Lecture Notes on :

FUNDAMENTALSOF

P HYS \| C S

HALLIDAY \& RESNICK

Chapters

1. Measurement
2. Motion Along a Straight Line Vectors
3. Motion in Two and Three Dimensions
4. Force and Motion - I
5. Force and Motion - II
6. Kinetic Energy and Work
7. Potential Energy and Conservation of Energy

Physics is the most interesting

subject in the world

because
it is about how the world works

Chapter 1 : Measurements

$>$ There are two kinds of physical quantities
$>$ Basic quantities: length, time, mass, temperature, pressure, and electric current.
> Derived quantities: all other physical quantities
$>$ For example, speed is defined in terms of length and time .
$>$ The unit of each quantity is a unique name. Example: meter (m) for the quantity length.

Three Systems of Units (SI)

French (international) system [SI]: MKS: meter, Kg, second
French system: CGS: centimeter, gram, second
British system: FPS: feet, pound, second

The International System of Units (SI)

$>$ Seven quantities are base quantities

	Jplole 1-1	
Units for Three SI Base Quantities		
Quantity	Unit Name	Unit Symbol
Length	meter	m
Time	second	s
Mass	kilogram	kg

Temperature

: Kelvin
Electric current : ampere
Luminous intensity : candela
Amount of substance: mole

The International System of Units (SI)

> Example of derived quantities: SI unit for power (watt W) is

$$
1 \mathrm{watt}=1 \mathrm{~W}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}
$$

(kilogram-meter squared per second cubic)
$>$ Speed (velocity) $\quad v=$ distance $/$ time $=\mathrm{m} / \mathrm{s}$
> Acceleration
$\mathrm{a}=$ distance $/$ time $^{2}=\mathrm{m} / \mathrm{s}^{2}$

Length

The standard of meter was defined

1. one ten-millionth of the distance from the north pole to the equator
2. the distance between two fine lines near the ends of a platinum-iridium bar (the standard meter bar)
3. 1650763.73 wavelengths of an orange-red light emitted by atoms of krypton-86
4. Length of the path traveled by light in a vacuum during a time interval of 1/299 792458 of a second

Standard of Time

1. Earth's rotation has been used
2. Atomic clocks were then developed

- A standard second based on the cesium clock is:

One second is the time taken by 9192631770 oscillations of the light (of a specified wavelength) emitted by a cesium- 133 atom.

Why are atomic clocks used to measure the most precise standard second?

Because these atoms are very consistent

Standard of Mass

$>$ The SI standard of mass (kilogram) is a platinum-iridium cylinder

Second Mass Standard

$>$ The masses of atoms are measured by the mass of the carbon-12 atom
$>$ This atom has a mass of 12 atomic mass units (u)
$>$ The relation between the two units is

$$
1 \mathrm{u}=1.66053886 \times 10^{-27} \mathrm{~kg}
$$

Density

Density ρ is the mass per unit volume

$$
\rho=\frac{m}{V} .
$$

$>$ The units are $\mathrm{kg} / \mathrm{m}^{3}$ or $\mathrm{gm} / \mathrm{cm}^{3}$
The density of water ($1.0 \mathrm{gm} / \mathrm{cm}^{3}$) is often used as a comparison

Dimensional Analysis

$>$ Dimension [] denotes the physical nature of a quantity.
$>$ Whether a distance is measured in units of feet or meters, it is still a distance.
$>$ We say its dimension is length.
$>$ The symbols of the dimensions of:
length, mass, and time are L, M, and T
$>$ The dimensions of speed v are written

$$
[\mathrm{v}]=\frac{\text { distance }}{\text { time }}=\frac{L}{T}=\left[L T^{-1}\right]
$$

Examples The dimensions of

\rightarrow Area $A \quad:[A]=L^{2}$
$>$ Acceleration: $[a]=\frac{\text { [Velocity] }}{[\text { Time }]}=\frac{L T^{-1}}{T}=L T^{-2}$
$>$ Force $\mathrm{F}:[\mathrm{F}]=$ acceleration \times mass $=[\mathrm{a}] \times$ [mass]

$$
=\mathrm{MLT}^{-2}=\mathrm{MLT}^{-2}
$$

$>$ Pressure $=($ Force $/$ area $)=\mathrm{MLT}^{-2} / \mathrm{L}^{2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
$>$ Work $=$ Force \times displacement $=L M L T^{-2}=\mathrm{ML}^{2} \mathrm{~T}^{-2}$
$>$ Viscosity parameter $=(F \times r / A \times V)$

$$
\begin{aligned}
& =(\text { Force } x \text { displacement } / \text { area } \times \text { velocity }) \\
& =M L T^{-2} L / L^{2} L T^{-1}=M L^{-1} T^{-1} .
\end{aligned}
$$

Units and Dimensions of Famous Quantities

Quantity	Unit		Dimension
	MKS	CGS	
Length	m	cm	L
Mass	Kg	Gm	M
Time	s	s	T
Area	m^{2}	$\mathrm{~cm}^{2}$	$\mathrm{~L}^{2}$
Volume	m^{3}	$\mathrm{~cm}^{3}$	$\mathrm{~L}^{3}$
Speed (velocity)	$\frac{\text { distance }}{\text { time }}=\mathrm{m} / \mathrm{s}$	cm / s	LT^{-1}
Acceleration	$\frac{\text { speed }}{\text { time }}=\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{~cm} / \mathrm{s}^{2}$	LT^{-2}
Force	mass X acceleration $=\mathrm{mKg} / \mathrm{s}^{2}$	$\mathrm{cmgm} / \mathrm{s}^{2}$	MLT^{-2}
Pressure	$\frac{\text { force }}{\text { area }}=\frac{\mathrm{mKg} / \mathrm{s}^{2}}{\mathrm{~m}^{2}}=\mathrm{Kg} / \mathrm{ms}^{2}$	$\mathrm{gm} / \mathrm{cms}^{2}$	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
Work	force X displacement $=\mathrm{m}^{2} \mathrm{Kg} / \mathrm{s}^{2}$	$\mathrm{~cm} \mathrm{~mm}^{2} \mathrm{~s}^{2}$	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$

Changing Units

$>$ Units are changed by a method called chain-link conversion
$>$ We multiply the original measurement by a conversion factor (ratio of units equal to unity)

Example 1 min and 60 s are identical time intervals

$$
\frac{1 \mathrm{~min}}{60 \mathrm{~s}}=1 \quad \text { and } \quad \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=1
$$

Thus, the ratios (1 min)/(60 s) and (60 s)/(1 min) can be used as conversion factors

Examples

to convert 2 min to seconds

$$
2 \min =(2 \mathrm{~min})(1)=(2 \text { míi })\left(\frac{60 \mathrm{~s}}{1 \text { míil}}\right)=120 \mathrm{~s}
$$

to convert 15 inch to centimeters

$$
15.0 \mathrm{in} .=(15.0 \text { in. })\left(\frac{2.54 \mathrm{~cm}}{1 \text { in. }}\right)=38.1^{\circ} \mathrm{cm}
$$

to convert 15 h to seconds

$$
\begin{aligned}
& 15 \mathrm{~h}=15 \mathrm{hX} 1=15 \mathrm{~h} \mathrm{X}\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right)=900 \mathrm{~min} \\
& =900 \mathrm{~min} \mathrm{X} 1=900 \mathrm{~min} \mathrm{X}\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=54000 \mathrm{~s}
\end{aligned}
$$

to convert $10 \mathrm{~km} / \mathrm{h}$ to m / s

$$
\begin{aligned}
10 \mathrm{~km} / \mathrm{h} & =10 \mathrm{~km} / \mathrm{h}\left(\frac{1000 \mathrm{~m} / \mathrm{h}}{1 \mathrm{~km} / \mathrm{h}}\right)=10000 \mathrm{~m} / \mathrm{h} \\
& =10000 \mathrm{~m} / \mathrm{h}\left(\frac{1 \mathrm{~m} / \mathrm{s}}{3600 \mathrm{~m} / \mathrm{h}}\right)=\frac{100}{36} \mathrm{~m} / \mathrm{s}=\frac{100}{36} \mathrm{~m} / \mathrm{s}=2.78 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

to convert $15 \mathrm{~m} / \mathrm{s}$ to km / h

$$
\begin{aligned}
15 \mathrm{~m} / \mathrm{s}= & 15 \mathrm{~m} / \mathrm{s}\left(\frac{1 \mathrm{~km} / \mathrm{s}}{1000 \mathrm{~m} / \mathrm{s}}\right)=0.015 \mathrm{~km} / \mathrm{s} \\
& =0.015 \mathrm{~km} / \mathrm{s}\left(\frac{3600 \mathrm{~km} / \mathrm{h}}{1 \mathrm{~km} / \mathrm{s}}\right)=54 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Samples of Exam Questions

Q. 110^{4} milliseconds is equal to:
(A) $10^{3} \mathrm{~s}$
(B) $10^{2} \mathrm{~s}$
(C) 1 s
(D) 10 s
(E) $10^{-1} \mathrm{~s}$
Q. 2 A cubic box with an edge of exactly 3 cm has a volume of: (volume $=\mathrm{edge}^{3}$)
(A) $10^{-6} \mathrm{~m}^{3}$
(B) $8 \times 10^{-6} \mathrm{~m}^{3}$
(C) $2.7 \times 10^{-5} \mathrm{~m}^{3}$
(D) $6.4 \times 10^{-5} \mathrm{~m}^{3}$
(E) $4 \times 10^{-6} \mathrm{~m}^{3}$
Q. 3 The speed v in m / s of a car is given by $v=b t^{3} \quad$ where the time t is in seconds. The unit of b is:
(A) $\mathrm{m} / \mathrm{s}^{4}$
(B) ms
(C) m / s
(D) $\mathrm{m} / \mathrm{s}^{3}$
(E) $\mathrm{m} / \mathrm{s}^{2}$
(1)

$$
10^{4} \mathrm{~ms}=10^{4} \mathrm{~ms}\left(\frac{1 \mathrm{~s}}{1000 \mathrm{~ms}}\right)=10 \mathrm{~s}
$$

(2)

$$
\mathrm{V}=3 \times 3 \times 3=27 \mathrm{~cm}^{3}=27 \mathrm{~cm}^{3}\left(\frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{~cm}^{3}}\right)
$$

$$
=27 \times 10^{-6} \mathrm{~m}^{3}=2.7 \times 10^{-5} \mathrm{~m}^{3}
$$

$$
\mathrm{m} / \mathrm{s}=\operatorname{unit}(\mathrm{b}) \mathrm{s}^{3} \mathrm{unit}(\mathrm{~b})=\mathrm{m} / \mathrm{s}^{4}
$$

Using the dimensional analysis:
(3)

$$
[\mathrm{v}]=[\mathrm{b}]\left[\mathrm{t}^{3}\right] \Rightarrow \frac{\mathrm{L}}{\mathrm{~T}}=[\mathrm{b}] \mathrm{T}^{3} \Rightarrow[\mathrm{~b}]=\frac{\mathrm{L}}{\mathrm{~T}^{4}}
$$

