) (Mc (Healy) 7 10 .Closky)) . ((Lenain) (

) . 1979 (1978

:

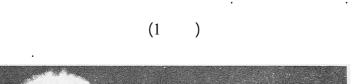
. ()

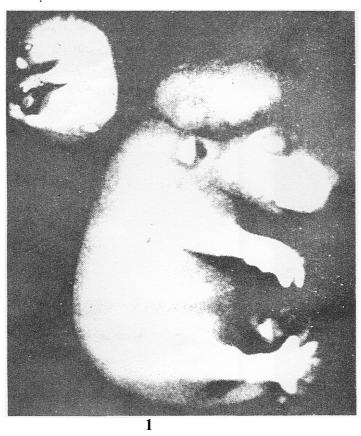
.

.

()

3.10


. ...


(Anhydrite) (Illite) (Kaolinite)

•

.

181

1 – Les Applications des rayons X

JJ. TRILLAT

Les presses Universitaires de France Paris (1930)

2 – X Ray Emission spectrography in Geology

I. ADLER

Elsevier Publishing Company – (1966)

3 – Les rayons X et leurs applications

G. L. CLARK

Traduit Par

M. JORAND

Dunod - Paris - (1961)

4 – Théorie et Technique de la radiocristallographie

A. GUINIER

Dunod - Paris - (1956)

5 – Les rayons X et leurs applications

H. BRASSEUR

Desoer - Liège - (1945)

6 – Understanding Light

B. TANNENBAUM and M. STILMAN

Fawcett Publications – New York (1968)

7 – Introduction à la cristallographie et à la chimie structurale

M. VAN MEERSSCHE

et J. FENEAU – DUPONT

Vander – Louvain (Belgique) 1973

8 – The Structure of matter

M. KARAPETYANTS and S. DRAKIN

Mir publishers – MOSCOW 1974

9 – La physique du metal

P. PEGUIN

Presse Universitaire de France (Que Sais Je?) 1970

10 – Les rayons X

LOUIS ROUGEOT

Presse Universitaire de France (Que Sais Je? N° 79) 1974

C. LEGRAND

11 – La radiocristallographie

C. LEGRAND

Presse Universitaire de France (Que Sais Je? N° 1243) 1967

12 – Fundamental principles of Alveolo – Dental radiology

J. A. POLLIA

Dental Items of Interest Pub. Co.

Brooklyn, New York

13 – The crystalline state. (Vol. I)

L. BRAGG

G. Bell and Sons Ltd 1962

14 – The Use of isotopes in pesticides and Pest Control

Proc. of a symposium – Beirut – March 1974

15 – Arab Dev. Journal for Sc. And Tech.

Vol. I march 1978

16 – Al Mustansiriyah Journal of Sc.

Vol I. Dec. 1976

Baghdad – Iraq.

Excitation

Monochromatic

X rays

Cathode rays

Electron

Tube

Transition

Refraction

Diffraction

Ion

Paramagnetism

Optics

Single Crystal

Polymer

Focus

Function

Susceptibility

Brilliance

Ionization

Induction

Caogulation

Interference

Radiography

Interaction

Symmetry		
Activation		
Photoconductivity		
Superconductivity		
Alternating Current		
Trigonal	()
Triclinic		
Molecule		
Induction		
Peak		()
Beam		
Diffraction		
Cell		
Unit Cell		
Circuit		
Function		
Diamagnetism		
Atom		
Tetragonal	()
Ionic bond		
Covalent bond		
Spin		
Hexagonal	()
Calory		
Ion		
Lattice		
Reciprocal lattice		
Semiconductor		()

Intensity				
Chemical formula				
Photo chemical				
Potential energy	()	
Wavelength				
Spectrum				
Atomic number				
Orbital moment				
Magnetic moment				
Node				
Crystallography				
Phospherescence				
Anoemia				
Fluorescence				
Photon				
Voltage				
Index				
Iris			()
Quartz				
Electrostatic				
Electron				
Vector				
Microscope				
Transformer				
Quartz				
Orthorhombic		()	
Reticular plan				
Anode				

Coefficient		
Magnet		
Ferromagnetism		
Antiferromagnetism		
Helimagnetism		
Paramagnetism		
Diamagnetism		
Rectifier		
Goniometer		
Cubic	()
Prism		
Cathode		
Equilibrium position		
Isotope		

Induction Coil