Then the unit of b is $\mathrm{m} / \mathrm{s}^{4}$
Q. 1 The SI unit of acceleration is:
(A) $\mathrm{m} / \mathrm{s}^{2}$
(B) s / m
(C) $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(D) m / s
(E) kg
Q. 2 A car is traveling at $15 \mathrm{~m} / \mathrm{s}$. The speed of this car is equivalent to:
(A) $45 \mathrm{~km} / \mathrm{h}$
(B) $20 \mathrm{~km} / \mathrm{h}$
(C) $54 \mathrm{~km} / \mathrm{h}$
(D) $11 \mathrm{~km} / \mathrm{h}$
(E) $72 \mathrm{~km} / \mathrm{h}$
Q.3 A cube of edge 30.5 mm , its volume is:
(A) $2.84 \times 10^{-5} \mathrm{~m}^{3}$
(B) $2.84 \times 10^{-6} \mathrm{~m}^{3}$
(C) $2.84 \times 10^{-4} \mathrm{~m}^{3}$
(D) $28.4 \mathrm{~m}^{3}$
(E) $2.84 \mathrm{~m}^{3}$
Q. 11 A cube of edge 30.5 mm , its volume is:
(A) $2.84 \times 10^{-5} \mathrm{~m}^{3}$
(B) $2.84 \times 10^{-6} \mathrm{~m}^{3}$
(C) $2.84 \times 10^{-4} \mathrm{~m}^{3}$
(D) $28.4 \mathrm{~m}^{3}$
(E) $2.84 \mathrm{~m}^{3}$
Q. 1 A man of mass 50 kg . His weight is:
(A) 490 N
(B) 50 N
(C) zero
(D) 98 N
(E) 980 N
Q. 21 Newton is equivalent to:
(A) $9.8 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}$
(B) $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
(C) 1 kg of mass
(D) 1 kg of force
(E) none of these
Q. 1 The SI unit of velocity is:
(A) $\mathrm{m} / \mathrm{s}^{2}$
(B) s / m
(C) $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(D) m / s
(E) kg
Q. 2 A car is traveling at $20 \mathrm{~m} / \mathrm{s}$. The speed of this car is equivalent to:
(A) $40 \mathrm{~km} / \mathrm{h}$
(B) $20 \mathrm{~km} / \mathrm{h}$
(C) $10 \mathrm{~km} / \mathrm{h}$
(D) $11 \mathrm{~km} / \mathrm{h}$
(E) $72 \mathrm{~km} / \mathrm{h}$
Q.3 A cube of edge 47.5 mm , its volume is:
(A) $43 \mathrm{~m}^{3}$
(B) $0.473 \mathrm{~m}^{3}$
(C) $1.072 \times 10^{-4} \mathrm{~m}^{3}$
(D) $47.3 \mathrm{~m}^{3}$
(E) $475 \mathrm{~m}^{3}$

Scientific notation (powers of 10) is used to express the very large and very small quantities.

$$
\begin{aligned}
& 3560000000 \mathrm{~m}=3.56 \times 10^{9} \mathrm{~m} \\
& 0.000000492 \mathrm{~s}=4.92 \times 10^{-7} \mathrm{~s} .
\end{aligned}
$$

Prefixes for SI Units

Factor	Prefix a	Symbol	Factor	Prefix a	Symbol
10^{24}	yotta-	Y	10^{-1}	deci-	d
10^{21}	zetta-	Z	$\mathbf{1 0}^{-2}$	centi-	\mathbf{c}
10^{18}	exa-	E	$\mathbf{1 0}^{-\mathbf{3}}$	milli-	\mathbf{m}
10^{15}	peta-	P	$\mathbf{1 0}^{-6}$	micro-	$\boldsymbol{\mu}$
10^{12}	tera-	T	$\mathbf{1 0}^{-9}$	nano-	\mathbf{n}
$\mathbf{1 0}^{9}$	giga-	\mathbf{G}	$\mathbf{1 0}^{-\mathbf{1 2}}$	pico-	\mathbf{p}
$\mathbf{1 0}^{\mathbf{6}}$	mega- $^{\mathbf{1 0}^{\mathbf{3}}}$	kilo-	\mathbf{M}	10^{-15}	femto-
10^{2}	hecto-	\mathbf{k}	10^{-18}	atto-	a
10^{1}	deka-	h	10^{-21}	zepto-	z

Chapter 2 Motion Along a Straight Line

2.2. Motion
2.3. Position and Displacement
2.4. Average Velocity and Average Speed
2.5. Instantaneous Velocity and Speed
2.6. Acceleration
2.7. Constant Acceleration: A Special Case
2.8. Another Look at Constant Acceleration
2.9. Free-Fall Acceleration

One-dimensional Coordinate System

It consists of:

- the origin (or zero point),
- a coordinate axis: the direction along it is positive. The other direction is negative

Scalars and Vectors

- A scalar quantity can be described by its magnitude only
- A Vector is described with both its magnitude and direction.

A vector can be represented by an arrow:

Position vector

- Its magnitude is the distance between the object and the origin.
- Its direction is positive when the object is in the positive side of axis, and negative when the object is in the negative side.

Displacement Vector

- It is the change of the object's position
- It points from the initial position to the final position of the object
- Its magnitude equals the distance between the two positions.
- SI Unit of Displacement: meter (m)

Average Velocity

Average velocity $=\frac{\text { displacement }}{\text { elapsed time }}$

$$
\langle v\rangle=\frac{\overrightarrow{\Delta x}}{\Delta \mathrm{t}}=\frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}} \hat{\imath}
$$

- x_{2} and x_{1} are the position vectors at the final and initial times
- Angle brackets denotes the average of a quantity.
- SI Unit of Average Velocity: meter per second (m/s)

Example

$$
\begin{aligned}
& \left.\left.\overrightarrow{v_{1}}=\overrightarrow{(x}_{2}-\vec{x}_{1}\right) /\left(t_{2}-t_{1}\right) \quad \vec{v}_{2}=\overrightarrow{(x}_{3}-\overrightarrow{x_{2}}\right) /\left(t_{3}-t_{2}\right) \\
& =(0-(-5)) /(3-0)=5 / 3 \mathrm{~m} / \mathrm{s} \quad=(2-0) /(4-3)=2 \mathrm{~m} / \mathrm{s} \\
& \\
& \quad \overrightarrow{\mathrm{v}}>=\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right) / 2=(5 / 3+2) / 2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Plotted here.

Average Speed

$(s) \equiv \frac{\text { total distance }}{\Delta t}$ (definition of average speed).
speed: the magnitude of velocity
Average speed is always positive
Average velocity could be negative, positive or zero depending on the direction of the partial velocities

SAMPLE PROBLEM 2-1

One drives a beat-up pickup truck along a straight road for 8.4 km at $70 \mathrm{~km} / \mathrm{h}$, at which point the truck runs out of gasoline and stops. Over the next 30 min , he walks another 2.0 km farther along the road to a gasoline station.
(a) What is the overall displacement from the beginning of his drive to his arrival at the station?
Calculation:

$$
\Delta x=x_{2}-x_{1}=10.4 \mathrm{~km}-0=10.4 \mathrm{~km}
$$

Thus, the overall displacement is 10.4 km in the positive direction of the X axis.
(b) What is the time interval Δt from the beginning of his drive to his arrival at the station?

Calculation: We first write $v_{\mathrm{avg} \mathrm{dr}}=\frac{\Delta x_{\mathrm{dr}}}{\Delta t_{\mathrm{dr}}}$
Rearranging and substituting data then give us

$$
\Delta t_{\mathrm{dr}}=\frac{\Delta x_{\mathrm{dr}}}{v_{\mathrm{avg} \mathrm{dr}}}=\frac{8.4 \mathrm{~km}}{70 \mathrm{~km} / \mathrm{h}}=0.12 \mathrm{~h}
$$

$$
\begin{aligned}
\text { So }, \quad \Delta t & =\Delta t_{\mathrm{dr}}+\Delta t_{\mathrm{wlk}} \\
& =0.12 \mathrm{~h}+0.50 \mathrm{~h}=0.62 \mathrm{~h} .
\end{aligned}
$$

(d) What is the average speed $\mathrm{v}_{\text {avg }}$ from the beginning of his drive to his arrival at the station? Find it both numerically and graphically.

Calculation: Here we find

$$
\begin{aligned}
v_{\mathrm{avg}} & =\frac{\Delta x}{\Delta t}=\frac{10.4 \mathrm{~km}}{0.62 \mathrm{~h}} \\
& =16.8 \mathrm{~km} / \mathrm{h} \approx 17 \mathrm{~km} / \mathrm{h} .
\end{aligned}
$$

SAMPLE PROBLEM 2-1

The average velocity is the slope of the straight line connecting the origin to the final position

Instantaneous Velocity and Speed

$$
\lim _{\Delta \mathrm{t} \rightarrow 0} \frac{\overrightarrow{\Delta x}}{} \frac{\overrightarrow{\mathrm{dx}}}{\mathrm{dt}}=\frac{\mathrm{dx}}{\mathrm{dt}} \hat{\mathrm{I}}
$$

- It is the time derivative of the object's position.
- It is obtained at any instant from the average velocity by shrinking the time interval Δt closer and closer to zero
- Instantaneous speed (speed) is the magnitude of the instantaneous velocity vector

Sample Problem \mid 2-3

The position of a particle moving on an x axis is given by

$$
\begin{equation*}
x=7.8+9.2 t-2.1 t^{3}, \tag{2-5}
\end{equation*}
$$

with x in meters and t in seconds. What is its velocity at $t=3.5 \mathrm{~s}$? Is the velocity constant, or is it continuously changing?

$$
v=\frac{d x}{d t}=\frac{d}{d t}\left(7.8+9.2 t-2.1 t^{3}\right),
$$

which becomes

$$
\begin{equation*}
v=0+9.2-(3)(2.1) t^{2}=9.2-6.3 t^{2} \tag{2-6}
\end{equation*}
$$

At $t=3.5 \mathrm{~s}$,

$$
v=9.2-(6.3)(3.5)^{2}=-68 \mathrm{~m} / \mathrm{s} . \quad \text { (Answer) }
$$

Definition of Acceleration

Average acceleration $=\underline{\text { Change in velocity }}$
Elapsed time

$$
\langle\vec{a}\rangle=\frac{\vec{v}_{2}-\vec{v}_{1}}{t_{2}-t_{1}}=\frac{\Delta \vec{v}}{\Delta t}
$$

sI Unit : meter per second squared ($\mathrm{m} / \mathrm{s}^{2}$)

If the signs of the velocity and acceleration of a particle are the same, the speed of the particle increases. If the signs are opposite, the speed decreases.

Instantaneous Acceleration

$\vec{a} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{d t}$ (definition of 1D instantaneous acceleration)

$$
\vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}\left(\frac{d \vec{x}}{d t}\right)=\frac{d^{2} \vec{x}}{d t^{2}}
$$

\section*{| Sample Problem | 2-4 | Build your skill |
| :--- | :--- | :--- |}

A particle's position on the x axis of Fig. 2-1 is given by

$$
x=4-27 t+t^{3}
$$

with x in meters and t in seconds.

(a) Because position x depends on time t, the particle must be moving. Find the particle's velocity function $v(t)$ and acceleration function $a(t)$.

Calculations: Differentiating the position function, we find

$$
\begin{equation*}
v=-27+3 t^{2} \tag{Answer}
\end{equation*}
$$

with v in meters per second. Differentiating the velocity function then gives us

$$
\begin{equation*}
a=+6 t, \tag{Answer}
\end{equation*}
$$

with a in meters per second squared.

Calculation:Setting $v(t)=0$ yields

$$
0=-27+3 t^{2}
$$

(b) Is there ever a time when $v=0$?
which has the solution

$$
t= \pm 3 \mathrm{~s} .
$$

Constant Acceleration
Typical example, acceleration of a car at a constant rate when a traffic light turns from red to green

$$
\begin{gathered}
a=a_{a v g}=\frac{\mathrm{v}-v_{0}}{\mathrm{t}-0} \\
a t=\mathrm{v}-v_{0}
\end{gathered}
$$

$$
\begin{equation*}
\mathrm{v}=v_{0}+a t \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{x}=x_{0}+v_{a v g} t \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
v_{\text {avg }}=\frac{1}{2}\left(v_{0}+\mathrm{v}\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
v_{\text {avg }}=v_{0}+\frac{1}{2} a t \tag{4}
\end{equation*}
$$

Constant Acceleration

$\mathrm{X}=x_{0}+v_{\text {avg }} t$

$$
\begin{equation*}
v_{\text {avg }}=v_{0}+\frac{1}{2} a t \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{x}=x_{0}+v_{0} t+\frac{1}{2} a \mathrm{t}^{2} \tag{5}
\end{equation*}
$$

Equation

$v=v_{0}+a t$
$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$
$x-x_{0}=v t-\frac{1}{2} a t^{2}$
Missing
Quantity
$x-x_{0}$
v
t
a
v_{0}

Equations for motion with constant acceleration

CHECKPOINT 4

The following equations give the position $x(t)$ of a particle in four situations: (1) $x=$ $3 t-4$; (2) $x=-5 t^{3}+4 t^{2}+6$; (3) $x=2 / t^{2}-4 / t$; (4) $x=5 t^{2}-3$. To which of these situations do the above equations apply?
(1) $\mathrm{v}=\frac{\mathrm{dx}}{d t}=3 \quad a=\frac{\mathrm{d}^{2} \mathrm{x}}{d \mathrm{t}^{2}}=0 \ldots$. constant
(2) $\mathrm{v}=\frac{\mathrm{dx}}{d t}=-15 t^{2}+8 t \quad a=\frac{\mathrm{d}^{2} \mathrm{x}}{d \mathrm{t}^{2}}=-30 t+8 \ldots$. not constant
(3) $a=\frac{\mathrm{d}^{2} \mathrm{x}}{d \mathrm{t}^{2}}=$ not constant
(4) $\mathrm{v}=\frac{\mathrm{dx}}{d t}=10 t \quad a=\frac{\mathrm{d}^{2} \mathrm{x}}{d \mathrm{t}^{2}}=10 \ldots$ constant

Sample Phoblem
The figure gives a particle's velocity v versus its position as it moves along an x axis with constant acceleration. What is its velocity at position $\mathrm{x}=\mathrm{O}$?

From the graph, We have: $v=0$ and $x=70 \mathrm{~m}$. then using

$$
\begin{aligned}
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right) \\
(0 \mathrm{~m} / \mathrm{s})^{2} & =(8 \mathrm{~m} / \mathrm{s})^{2}+2 a(70 \mathrm{~m}-20 \mathrm{~m})
\end{aligned}
$$

which gives us $a=-0.64 \mathrm{~m} / \mathrm{s}^{2}$

Also we have: $v=8 \mathrm{~m} / \mathrm{s}$ and $x=20 \mathrm{~m}$,

$$
(8 \mathrm{~m} / \mathrm{s})^{2}=v_{0}^{2}+2 a(20 \mathrm{~m}-0)
$$

Then substituting for a and solving for v0 results in $\quad v_{0}=9.5 \mathrm{~m} / \mathrm{s}$.

Free-Fall Acceleration

- its magnitude is g ; it is independent of the object's characteristics, such as mass, density, or shape
- g varies slightly with latitude and with elevation; at the sea level $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ (or $32 \mathrm{ft} / \mathrm{s}^{2}$)
- The equations of motion for constant acceleration also apply to free fall near Earth's surface either up or down
- The directions of motion are now along a vertical y axis: it is +ve for upward motion and -ve for downward motion ($a=-g$)

The free-fall acceleration near Earth's surface is $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$, and the magnitude of the acceleration is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Do not substitute $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ for g.

CHECKPOINT 5

(a) If you toss a ball straight up, what is the sign of the ball's displacement for the ascent, from the release point to the highest point? (b) What is it for the descent, from the highest point back to the release point? (c) What is the ball's acceleration at its highest point?

Semple problem

A pitcher tosses a baseball up along a y axis, with an initial speed of $12 \mathrm{~m} / \mathrm{s}$.
(a) How long does the ball take to reach its maximum height?

Calculation: Knowing v, a, and the initial velocity Vo $=12 \mathrm{~m} / \mathrm{s}$, and seeking t , we solve the equation

$$
\begin{gathered}
v=v_{0}+a t \\
t=\frac{v-v_{0}}{a}=\frac{0-12 \mathrm{~m} / \mathrm{s}}{-9.8 \mathrm{~m} / \mathrm{s}^{2}}=1.2 \mathrm{~s}
\end{gathered}
$$

Semplie thoblem

(b) What is the ball's maximum height above its release point?

Calculation: We can take the ball's release point as $\mathrm{y}_{0}=0$. Set $y-y_{0}=y$ and $v=0$ (at the maximum height), and solve the equation

$$
\mathrm{v}^{2}=v_{0}^{2}+2 a y \quad y=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{0-(12 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=7.3 \mathrm{~m}
$$

(C) How long does the ball take to reach a point 5.0 m above its release point?

Calculation: We know $y_{0}, a=-g$, and displacement $y-y_{0}=5.0 \mathrm{~m}$, and we want t, so we set $y_{0}=0$ and use the equation

$$
\begin{aligned}
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \longrightarrow y=v_{0} t-\frac{1}{2} g t^{2} \\
& 5.0 \mathrm{~m}=(12 \mathrm{~m} / \mathrm{s}) t-\left(\frac{1}{2}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
\end{aligned}
$$

$$
\longrightarrow 4.9 t^{2}-12 t+5.0=0 \longrightarrow t=0.53 \mathrm{~s} \text { and } t=1.9 \mathrm{~s}
$$

A truck covers 40.0 m in 8.50 s while smoothly slowing down to a final speed of $2.80 \mathrm{~m} / \mathrm{s}$. (a) Find its original speed. (b) Find its acceleration.

SOLUTION

(a) $\mathrm{x}-x_{0}=\frac{1}{2}\left(v_{0}+\mathrm{v}\right) t$

$$
40 \mathrm{~m}=\frac{1}{2}\left(v_{0}+2.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(8.5 \mathrm{~s}) \quad v_{0}=6.61 \mathrm{~m} / \mathrm{s}
$$

(b) $a=\frac{\mathrm{v}-v_{0}}{\mathrm{t}}=\frac{2.8-6.61 \mathrm{~m} / \mathrm{s}}{8.5 \mathrm{~s}}=-0.448 \mathrm{~m} / \mathrm{s}^{2}$

Samples of Exam Questions

Displacement

Q. 14 I he position of a ball thrown vertically upward is given by the equation $y=10.0+12.0 t-5.00 t^{2}$ (SI units), the height at $t=0$ is:
(A) 15 m
(B) 1 m
(C) 5 m
(D) Zero
(E) 10 m

$$
y=10+12 t-5 t^{2} \Rightarrow y(t=0)=10 \mathrm{~m}
$$

Average \& instantaneous Velocity

Q. 8 A bicycle travels 12 km in 90 min . Its average speed is:
(A) $48 \mathrm{~km} / \mathrm{h}$
(B) $18 \mathrm{~km} / \mathrm{h}$
(C) $8 \mathrm{~km} / \mathrm{h}$
(D) $0.3 \mathrm{~km} / \mathrm{h}$
(E) $36 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& t=90 \min =\frac{90}{60}=1.5 \mathrm{~h} \\
& v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{12}{1.5}=8 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Q. 7 A bicycle travels 15 km in 30 min . Its average speed is:
(A) $48 \mathrm{~km} / \mathrm{h}$
(B) $18 \mathrm{~km} / \mathrm{h}$
(C) $8 \mathrm{~km} / \mathrm{h}$
(D) $0.3 \mathrm{~km} / \mathrm{h}$
(E) $30 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& t=30 \min =\frac{30}{60}=0.5 \mathrm{~h} \\
& v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{15}{0.5}=30 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Average \& instantaneous Velocity

Q. 6 A car moves along a straight line with velocity in m / s given by $v=t^{2}+3$. The velocity at $\mathrm{t}=0$ is:
(A) zero
(B) $4 \mathrm{~m} / \mathrm{s}$
(C) $3 \mathrm{~m} / \mathrm{s}$
(D) $2 \mathrm{~m} / \mathrm{s}$
(E) $6 \mathrm{~m} / \mathrm{s}$

$$
v=t^{2}+3 \Rightarrow v(t=0)=3 \mathrm{~m} / \mathrm{s}
$$

Q.13 A car moves along the x-axis with constant deceleration, the speed of the car is:
(A) Decreasin
(B) Increasing
(C) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) Zero
(E) none of these
Q. 12 An object falling toward the earth's surface will have velocity that its magnitude is: (Ignore air resistance)
(A) Decreasing
(B) Zero
(C) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) Increasing
(E) none of these

Average \& instantaneous Velocity

Q. 8 The position of an object is given by $x=4 t+2 t^{2}$. Its average velocity over the time interval from $t=0$ to $t=4 \mathrm{~s}$ is:
(A) $8 \mathrm{~m} / \mathrm{s}$
(B) $10 \mathrm{~m} / \mathrm{s}$
(C) $12 \mathrm{~m} / \mathrm{s}$
(D) $14 \mathrm{~m} / \mathrm{s}$
(E) $16 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t}=4)=4 \mathrm{x} 4+2 \mathrm{x} 4^{2}=48 \mathrm{~m} \\
& v_{a v g}=\frac{\Delta x}{\Delta t}=\frac{\mathrm{x}(\mathrm{t}=0)=0}{4-0}=\frac{48-\mathrm{x}(\mathrm{t}=0)}{4-0}=12 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Average \& instantaneous Acceleration

Q. 4 The instantaneous acceleration \vec{a} is given as:
(A) $\frac{d x}{d t}$
(B) $\frac{d}{d t}\left(\frac{d^{2} x}{d t^{2}}\right)$
(C) $\frac{d^{2}}{d t^{2}}\left(\frac{d x}{d t}\right)$
(D) $\frac{d^{2}}{d t^{2}}\left(\frac{d v}{d t}\right)$
(E) $\frac{d}{d t}\left(\frac{d x}{d t}\right)$
Q. 5 A particle is moving along the negative x-axis with constant velocity. The magnitude of its acceleration is: (A) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(B) zero
(C) constant
(D) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(E) $980 \mathrm{~cm} / \mathrm{s}^{2}$

Since the particle moves with constant velocity, its acceleration is zero

Average \& instantaneous Acceleration

 Q. 6 A car moves along a straight line with velocity in m / s given by $v=t^{2}+3$. The velocity at $\mathrm{t}=0$ is:(A) zero
(B) $4 \mathrm{~m} / \mathrm{s}$
(C) $3 \mathrm{~m} / \mathrm{s}$
(D) $2 \mathrm{~m} / \mathrm{s}$
(E) $6 \mathrm{~m} / \mathrm{s}$
Q. 7 Referring to question 6 , the acceleration of the car at $\mathrm{t}=4 \mathrm{~s}$ is:
(A) $6 \mathrm{~m} / \mathrm{s}^{2}$
(B) $8 \mathrm{~m} / \mathrm{s}^{2}$
(C) $10 \mathrm{~m} / \mathrm{s}^{2}$
(D) $12 \mathrm{~m} / \mathrm{s}^{2}$
(E) $4 \mathrm{~m} / \mathrm{s}^{2}$

$$
a=\frac{d v}{d t}=2 t \quad \Rightarrow \quad a(t=4)=2 \times 4=8 \mathrm{~m} / \mathrm{s}^{2}
$$

Average \& instantaneous Acceleration

Q. 9 A particle is moving along a straight line. At $t=3 \mathrm{~s}$ its velocity is $20 \mathrm{~m} / \mathrm{s}$ and at $\mathrm{t}=8 \mathrm{~s}$ its velocity is zero. The average acceleration is:
(A) $-6 \mathrm{~m} / \mathrm{s}^{2}$
(B) $-2 \mathrm{~m} / \mathrm{s}^{2}$
(C) $-3 \mathrm{~m} / \mathrm{s}^{2}$
(D) $-4 \mathrm{~m} / \mathrm{s}^{2}$
(E) $-5 \mathrm{~m} / \mathrm{s}^{2}$

$$
a_{\text {avg }}=\frac{\Delta v}{\Delta t}=\frac{v(t=8)-v(t=3)}{8-3}=\frac{0-20}{8-3}=\frac{-20}{5}=-4 \mathrm{~m} / \mathrm{s}^{2}
$$

Constant Acceleration

```
Q.10 A car travels in a straight line with an initial velocity of 4 m/s and an acceleration of 2 m/\mp@subsup{s}{}{2}.\mathrm{ .The distance}
``` traveled in 4 s is:
((A) 36 m
(B) 40 m
(C) 24 m
(D) 28 m
(E) 32 m
\[
\begin{aligned}
& v_{0}=4 \mathrm{~m} / \mathrm{s} \quad a=2 \mathrm{~m} / \mathrm{s}^{2} \quad t=4 \mathrm{~s} \quad x-x_{0}(?) \quad \Rightarrow \quad v \text { (missed) } \\
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}=4 \mathrm{x} 4+\frac{1}{2} \times 2 \mathrm{x} 4^{2}=32 \mathrm{~m}
\end{aligned}
\]

\section*{Constant Acceleration}
Q. 11 A car, initially at rest, travels 32 m in 4 s along a straight line with constant acceleration. The acceleration of the car is:
(B) \(5 \mathrm{~m} / \mathrm{s}^{2}\)
(C) \(6 \mathrm{~m} / \mathrm{s}^{2}\)
(D) \(2 \mathrm{~m} / \mathrm{s}^{2}\)
(E) \(3 \mathrm{~m} / \mathrm{s}^{2}\)
\[
\begin{aligned}
& v_{0}=0 \mathrm{~m} / \mathrm{s} \quad a=? \quad t=4 \mathrm{~s} \quad x-x_{0}=32 \mathrm{~m} \quad \Rightarrow \quad v(\mathrm{missed}) \\
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}=0+\frac{1}{2} a t^{2}=\frac{1}{2} a t^{2} \Rightarrow a=\frac{2\left(x-x_{0}\right)}{t^{2}}=\frac{2 x 32}{4 \mathrm{x} 4}=4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\]

\section*{Constant Acceleration}

\section*{Q. 12 What is the initial speed of a car moving a distance of 60 m in 6 s if the final speed was \(15 \mathrm{~m} / \mathrm{s}\) ?}
(A) \(15 \mathrm{~m} / \mathrm{s}\)
(B) \(10 \mathrm{~m} / \mathrm{s}\)
(C) \(5 \mathrm{~m} / \mathrm{s}\)
(D) zero
(E) \(20 \mathrm{~m} / \mathrm{s}\)
\[
\begin{aligned}
& v_{0}=? \quad v=15 \mathrm{~m} / \mathrm{s} \quad t=6 \mathrm{~s} \quad x-x_{0}=60 \mathrm{~m} \quad \Rightarrow \quad a \text { (missed) } \\
& x-x_{0}=\frac{1}{2}\left(v+v_{0}\right) t \Rightarrow v+v_{0}=\frac{2\left(x-x_{0}\right)}{t} \\
& \Rightarrow v_{0}=\frac{2\left(x-x_{0}\right)}{t}-v=\frac{2 x 60}{6}-15=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]

\section*{Constant Acceleration}
Q. 30 A car moving with constant acceleration covers the distance between two points 60 m apart in 4 seconds. If its speed as it passes the second point is \(20 \mathrm{~m} / \mathrm{s}\), its speed at the first point is:
(A) \(20 \mathrm{~m} / \mathrm{s}\)
(B) \(10 \mathrm{~m} / \mathrm{s}\)
(C) \(5 \mathrm{~m} / \mathrm{s}\)
(D) \(45 \mathrm{~m} / \mathrm{s}\)
(E) \(30 \mathrm{~m} / \mathrm{s}\)
\[
\begin{aligned}
& v_{0}=? \quad v=20 \mathrm{~m} / \mathrm{s} \quad t=4 \mathrm{~s} \quad x-x_{0}=60 \mathrm{~m} \quad \Rightarrow \quad a \text { (missed) } \\
& x-x_{0}=\frac{1}{2}\left(v+v_{0}\right) t \Rightarrow v+v_{0}=\frac{2\left(x-x_{0}\right)}{t} \\
& \Rightarrow \quad v_{0}=\frac{2\left(x-x_{0}\right)}{t}-v=\frac{2 x 60}{4}-20=10 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]

\section*{Constant Acceleration}
Q. 7 A car uniformly changes its speed from \(20 \mathrm{~m} / \mathrm{s}\) to \(5 \mathrm{~m} / \mathrm{s}\) in 5 s . The distance moved in the third second is:

\section*{(A) 56 m}
(B) 46.5 m
(C) 34 m
(D) 12.5 m
(E) 9.5 m
\[
\begin{aligned}
& \text { (1) } v_{0}=20 \mathrm{~m} / \mathrm{s} \quad v=5 \mathrm{~m} / \mathrm{s} \quad t=5 \mathrm{~s} \quad x-x_{0}(t=5 \mathrm{~s})=\mathrm{missed} \quad \& a=? \\
& v=v_{0}+a t \Rightarrow \quad v-v_{0}=a t \quad \Rightarrow \quad a=\frac{v-v_{0}}{t}=\frac{5-20}{5}=-3 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { (2) } v_{0}=20 \mathrm{~m} / \mathrm{s} \quad t=3 \mathrm{~s} \quad x-x_{0}(t=3 \mathrm{~s})=? \quad a=-3 \mathrm{~m} / \mathrm{s}^{2} \quad v \text { (missed) } \\
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}=20 \times 3+\frac{1}{2} \times(-3) \mathrm{x}^{2}=60-13.5=46.5 \mathrm{~m}
\end{aligned}
\]
Q. 6 A car uniformly changes its speed from \(20 \mathrm{~m} / \mathrm{s}\) to \(5 \mathrm{~m} / \mathrm{s}\) in 5 s . The distance moved in the fourth second is: (A) 56 m
(B) 9.5 m
(C) 62.5 m
(D) 3 m
(E) 46.5 m
\[
\begin{aligned}
& \text { (1) } v_{0}=20 \mathrm{~m} / \mathrm{s} \quad v=5 \mathrm{~m} / \mathrm{s} \quad t=5 \mathrm{~s} \quad x-x_{0}(t=5 \mathrm{~s})=\text { missed } \quad \& a=? \\
& a=\frac{v-v_{0}}{t}=\frac{5-20}{5}=-3 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { (2) } v_{0}=20 \mathrm{~m} / \mathrm{s} \quad t=4 \mathrm{~s} \quad x-x_{0}(t=4 \mathrm{~s})=? \quad a=-3 \mathrm{~m} / \mathrm{s}^{2} \quad v \text { (missed) } \\
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}=20 \times 4+\frac{1}{2} \times(-3) \times 4^{2}=80-24=56 \mathrm{~m}
\end{aligned}
\]

\section*{Free fall acceleration}
Q. 6 An object thrown vertically upwards will have velocity that its magnitude is: (Ignore air resistance)
(A) Zero
(B) Increasing
(C) Constant
D) Decreasing
(E) none of these
Q. 10 At the earth's surface, a ball thrown straight up from a bridge would have an acceleration of magnitude:
(A) less than \(9.8 \mathrm{~m} / \mathrm{s}^{2}\) (B) \(9.8 \mathrm{~m} / \mathrm{s}^{2}\)
(C) more than \(9.8 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{D})\) Zero
(E) none of these
Q. 13 A baseball is thrown vertically up into the air. The acceleration of the ball at its highest point is:
(B) \(19.6 \mathrm{~m} / \mathrm{s}^{2}\)
(C) \(+9.8 \mathrm{~m} / \mathrm{s}^{2}\)
(D) \(-9.8 \mathrm{~m} / \mathrm{s}^{2}\)
(E) zero

The acceleration is a vector, then it is equal to \(-9.8 \mathrm{~m} / \mathrm{s}^{2}\)

\section*{Free fall acceleration}
Q. 14 An object is thrown straight up from ground level with a speed of \(30 \mathrm{~m} / \mathrm{s}\). Its height after 1.0 s is:
(A) 15.1 m
(B) 5.1 m
(C) 45.1 m
(D) 35.1 m
(E) 25.1 m
\(v_{0}=30 \mathrm{~m} / \mathrm{s} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad t=1 \mathrm{~s} \quad y-y_{0}=? \quad \Rightarrow \quad v\) (missed)
\(y-y_{0}=v_{0} t-\frac{1}{2} g t^{2}=30 \times 1-\frac{1}{2} \times 9.8 \times 1^{2}=30-4.9=25.1 \mathrm{~m}\)

\section*{Free fall acceleration}

\section*{Q. 16 A stone dropped off a 75 m high building reaches the ground in:}
(A) 3.91 s
(B) 2.86 s
(C) 1.35 s
(D) 5.53 s
(E) 4.95 s
\[
\begin{aligned}
& v_{0}=0 \mathrm{~m} / \mathrm{s} \text { (free drop) } \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad t=? \quad y-y_{0}=-75 \mathrm{~m} \Rightarrow v \text { (missed) } \\
& y-y_{0}=v_{0} t-\frac{1}{2} g t^{2}=0-\frac{1}{2} g t^{2}=-\frac{1}{2} g t^{2} \Rightarrow t^{2}=-\frac{2\left(y-y_{0}\right)}{g} \\
& t=\sqrt{-\frac{2\left(y-y_{0}\right)}{g}}=\sqrt{-\frac{2 x(-75)}{9.8}}=3.91 \mathrm{~s}
\end{aligned}
\]
Q. 17 Referring to question 16 ,the speed of the stone just before reaching the ground is:
(A) \(54.2 \mathrm{~m} / \mathrm{s}\)
(B) \(48.5 \mathrm{~m} / \mathrm{s}\)
(C) \(38.3 \mathrm{~m} / \mathrm{s}\)
(D) \(28 \mathrm{~m} / \mathrm{s}\)
\[
\begin{aligned}
& v_{0}=0 \mathrm{~m} / \mathrm{s} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad t=3.91 \mathrm{~s} \quad y-y_{0}=-75 \mathrm{~m} \quad v=? \\
& v=v_{0}+a t=0-g t=-9.8 \times 3.91=-38.8 \mathrm{~m} / \mathrm{s} \Rightarrow \text { speed }=38.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]

\section*{Free fall acceleration}
Q. 9 A ball is thrown vertically upward at a speed of \(21 \mathrm{~m} / \mathrm{s}\). It will reach its maximum height in:

(B) 2.1 s
(C) 0.60 s
(D) 0.33 s
(E) 1.2 s
\[
\begin{aligned}
& v_{0}=21 \mathrm{~m} / \mathrm{s} \quad v=0 \mathrm{~m} / \mathrm{s} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad t=? \quad y-y_{0}(\mathrm{missed}) \\
& v=v_{0}-g t \quad \Rightarrow \quad g t=v_{0}-v \quad \Rightarrow \quad \mathrm{t}=\frac{v_{0}-v}{g}=\frac{21-0}{9.8}=2.1 \mathrm{~s}
\end{aligned}
\]
Q. 12 A ball is thrown vertically upward from ground level to reach a maximum height of 98 m . The initial speed is:
(A) \(43.8 \mathrm{~m} / \mathrm{s}\)
(B) \(100 \mathrm{~m} / \mathrm{s}\)
(C) \(25 \mathrm{~m} / \mathrm{s}\)
(D) \(31.3 \mathrm{~m} / \mathrm{s}\)
(E) \(49 \mathrm{~m} / \mathrm{s}\)
\[
\begin{array}{|l}
v=0 \mathrm{~m} / \mathrm{s} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad v_{0}=? \quad y-y_{0}=98 \mathrm{~m} \quad t \text { (missed) } \\
v^{2}=v_{0}^{2}-2 g\left(y-y_{0}\right) \Rightarrow \\
v=43.8 \mathrm{~s} \mathrm{~m} / \mathrm{s}
\end{array}
\]

\section*{Free fall acceleration}
Q.29 A boy shot a football vertically up with an initial speed \(v_{0}\). When the ball was 2 m above the ground, the speed was 0.4 of the initial speed. The initial speed is:
(A) \(6.8 \mathrm{~m} / \mathrm{s}\)
(B) \(3.4 \mathrm{~m} / \mathrm{s}\)
(C) \(11.8 \mathrm{~m} / \mathrm{s}\)
(D) \(4.8 \mathrm{~m} / \mathrm{s}\)
(E) \(19.6 \mathrm{~m} / \mathrm{s}\)
\(v=0.4 v_{0} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad v_{0}=? \quad y-y_{0}=2 \mathrm{~m} \quad t(\mathrm{missed})\)
\(v^{2}=v_{0}^{2}-2 g\left(y-y_{0}\right) \quad \Rightarrow \quad v_{0}^{2}=v^{2}+2 g\left(y-y_{0}\right)=0.4 \mathrm{x} 0.4 v_{0}^{2}+2 \mathrm{x} 9.8 \mathrm{x} 2=0.16 v_{0}^{2}+39.2\)
\(v_{0}^{2}=0.16 v_{0}^{2}+39.2 \Rightarrow v_{0}^{2}-0.16 v_{0}^{2}=39.2 \Rightarrow 0.84 v_{0}^{2}=39.2\)
\(v_{0}^{2}=\frac{39.2}{0.84} \quad \Rightarrow \quad v=6.8 \mathrm{~m} / \mathrm{s}\)

\section*{3-2 | Vectors and Scalars}

A vector quantity has both a magnitude and a direction

All paths correspond to the same displacement vector

\section*{3-3 | Adding Vectors Geometrically}

\[
\vec{s}=\vec{a}+\vec{b}
\]

The vector sum \(\vec{s}\) is the vector that extends from the tail of \(\vec{a}\) to the head of \(\vec{b}\)

\section*{PROPERTIES OF VECTOR ADDITION}
\[
\vec{a}+\vec{b}=\vec{b}+\vec{a} \quad \text { (commutative law) }
\]
\[
(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c}) \quad \text { (associative law) }
\]
\[
\vec{b}+(-\vec{b})=0
\]
\[
\vec{d}=\vec{a}-\vec{b}=\vec{a}+(-\vec{b}) \quad \text { (vector subtraction) }
\]
\[
\vec{d}+\vec{b}=\vec{a} \quad \text { or } \quad \vec{a}=\vec{d}+\vec{b}
\]

\section*{3-4 | Components of Vectors}
- A component of a vector is the projection of the vector on an axis.
-The process of finding the components of a a vector is called resolving the vector
- A component of a vector has the same direction (along an axis) as the vector

(a)

(b)

(c)

The vector components can be found from the right triangle as
\[
\begin{aligned}
& a_{x}=a \cos \theta \quad \text { and } a_{y}=a \sin \theta \\
& a=\sqrt{a_{x}^{2}+a_{y}^{2}} \text { and } \tan \theta=\frac{a_{y}}{a_{x}}
\end{aligned}
\]

\section*{Sample Problem}

A small airplane leaves an airport on an overcast day and is later sighted 215 km away, in a direction making an angle of \(22^{\circ}\) east of due north. How far east and north is the airplane from the airport when sighted?
\[
\begin{aligned}
d_{x} & =d \cos \theta=(215 \mathrm{~km})\left(\cos 68^{\circ}\right) \\
& =81 \mathrm{~km} \\
d_{y} & =d \sin \theta=(215 \mathrm{~km})\left(\sin 68^{\circ}\right) \\
& =199 \mathrm{~km} \approx 2.0 \times 10^{2} \mathrm{~km}
\end{aligned}
\]
(Answer)
(Answer)
Thus, the airplane is 81 km east and \(2.0 \times 10^{2} \mathrm{~km}\) north of the airport.

\section*{common}
trigonometric functions
\[
\begin{aligned}
& \sin \theta=\frac{\text { leg opposite } \theta}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { leg adjacent to } \theta}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { leg opposite } \theta}{\text { leg adjacent to } \theta}
\end{aligned}
\]

\section*{3-5 | Unit Vectors}
- They are equal 1 and points in a particular direction
- The unit vectors in the positive directions of the \(x, y\), and \(z\) axes are labeled \(i, J\), and \(k\)
- They are very useful for expressing other vectors

\[
\begin{aligned}
& \vec{a}=a_{x} \hat{i}+a_{y} \hat{j} \\
& \vec{b}=b_{x} \hat{i}+b_{y} \hat{j}
\end{aligned}
\]

\section*{3-6 | Adding Vectors by Components}

Consider the statement
\[
\begin{aligned}
\vec{r} & =\vec{a}+\vec{b} \\
r_{x} & =a_{x}+b_{x} \\
r_{y} & =a_{y}+b_{y} \\
r_{z} & =a_{z}+b_{z}
\end{aligned}
\]

This procedure applies also to vector subtractions
\[
\begin{aligned}
& \vec{d}=\vec{a}-\vec{b}=\vec{a}+(-\vec{b}) \\
& \vec{d}=d_{x} \hat{\mathrm{i}}+d_{y} \hat{\mathrm{j}}+d_{z} \hat{\mathrm{k}}
\end{aligned}
\]
\[
d_{x}=a_{x}-b_{x}, \quad d_{y}=a_{y}-b_{y}, \quad \text { and } \quad d_{z}=a_{z}-b_{z}
\]

\section*{\begin{tabular}{l|l}
Sample Problem & \(3-4\)
\end{tabular}}

Figure 3-16a shows the following three vectors:
\[
\begin{aligned}
\vec{a} & =(4.2 \mathrm{~m}) \hat{\mathrm{i}}-(1.5 \mathrm{~m}) \hat{\mathrm{j}}, \\
\vec{b} & =(-1.6 \mathrm{~m}) \hat{\mathrm{i}}+(2.9 \mathrm{~m}) \hat{\mathrm{j}} \\
\vec{c} & =(-3.7 \mathrm{~m}) \hat{\mathrm{j}}
\end{aligned}
\]
and

What is their vector sum \(\vec{r}\) which is also shown?

Calculations: For the \(x\) axis, we add the \(x\) components of \(\vec{a}, \vec{b}\), and \(\vec{c}\), to get the \(x\) component of the vector sum \(\vec{r}\) :
\[
\begin{aligned}
r_{x} & =a_{x}+b_{x}+c_{x} \\
& =4.2 \mathrm{~m}-1.6 \mathrm{~m}+0=2.6 \mathrm{~m} .
\end{aligned}
\]

(a)

(b)

\section*{Multiplying Vectors}

\section*{Multiplying a Vector by a Scalar}
\[
\begin{array}{ll}
s \vec{a}=\vec{b} & \lfloor\vec{b}\rfloor=\lfloor s\rfloor \mid \vec{a}\rfloor
\end{array}
\]

\section*{The Scalar Product dot product}
\[
\vec{a} \cdot \vec{b}=a b \cos \phi \quad \text { Scalar quantity }
\]
where \(a\) is the magnitude of \(\vec{a}, b\) is the magnitude of \(\vec{b}\)

\[
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \text { commutative law }
\]
\(\phi\) is the angle between \(\vec{a}\) and \(\vec{b}\)

When two vectors are in unit-vector notation, we write their dot product as
\[
\begin{aligned}
\vec{a} \cdot \vec{b} & =\left(a_{x} \hat{i}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \cdot\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \\
& =a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{aligned}
\]

What is the angle \(\phi\) between \(\vec{a}=3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}\) and \(\vec{b}=-2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{k}}\) ?
Calculations
\[
\begin{aligned}
& \vec{a} \cdot \vec{b}=a b \cos \phi \\
& a=\sqrt{3.0^{2}+(-4.0)^{2}}=5.00 \quad b=\sqrt{(-2.0)^{2}+3.0^{2}}=3.61 \\
& \vec{a} \cdot \vec{b}=(3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}) \cdot(-2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{k}}) \\
&=(3.0 \hat{\mathrm{i}}) \cdot(-2.0 \hat{\mathrm{i}})+(3.0 \hat{\mathrm{i}}) \cdot(3.0 \hat{\mathrm{k}}) \\
&+(-4.0 \hat{\mathrm{j}}) \cdot(-2.0 \hat{\mathrm{i}})+(-4.0 \hat{\mathrm{j}}) \cdot(3.0 \hat{\mathrm{k}}) \\
& \vec{a} \cdot \vec{b}=-(6.0)(1)+(9.0)(0)+(8.0)(0)-(12)(0) \\
&=-6.0
\end{aligned}
\]
\[
\vec{a} \cdot \vec{b}=a b \cos \phi
\]
\[
-6.0=(5.00)(3.61) \cos \phi
\]
\[
\phi=\cos ^{-1} \frac{-6.0}{(5.00)(3.61)}=109^{\circ} \approx 110^{\circ}
\]

\section*{cross product}

OThe vector product of \(\vec{a}\) and \(\vec{b}\), written \(\vec{a} \times \vec{b}\), produces a third vector \(\vec{c}\) whose magnitude is
\[
c=a b \sin \phi
\]

If \(\vec{a}\) and \(\vec{b}\) are parallel or antiparallel, \(\vec{a} \times \vec{b}=0\). The magnitude of \(\vec{a} \times \vec{b}\), which can be written as \(|\vec{a} \times \vec{b}|\), is maximum when \(\vec{a}\) and \(\vec{b}\) are perpendicular to each other.
\[
\vec{b} \times \vec{a}=-(\vec{a} \times \vec{b}) \quad \text { Not cumulative }
\]
\[
\begin{aligned}
& \vec{a} \times \vec{b}=\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \times\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \\
& \vec{a} \times \vec{b}=\left(a_{y} b_{z}-b_{y} a_{z}\right) \hat{\mathrm{i}}+\left(a_{z} b_{x}-b_{z} a_{x}\right) \hat{\mathrm{j}}+\left(a_{x} b_{y}-b_{x} a_{y}\right) \hat{\mathrm{k}}
\end{aligned}=\left[\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right]
\]

Product of unit vectors \(\quad \hat{i} \times \widehat{i}=\widehat{j} \times \widehat{j}=\widehat{k} \times \widehat{k}=0\)
\[
\begin{array}{rrr}
\hat{i} \times \hat{j}=\widehat{k} & \widehat{j} \times \hat{k}=\widehat{i} & \widehat{k} \times \widehat{i}=\widehat{j} \\
\hat{j} \times \hat{i}=-\widehat{k} & \hat{k} \times \hat{j}=-\hat{i} & \widehat{i} \times \widehat{k}=-\hat{j} \\
a_{x} \hat{\mathbf{i}} \times b_{x} \hat{\mathrm{i}}=a_{x} b_{x}(\hat{\mathrm{i}} \times \hat{\mathrm{i}})=0 & a_{x} \hat{\mathrm{i}} \times b_{y} \hat{\mathrm{j}}=a_{x} b_{y}(\hat{\mathrm{i}} \times \hat{\mathrm{j}})=a_{x} b_{y} \hat{\mathrm{k}}
\end{array}
\]

\section*{Sample Problem}

If \(\vec{a}=3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}\) and \(\vec{b}=-2 \hat{\mathbf{i}}+3 \hat{\mathbf{k}}\), what is \(\vec{c}=\vec{a} \times \vec{b}\) ?

Calculations: Here we write
\[
\begin{aligned}
\vec{c}= & (3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}) \times(-2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}) \\
= & 3 \hat{\mathrm{i}} \times(-2 \hat{\mathrm{i}})+3 \hat{\mathrm{i}} \times 3 \hat{\mathrm{k}}+(-4 \hat{\mathrm{j}}) \times(-2 \hat{\mathrm{i}}) \\
& +(-4 \hat{\mathrm{j}}) \times 3 \hat{\mathrm{k}} . \\
\vec{c}= & -6(0)+9(-\hat{\mathrm{j}})+8(-\hat{\mathrm{k}})-12 \hat{\mathrm{i}} \\
= & -12 \hat{\mathrm{i}}-9 \hat{\mathrm{j}}-8 \hat{\mathrm{k}} . \quad \text { (Answer) }
\end{aligned}
\]

\section*{Samples of Exam Questions}

\section*{Logic Questions}
Q. 21 The scalar product \(\hat{i} \cdot \hat{j}\) is equal to:
(A) \(\hat{\mathrm{k}}\)
(B) \(2 \hat{\mathrm{i}}\)
(C) \(2 \hat{\mathrm{j}}\)
(D) zero
(E) \(\hat{i} \hat{j}\)
\(\widehat{i} \bullet \hat{i}=\widehat{j} \bullet \widehat{j}=\widehat{k} \bullet \widehat{k}=1 \widehat{i} \bullet \widehat{j}=\widehat{j} \bullet \widehat{k}=\widehat{i} \bullet \widehat{k}=0\)
Q. 13 The result of \(\hat{j} \bullet \hat{j}\) is:
(A) \(\hat{i}\)
(B) \(\hat{\mathrm{k}}\)
(C) \(\hat{j}\)
(D) Zero

\section*{Logic Questions}
Q. 27 The vector product \(\hat{j} \times \hat{i}\) is equal to:
(A) \(\hat{\mathrm{j}}\)
(B) \(-\hat{\mathrm{i}}\)
(C) \(\hat{\mathrm{k}}\)
(D) 1
(E) \(-\hat{\mathrm{k}}\)
\(\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0\)
\[
\begin{array}{lll}
\hline \hat{i} \times \hat{j}=\hat{k} & \hat{j} \times \hat{k}=\hat{i} & \hat{k} \times \hat{i}=\hat{j} \\
\hat{j} \times \hat{i}=-\hat{k} & \hat{k} \times \hat{j}=-\hat{i} & \hat{i} \times \hat{k}=-\hat{j} \\
\hline
\end{array}
\]

\section*{Logic Questions}
Q. 28 The value of \(\hat{\mathrm{i}} \cdot(\hat{\mathrm{k}} \times \hat{\mathrm{j}})\) is:
(A) \(\hat{\mathrm{j}}\)
(B) zero
(C) \(\hat{\mathrm{k}}\)
(D) -1
(E) 1
\[
\hat{i} \bullet(\hat{k} \times \hat{j})=\hat{i} \bullet(-\hat{i})=-\hat{i} \bullet \hat{i}=-1
\]
Q. 15 The result of \((\hat{i} \times \hat{k}) \bullet \hat{j}\) is:
(A) \(\hat{i}\)
(B) 1
(C) \(\hat{j}\)
(D) -1
(E) Zero
\[
(\hat{i} \times \hat{k}) \bullet \hat{j}=-\hat{j} \bullet \hat{j}=-1
\]

\section*{Q. 20 The result of \((\hat{k} \times \hat{i}) \cdot \hat{j}\) is:}
(A) \(\hat{i}\)
(B) 1
(C) \(\hat{j}\)
(D) \(\hat{\mathrm{k}}\)
(E) Zero
Q. 15 The result of \((\hat{k} \times \hat{j}) \times \hat{i}\) is:
(A) \(\hat{i}\)
(B) 1
(C) Zero
(D) \(\hat{k}\)
(E) \(\hat{j}\)

\section*{Logic Questions}
Q. 15 The result of \((\hat{i} \times \hat{j}) \times \hat{i}\) is:
(A) \(\hat{i}\)
(B) 1
(C) Zero
\[
(\hat{i} \times \hat{j}) \times \hat{i}=\hat{k} \times \hat{i}=\hat{j}
\]
(D) \(\hat{\mathrm{k}}\)
(E) \(\hat{j}\)
Q. 26 If \(\bar{A} \cdot \bar{B}=0\), the angle between the vectors \(\bar{A}\) and \(\bar{B}\) is: (Hint: \(\bar{A}\) and \(\bar{B}\) are non-zero vectors)
(A) \(180^{\circ}\)
(B) Zero
(C) \(90^{\circ}\)
(D) \(315^{\circ}\)
(E) \(45^{\circ}\)

If scalar product is zero, the vectors are perpendicular (متعامدين) and the angle between them is \(90^{\circ}\)

\section*{(A) 40.0}
(D) \(180^{\circ}\)
(C) \(90^{\circ}\)

\section*{Vector Components}
Q. 18 A vector \(\overrightarrow{\mathrm{A}}\) has x -component of 10 m and y -component of 15 m . The magnitude of this vector is:
(A) 14.14 m
(B) 18 m
(C) 22.36 m
(D) 35.12 m
(E) 11.18 m
\[
\begin{aligned}
& A_{x}=10 \mathrm{~m} \quad A_{y}=15 \mathrm{~m} \\
& A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{100+225}=\sqrt{325}=18.02 \approx 18
\end{aligned}
\]
Q. 28 The components of vector \(\bar{A}\) are given as \(A_{x}=5.5 \mathrm{~m}\) and \(A_{y}=-5.3 \mathrm{~m}\). The magnitude of vector \(\bar{A}\) is:
(A) 9.2 m
(B) 8.4 m
(C) 6.9 m
(D) 6.1 m
(E) 7.6 m
\[
\begin{aligned}
& A_{x}=5.5 \mathrm{~m} \quad A_{y}=-5.3 \mathrm{~m} \\
& A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(5.5)^{2}+(-5.3)^{2}}=\sqrt{30.25+28.09}=\sqrt{58.34}=7.64 \approx 7.6
\end{aligned}
\]

\section*{Vector Components}
Q.19 A vector has a magnitude of 14 units makes an angle of \(30^{\circ}\) with the x axis. Its y component is:
A) 8 units
(B) 9 units
(C) 5 units
(D) 6 units
(E) 7 units
\[
\begin{aligned}
& A=14 \text { units } \quad \theta=30^{\circ} \\
& A_{y}=A \sin \theta=14 \mathrm{x} \sin 30^{\circ}=14 \times \frac{1}{2}=7 \text { units }
\end{aligned}
\]

(c)

\section*{Vector Components}
Q. 24 If the magnitude of a vector is 18 m and its x -component of 10 m . The angle it makes with the positive \(x\)-axis is:
(A) \(48.2^{\circ}\)
(B) \(63.4^{\circ}\)
(C) \(66.4^{\circ}\)
(D) \(60^{\circ}\)
(E) \(56.25^{\circ}\)
\(A=18 \mathrm{~m} \quad A_{x}=10 \mathrm{~m}\)
\(A_{x}=A \cos \theta \Rightarrow \cos \theta=\frac{A_{x}}{A} \Rightarrow \quad \theta=\cos ^{-1}\left(\frac{A_{x}}{A}\right)=\cos ^{-1}\left(\frac{10}{18}\right)=\cos ^{-1}(0.555)=56.25^{0}\)

(c)

\section*{Vector Addition}
Q. 20 As shown in the figure, if the magnitudes of \(\vec{A}\) and \(\vec{B}\) are 10 units and 15 units respectively then the x-component of the resultant of \(\vec{A}\) and \(\vec{B}\) is:
(A) -10 units
(B) -15 units
(C) -20units
(D) zero
(E) -5 units
\[
\begin{aligned}
& A=10 \text { units } B=15 \text { units } \\
& \vec{A}+\vec{B}=\left(A_{x}+B_{x}\right) \bar{i}+\left(A_{y}+B_{y}\right) \hat{j}+\left(A_{z}+B_{z}\right) \hat{k} \\
& A_{x}=A \cos \theta=10 x \cos (60)=10 x \frac{1}{2}=5 \text { units } \\
& B_{x}=-15 \text { units } \quad \Rightarrow A_{x}+B_{x}=5-15=-10 \text { units }
\end{aligned}
\]

\section*{Vector Addition}
Q. 22 if \(\overline{\mathrm{A}}=4 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}\) then the vector \(1 / 2 \vec{A}\) is:
A) \(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}\)
(B) \(2 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}\)
(C) \(2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}\)
(D) \(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}\)
(E) \(2 \hat{i}-2 \hat{j}\)
\[
\mathrm{A}=4 \mathrm{i}-6 \mathrm{j} \quad=====>1 / 2 \mathrm{~A}=2 \mathrm{i}-3 \mathrm{j}
\]

\section*{Vector Addition}
Q. 23 Two vectors are given as \(\bar{A}=2 \hat{i}-2 \hat{j}+4 \hat{k}\) and \(\vec{B}=-\hat{i}+\hat{j}+4 \hat{k}\). The result of \(\vec{A}-\bar{B}\) is:
(A) \(5 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}\)
(B) \(4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}\)
(C) \(3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}\)
(D) \(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}\)
(E) \(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}\)
\[
\begin{aligned}
& \mathrm{A}_{\mathrm{x}}=2 \quad \mathrm{~A}_{\mathrm{y}}=-2 \quad \mathrm{~A}_{\mathrm{z}}=4 \\
& B_{x}=-1 \quad B_{y}=1 \quad B_{z}=4 \\
& \overrightarrow{\mathrm{~A}}-\overrightarrow{\mathrm{B}}=\left(\mathrm{A}_{\mathrm{x}}-\mathrm{B}_{\mathrm{x}}\right) \hat{\mathrm{i}}+\left(\mathrm{A}_{\mathrm{y}}-\mathrm{B}_{\mathrm{y}}\right) \overline{\mathrm{j}}+\left(\mathrm{A}_{\mathrm{z}}-\mathrm{B}_{\mathrm{z}}\right) \hat{\mathrm{k}} \\
& =(2-(-1)) \hat{i}+(-2-1) \overline{\mathrm{j}}+(4-4) \hat{\mathrm{k}} \\
& =3 \widehat{\mathrm{i}}-3 \widehat{\mathrm{j}}
\end{aligned}
\]

\section*{Vector Addition}
Q. 22 Given \(\bar{A}=2 \hat{i}+\hat{j}+3 \hat{k} \quad, \bar{B}=2 \hat{i}-6 \hat{j}+7 \hat{k}, \bar{C}=2 \hat{i}-\hat{j}+4 \hat{k}\). Then the vector \(\bar{D}=2 \bar{A}+\bar{B}-\bar{C}\) is:
(A) \(-\hat{i}-2 \hat{j}+3 \hat{k}\)
(B) \(3 \hat{i}+2 \hat{j}-5 \hat{k}\)
(C) \(3.5 \hat{i}\)
(D) \(4 \hat{i}-3 \hat{j}+9 \hat{k}\)
(E) \(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \mathrm{k}\)
\[
\begin{aligned}
& \mathrm{A}_{\mathrm{x}}=2 \quad \mathrm{~A}_{\mathrm{y}}=1 \quad \mathrm{~A}_{\mathrm{z}}=3 \\
& B_{x}=2 \quad B_{y}=-6 \quad B_{z}=7 \\
& \mathrm{C}_{\mathrm{x}}=2 \quad \mathrm{C}_{\mathrm{y}}=-1 \quad \mathrm{C}_{\mathrm{z}}=4 \\
& \vec{D}=2 \vec{A}+\vec{B}-\vec{C}=\left(2 A_{x}+B_{x}-C_{x}\right) \hat{i}+\left(2 A_{y}+B_{y}-C_{y}\right) \hat{j}+\left(2 A_{z}+B_{z}-C_{z}\right) \hat{k} \\
& =(2 \times 2+2-2) \hat{i}+(2 \times 1-6-(-1)) \hat{j}+(2 \times 3+7-4) \hat{\mathrm{k}} \\
& =(4+2-2) \hat{\mathrm{i}}+(2-6+1) \hat{\mathrm{j}}+(6+7-4) \hat{\mathrm{k}} \\
& =4 \widehat{i}-3 \widehat{j}+9 \widehat{k}
\end{aligned}
\]
(B) Zero
(C) \(180^{\circ}\)
(D) \(315^{\circ}\)
(E) \(90^{\circ}\)

\section*{Vector Addition}
Q. 19 In figure, if \(\vec{A}+\vec{B}-\vec{C}=4 \hat{i}\) then the vector \(\vec{A}\) in unit vector notation is:
(A) \(4 \hat{i}+2 \hat{j}\)
(B) \(9 \hat{i}+4 \hat{j}\)
(C) \(8 \hat{i}+6 \hat{j}\)
(D) \(5 \hat{i}-4 \hat{j}\)
(E) \(4 \hat{i}\)
\(|\overline{\mathrm{C}}|=6 \mathrm{~m}\)
\(|\bar{B}|=4 \mathrm{~m}\)
\[
\begin{array}{ll}
\hline B_{x}=-4 m \quad B_{y}=0 \\
C_{x}=0 \quad C_{y}=6 m \\
\vec{A}+\vec{B}-\vec{C}=4 \widehat{i} \quad \Rightarrow \vec{A}=4 \widehat{i}-(\vec{B}-\vec{C}) \\
\vec{B}-\vec{C}=\left(B_{x}-C_{x}\right) \hat{i}+\left(B_{y}-C_{y}\right) \hat{j}=(-4-0) \widehat{i}+(0-6) \hat{j}=-4 \widehat{i}-6 \widehat{j} \\
\vec{A}=4 \widehat{i}-(\vec{B}-\vec{C})=4 \widehat{i}-(-4 \widehat{i}-6 \widehat{j})=4 \widehat{i}+4 \widehat{i}+6 \widehat{j}=8 \overparen{i}+6 \widehat{j}
\end{array}
\]

\section*{Scalar Product}
Q. 25 If the magnitude of two vectors are 10 units and 20 units and the angle between them is \(60^{\circ}\) then their scalar product is:
(a) 100
(B) 125
(C) zero
(D) 25
\[
\begin{aligned}
& \mathrm{A}=10 \text { units } \quad \mathrm{B}=20 \text { units } \quad \varphi=60^{\circ} \\
& \overrightarrow{\mathrm{A}} \bullet \overrightarrow{\mathrm{~B}}=\mathrm{AB} \cos \varphi=10 \times 20 \times \cos 60^{\circ}=200 \times \frac{1}{2}=100
\end{aligned}
\]
(E) 75
Q. 26 Two vectors are given as \(\overline{\mathrm{A}}=5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{B}}=-\hat{\mathrm{i}}+\hat{\mathrm{j}}\), their scalar product \(\vec{A} \cdot \vec{B}\) is:
(A) 4
(B) 5
(C) 6
(D) 7
(E) 3
\(A \cdot B=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=0 \times(-1)+5 \times 1+4 \times 0=5\) units

\section*{Scalar Product}
Q. 26 Two vectors are given as \(\overrightarrow{\mathrm{A}}=5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{B}}=-\hat{\mathrm{i}}+\hat{\mathrm{j}}\), their scalar product \(\vec{A} \cdot \vec{B}\) is:
(A) 4
(B) 5
(C) 6
(D) 7
(E) 3
\[
\begin{array}{|lcc|}
\hline A_{x}=0 & A_{y}=5 & A_{z}=4 \\
B_{x}=-1 & B_{y}=1 & B_{z}=0 \\
\vec{A} \bullet \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=0 x(-1)+5 x 1+4 x 0=0+5+0=5
\end{array}
\]

\section*{Scalar Product}
Q. 24 Given \(\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+4 \hat{k}\), \(\quad\) Then \((\bar{a} \cdot \vec{b})\) is:
(A) \(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathrm{k}}\)
(B) 40
(C) 8
(D) \(\hat{i}+\hat{j}-5 \hat{k}\)
(E) \(\hat{i}+2 \hat{j}\)
\[
\begin{array}{|lll|}
\hline \mathrm{A}_{\mathrm{x}}=1 & \mathrm{~A}_{\mathrm{y}}=2 & \mathrm{~A}_{\mathrm{z}}=3 \\
\mathrm{~B}_{\mathrm{x}}=2 & \mathrm{~B}_{y}=-3 & \mathrm{~B}_{\mathrm{z}}=4 \\
\overrightarrow{\mathrm{~A}} \bullet \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=1 \mathrm{x} 2+2 \mathrm{x}(-3)+3 \mathrm{x} 4=2-6+12=8 \\
\hline
\end{array}
\]

\section*{Scalar Product}
(A) \(14.5^{2}\)
Q. 24 Given \(\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}\) and \(\vec{b}=2 \hat{i}-3 \hat{j}+4 \hat{k}\). Then \((5 \bar{a} \cdot \bar{b})\) is:
(A) \(3 \hat{i}+4 \hat{j}-5 \hat{k}\)
\(\begin{array}{ll}\text { (B) } 40 & \text { (C) } 8\end{array}\)
(D) \(\hat{i}+2 \hat{j}-5 \hat{k}\)
(E) 60
\begin{tabular}{|lcc|}
\hline\(A_{x}=1\) & \(A_{y}=2\) & \(A_{z}=3\) \\
\(B_{x}=2\) & \(B_{y}=-3\) & \(B_{z}=4\) \\
\(5 \vec{A} \bullet \vec{B}=5 A_{x} B_{x}+5 A_{y} B_{y}+5 A_{z} B_{z}=5 x 1 x 2+5 x 2 x(-3)+5 x 3 x 4=10-30+60=40\)
\end{tabular}

\section*{Scalar Product}
Q. 25 Given \(\overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}+2 \hat{j}+3 \hat{k}\) and \(\bar{d}=2 \hat{i}-\hat{\mathrm{j}}+4 \hat{k}\), then the angle between vector \(\bar{c}\) and \(\bar{d}\) is:
(A) \(45.6^{\circ}\)
(B) \(15^{\circ}\)
(C) \(120^{\circ}\)
(D) \(90^{\circ}\)
(E)Zero
\[
\begin{aligned}
& \overrightarrow{\mathrm{C}} \bullet \overrightarrow{\mathrm{~d}}=\mathrm{c} d \cos \varphi \quad \Rightarrow \quad \cos \varphi=\frac{\overrightarrow{\mathrm{c}} \bullet \overrightarrow{\mathrm{~d}}}{\mathrm{~cd}} \Rightarrow \quad \varphi=\cos ^{-1}\left(\frac{\overrightarrow{\mathrm{c}} \bullet \overrightarrow{\mathrm{~d}}}{\mathrm{~cd}}\right) \\
& \mathrm{C}_{\mathrm{x}}=1 \quad \mathrm{c}_{\mathrm{y}}=2 \quad \mathrm{C}_{\mathrm{z}}=3 \\
& \mathrm{~d}_{\mathrm{x}}=2 \quad \mathrm{~d}_{\mathrm{y}}=-1 \quad \mathrm{~d}_{\mathrm{z}}=4 \\
& \mathrm{c}=\sqrt{\mathrm{C}_{\mathrm{x}}^{2}+\mathrm{c}_{\mathrm{y}}^{2}+\mathrm{C}_{\mathrm{z}}^{2}}=\sqrt{1+4+9}=\sqrt{14} \\
& \mathrm{~d}=\sqrt{\mathrm{d}_{\mathrm{x}}^{2}+\mathrm{d}_{\mathrm{y}}^{2}+\mathrm{d}_{\mathrm{z}}^{2}}=\sqrt{4+1+16}=\sqrt{21} \\
& \overrightarrow{\mathrm{c}} \bullet \overrightarrow{\mathrm{~d}}=\mathrm{c}_{\mathrm{x}} \mathrm{~d}_{\mathrm{x}}+\mathrm{c}_{\mathrm{y}} \mathrm{~d}_{\mathrm{y}}+\mathrm{c}_{\mathrm{z}} \mathrm{~d}_{\mathrm{z}}=1 \mathrm{x} 2+2 \mathrm{x}(-1)+3 \mathrm{x} 4=2-2+12=12 \\
& \varphi=\cos ^{-1}\left(\frac{12}{\sqrt{14} \sqrt{21}}\right)=\cos ^{-1}\left(\frac{12}{\sqrt{294}}\right)=\cos ^{-1}\left(\frac{12}{17.15}\right)=45.6^{0}
\end{aligned}
\]

\section*{Vector Product}
 of the vector product \(\vec{A} \times \vec{B}\) is:
(A) 25
(B) 20
(C) 15
(D) 30
(E) 35
\[
\begin{aligned}
& \mathrm{A}=5 \text { units } \quad \mathrm{B}=10 \text { units } \quad \varphi=30^{\circ} \\
& |\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB} \sin \varphi=5 \times 10 \times \sin 30^{0}=50 \times \frac{1}{2}=25 \quad \text { unit }^{2}
\end{aligned}
\]

\section*{Vector Product}
Q. 21 If \(\bar{A}\) and \(\bar{B}\) are vectors with magnitudes 5 and 4, respectively, and the magnitude of their cross product is 17.32 , then the angle between \(\bar{A}\) and \(\bar{B}\) is:
(A) \(90^{\circ}\)
(B) \(60^{\circ}\)
(C) \(45^{\circ}\)
(D) \(180^{\circ}\)
(E) \(30^{\circ}\)
\(\mathrm{A}=5\) units \(\quad \mathrm{B}=4\) units \(\quad|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=17.32\)
\(|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB} \sin \varphi \Rightarrow \sin \varphi=\frac{|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|}{\mathrm{AB}}=\frac{17.32}{5 \times 4}=\frac{17.32}{20} \Rightarrow \varphi=\sin ^{-1} \frac{17.32}{20}=60^{\circ}\)
Q. 21 If \(\bar{A}\) and \(\bar{B}\) are vectors with magnitudes 5 and 4, respectively, and the magnitude of their cross product is 10 , then the angle between \(\bar{A}\) and \(\bar{B}\) is:
(A) \(90^{\circ}\)
(B) \(60^{\circ}\)
(C) \(45^{\circ}\)
(D) \(180^{\circ}\)
(E) \(30^{\circ}\)

\section*{Vector Product}
Q. 29 Two vectors \(\vec{A}=8 \hat{\mathbf{i}}+6 \hat{j}\) and \(\vec{B}=-6 \hat{i}\), their vector product \(\vec{A} \times \vec{B}\) is:
(A) \(48 \hat{\mathrm{k}}\)
(B) \(30 \hat{\mathrm{k}}\)
(C) \(36 \hat{\mathrm{k}}\)
(D) \(42 \hat{k}\)
(E) \(48 \hat{\mathrm{k}}\)
\[
\mathrm{A} \times \mathrm{B}=A \times B=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
8 & 6 & 0 \\
-6 & 0 & 0
\end{array}\right|=0 \hat{i}+0 \hat{j}+(8 \times 0-6 \times(-6)) \hat{k}=36 \hat{k}
\]

\section*{Vector Product}
Q. 27 Given that \(\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\) and \(\overline{\mathrm{b}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}\), then \(\overline{\mathrm{a}} \times \bar{b}\) is:
(A) \(11 \hat{i}+2 \hat{j}-5 \hat{k}\)
(B) \(-\hat{i}-2 \hat{j}+3 \hat{k}\)
(C) \(3.5 \hat{i}\)
(D) 4
(E) \(\hat{i}+2 \hat{j}-5 k\)
\[
\begin{aligned}
& \begin{array}{lll}
a_{x}=1 & a_{y}=2 & a_{z}=3 \\
b_{x}=2 & b_{y}=-1 & b_{z}=4
\end{array} \\
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 3 \\
2 & -1 & 4
\end{array}\right|
\end{aligned}=\begin{aligned}
& \\
&
\end{aligned}
\]

\section*{Motion in two and three dimensions}

\section*{Position vector}
\[
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
\]
\[
\text { If } \mathrm{y}=\mathrm{z}=0 \Rightarrow \vec{r}=x \hat{i}
\]
position in one dimension

\section*{Example:}
\[
\vec{r}=(-3 \mathrm{~m}) \hat{\mathrm{i}}+(2 \mathrm{~m}) \hat{\mathrm{j}}+(5 \mathrm{~m}) \hat{\mathrm{k}}
\]

\section*{Displacement vector}

If the object is displaced from position \(r_{1}\) to \(r_{2}\)
\[
\begin{aligned}
\Delta \vec{r} & =\vec{r}_{2}-\vec{r}_{1} \\
& =\left(x_{2}-x_{1}\right) \widehat{i}+\left(y_{2}-y_{1}\right) \widehat{j}+\left(z_{2}-z_{1}\right) \widehat{k} \\
& =\Delta x \widehat{i}+\Delta y \widehat{j}+\Delta z \widehat{k}
\end{aligned}
\]

\section*{Sample Problem}

In Fig. 4-2, the position vector for a particle initially is
\[
\vec{r}_{1}=(-3.0 \mathrm{~m}) \hat{\mathrm{i}}+(2.0 \mathrm{~m}) \hat{\mathrm{j}}+(5.0 \mathrm{~m}) \hat{\mathrm{k}}
\]
and then later is
\[
\vec{r}_{2}=(9.0 \mathrm{~m}) \hat{\mathrm{i}}+(2.0 \mathrm{~m}) \hat{\mathrm{j}}+(8.0 \mathrm{~m}) \hat{\mathrm{k}} .
\]

What is the particle's displacement \(\Delta \vec{r}\) from \(\vec{r}_{1}\) to \(\vec{r}_{2}\) ?

\[
\begin{aligned}
\Delta \vec{r} & =\vec{r}_{2}-\vec{r}_{1} \\
& =[9.0-(-3.0)] \hat{\mathrm{i}}+[2.0-2.0] \hat{\mathrm{j}}+[8.0-5.0] \hat{\mathrm{k}} \\
& =(12 \mathrm{~m}) \hat{\mathrm{i}}+(3.0 \mathrm{~m}) \hat{\mathrm{k}} .
\end{aligned}
\]

\section*{Displacement}
1. A particle goes from \(x=-2 \mathrm{~m}, y=3 \mathrm{~m}, z=1 \mathrm{~m}\) to \(x=3 \mathrm{~m}, y=-1 \mathrm{~m}, z=4 \mathrm{~m}\). Its displacement is:
a) \((1 \mathrm{~m}) \hat{i}+(2 \mathrm{~m}) \hat{j}+(5 \mathrm{~m}) \hat{k}\)
b) \((5 \mathrm{~m}) \hat{i}-(4 \mathrm{~m}) \hat{j}+(3 \mathrm{~m}) \hat{k}\)
c) \(-(5 \mathrm{~m}) \hat{i}+(4 \mathrm{~m}) \hat{j}-(3 \mathrm{~m}) \hat{k}\)
d) \(-(5 \mathrm{~m}) \hat{i}-(2 \mathrm{~m}) \hat{j}=(3 \mathrm{~m}) \hat{k}\)
\[
\begin{aligned}
\Delta \vec{r} & =\vec{r}_{2}-\vec{r}_{1} \\
& =\left(x_{2}-x_{1}\right) \widehat{i}+\left(y_{2}-y_{1}\right) \widehat{j}+\left(z_{2}-z_{1}\right) \widehat{k} \\
& =(3 m-(-2 m)) \widehat{i}+(-1 m-3 m) \widehat{j}+(4 m-1 m) \widehat{k}=5 m \overparen{i}-4 m \widehat{j}+3 m \widehat{k}
\end{aligned}
\]
Q. 3 A particle moving from \(\vec{r}_{1}=2 \hat{i}+5 \hat{j}+8 \hat{k}\) to \(\bar{r}_{2}=12 \hat{i}+10 \hat{j}+8 \hat{k}\) then the displacement is:
(A) \(10 \hat{i}-3 \hat{j}\)
(B) \(4 \vec{j}+6 \vec{k}\)
(C) \(10 \hat{i}+5 \hat{j}\)
(D) \(5 \hat{j}\)
(E) 8
\[
\begin{aligned}
\Delta \vec{r} & =\vec{r}_{2}-\vec{r}_{1} \\
& =\left(x_{2}-x_{1}\right) \widehat{i}+\left(y_{2}-y_{1}\right) \widehat{j}+\left(z_{2}-z_{1}\right) \widehat{k} \\
& =(12-2) \widehat{i}+(10-5) \hat{\mathrm{j}}+(8-8) \widehat{\mathrm{k}}=10 \widehat{\mathrm{i}}+5 \widehat{\mathrm{j}}+0 \widehat{\mathrm{k}}=10 \widehat{\mathrm{i}}+5 \widehat{\mathrm{j}}
\end{aligned}
\]
Q. 3 A particle moving from \(\vec{r}_{1}=2 \hat{i}+5 \hat{j}-12 \hat{k}\) to \(\vec{r}_{2}=2 \hat{i}+5 \hat{j}-8 \hat{k}\) then the displacement is:
(A) \(10 \hat{i}-3 \hat{j}\)
(B) \(4 \overrightarrow{\mathrm{j}}+6 \overrightarrow{\mathrm{k}}\)
(C) \(10 \hat{i}+5 \hat{j}\)
(D) \(5 \hat{\mathrm{j}}\)
(E) \(4 \hat{\mathrm{k}}\)
\[
\begin{aligned}
\Delta \vec{r} & =\vec{r}_{2}-\vec{r}_{1} \\
& =\left(x_{2}-x_{1}\right) \widehat{i}+\left(y_{2}-y_{1}\right) \widehat{j}+\left(z_{2}-z_{1}\right) \widehat{k} \\
& =(2-2) \widehat{i}+(5-5) \hat{j}+(-8-(-12)) \widehat{\mathrm{k}}=0 \widehat{\mathrm{i}}+0 \widehat{\mathrm{j}}+4 \widehat{\mathrm{k}}=4 \widehat{\mathrm{k}}
\end{aligned}
\]

\section*{Average Velocity}
\[
\begin{aligned}
\vec{v}_{\text {avg }} & =\frac{\text { displacement }}{\text { interval time }}=\frac{\Delta \vec{r}}{\Delta t} \\
& =\frac{\Delta x}{\Delta t} \widehat{i}+\frac{\Delta y}{\Delta t} \widehat{j}+\frac{\Delta z}{\Delta t} \widehat{k} \\
& =v_{\operatorname{avg}(x)} \widehat{i}+v_{\operatorname{avg}(y)} \widehat{j}+v_{\operatorname{avg}(z)} \widehat{k}
\end{aligned}
\]

\section*{Instantaneous Velocity}
\[
\begin{aligned}
\vec{v} & =\frac{d \vec{r}}{d t} \\
& =\frac{d x}{d t} \widehat{i}+\frac{d y}{d t} \widehat{j}+\frac{d z}{d t} \widehat{k} \\
& =v_{x} \widehat{i}+v_{y} \widehat{j}+v_{z} \widehat{k}
\end{aligned}
\]

\section*{Average acceleration}
\[
\begin{aligned}
\vec{a}_{a v g} & =\frac{\text { change in veleocity }}{\text { interval time }}=\frac{\Delta \vec{v}}{\Delta t} \\
& =\frac{\Delta v_{x}}{\Delta t} \widehat{i}+\frac{\Delta v_{y}}{\Delta t} \widehat{j}+\frac{\Delta v_{z}}{\Delta t} \widehat{k} \\
& =a_{\operatorname{avg(x)}} \widehat{i}+a_{\operatorname{avg}(y)} \widehat{j}+a_{\operatorname{avg(z)}} \widehat{k}
\end{aligned}
\]

\section*{Instantaneous acceleration}
\[
\begin{aligned}
\vec{a} & =\frac{d \vec{v}}{d t} \\
& =\frac{d v_{x}}{d t} \widehat{i}+\frac{d v_{y}}{d t} \widehat{j}+\frac{d v_{z}}{d t} \widehat{k}=\frac{d^{2} x}{d t^{2}} \widehat{i}+\frac{d^{2} y}{d t^{2}} \widehat{j}+\frac{d^{2} z}{d t^{2}} \widehat{k} \\
& =a_{x} \widehat{i}+a_{y} \widehat{j}+a_{z} \widehat{k}
\end{aligned}
\]
```

Sample Problem 4 -2

```

A rabbit runs across a parking lot on which a set of coordinate axes has, strangely enough, been drawn. The coordinates (meters) of the rabbit's position as functions of time \(t\) (seconds) are given by
\[
\begin{align*}
& x=-0.31 t^{2}+7.2 t+28 \tag{4-5}\\
& y=0.22 t^{2}-9.1 t+30 \tag{4-6}
\end{align*}
\]
(a) At \(t=15 \mathrm{~s}\), what is the rabbit's position vector \(\vec{r}\) in unit-vector notation and in magnitude-angle notation?
\[
\begin{gathered}
\vec{r}=x \hat{i}+y \widehat{j} \\
=\left(-0.31 t^{2}+7.2 t-28\right) \hat{i}+\left(0.22 t^{2}-9.1 t+30\right) \hat{j} \\
\vec{r}(t=15 \mathrm{~s})=\left(-0.31 \times 15^{2}+7.2 \times 15-28\right) \hat{i}+\left(0.22 \times 15^{2}-9.1 \times 15+30\right) \hat{j} \\
=(66 \mathrm{~m}) \hat{i}+(-57 \mathrm{~m}) \hat{j} \\
\quad r=\sqrt{x^{2}+y^{2}}=\sqrt{66^{2}+(-57)^{2}}=87 \mathrm{~m} \\
\\
\theta=\tan ^{-1} \frac{y}{x}=\tan ^{-1} \frac{-57}{66}=-41^{\circ}
\end{gathered}
\]

\section*{(b) Find the velocity of the rabbit at the instant \(t=15 \mathrm{~s}\) ?}
\[
\begin{gathered}
\vec{v}=v_{x} \hat{i}+v_{y} \hat{j} \\
v_{x}=\frac{d x}{d t}=\frac{d}{d t}\left(-0.31 t^{2}+7.2 t+28\right)=-0.62 t+7.2 \\
v_{x}(t=15 \mathrm{~s})=-0.62 \times 15+7.2=-2.1 \mathrm{~m} / \mathrm{s} \\
v_{y}=\frac{d y}{d t}=\frac{d}{d t}\left(0.22 t^{2}-9.1 t+30\right)=0.44 t-9.1 \\
v_{y}(t=15 \mathrm{~s})=0.44 \times 15-9.1=-2.5 \mathrm{~m} / \mathrm{s} \\
\vec{v}=(-2.1 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(-2.5 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}, \quad \text { (Answer) } \\
\vec{v}=(-2.1 \mathrm{~m}) \hat{i}+(-2.1 \mathrm{~m}) \hat{j}
\end{gathered}
\]

For the rabbit in Sample Problems 4-2 and 4-3, find the acceleration \(\vec{a}\) at time \(t=15 \mathrm{~s}\).
\[
\begin{aligned}
& a_{x}=\frac{d v_{x}}{d t}=\frac{d}{d t}(-0.62 t+7.2)=-0.62 \mathrm{~m} / \mathrm{s}^{2} . \\
& a_{y}=\frac{d v_{y}}{d t}=\frac{d}{d t}(0.44 t-9.1)=0.44 \mathrm{~m} / \mathrm{s}^{2} . \\
& \vec{a}=\left(-0.62 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(0.44 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}, \text { (Answer) } \\
& a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{\left(-0.62 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(0.44 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}} \\
& =0.76 \mathrm{~m} / \mathrm{s}^{2} \text {. } \\
& \text { (Answer) } \\
& \theta=\tan ^{-1} \frac{a_{y}}{a_{x}}=\tan ^{-1}\left(\frac{0.44 \mathrm{~m} / \mathrm{s}^{2}}{-0.62 \mathrm{~m} / \mathrm{s}^{2}}\right)=-35^{\circ} . \\
& -35^{\circ}+180^{\circ}=145^{\circ} .
\end{aligned}
\]
> -1 A positron undergoes a displacement \(\Delta \vec{r}=2.0 \hat{\mathrm{i}}-\) \(3.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}}\), ending with the position vector \(\vec{r}=3.0 \hat{\mathrm{j}}-4.0 \hat{\mathrm{k}}\), in meters. What was the positron's initial position vector?
1. The initial position vector \(\vec{r}_{0}\) satisfies \(\vec{r}-\vec{r}_{0}=\Delta \vec{r}\), which results in
\[
\vec{r}_{0}=\vec{r}-\Delta \vec{r}=(3.0 \hat{\mathrm{j}}-4.0 \hat{\mathrm{k}}) \mathrm{m}-(2.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}}) \mathrm{m}=(-2.0 \mathrm{~m}) \hat{\mathrm{i}}+(6.0 \mathrm{~m}) \hat{\mathrm{j}}+(-10 \mathrm{~m}) \hat{\mathrm{k}} .
\]
-5 An ion's position vector is initially \(\vec{r}=5.0 \hat{\mathrm{i}}-6.0 \hat{\mathrm{j}}+\) \(2.0 \hat{\mathrm{k}}\), and 10 s later it is \(\vec{r}=-2.0 \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}-2.0 \hat{\mathrm{k}}\), all in meters. In unit-vector notation, what is its \(\vec{v}_{\text {avg }}\) during the 10 s ?
\[
\vec{v}_{\mathrm{arg}}=\frac{(-2.0 \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}-2.0 \hat{\mathrm{k}}) \mathrm{m}-(5.0 \hat{\mathrm{i}}-6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}) \mathrm{m}}{10 \mathrm{~s}}=(-0.70 \hat{\mathrm{i}}+1.40 \hat{\mathrm{j}}-0.40 \hat{\mathrm{k}}) \mathrm{m} / \mathrm{s} .
\]
-11 A particle moves so that its position (in meters) as a function of time (in seconds) is \(\vec{r}=\hat{i}+4 t^{2} \hat{j}+t \hat{k}\). Write expressions for (a) its velocity and (b) its acceleration as functions of time. SSM
(a) Taking the derivative of the position vector with respect to time, we have, in SI units \((\mathrm{m} / \mathrm{s})\),
\[
\vec{v}=\frac{d}{d t}\left(\hat{\mathrm{i}}+4 t^{2} \hat{\mathrm{j}}+t \hat{\mathrm{k}}\right)=8 t \hat{\mathrm{j}}+\hat{\mathrm{k}} .
\]
(b) Taking another derivative with respect to time leads to, in SI units (\(\mathrm{m} / \mathrm{s}^{2}\)),
\[
\vec{a}=\frac{d}{d t}(8 t \hat{\mathrm{j}}+\hat{\mathrm{k}})=8 \hat{\mathrm{j}} .
\]

\section*{Velocity \& Acceleration}
Q. 10 A particle moves in \(x y\) plane as \(x(t)=2 t(m)\) and \(y(t)=t^{2}-1(m)\). The velocity of the particle at \(t=1 \mathrm{~s}\) is:
(A) \(\hat{\imath}+\hat{j}(\mathrm{~m} / \mathrm{s})\)
(B) \(2 \hat{\imath}+\hat{j}(\mathrm{~m} / \mathrm{s})\)
(C) \(2 \hat{i}+2 \hat{j}(\mathrm{~m} / \mathrm{s})\)
(D) \(2 \hat{i}-\hat{j}(\mathrm{~m} / \mathrm{s})\)
(E) \(10(\mathrm{~m} / \mathrm{s})\)
\[
\begin{array}{ll}
\vec{v}=v_{x} \hat{i}+v_{y} \widehat{j} & \\
v_{x}=\frac{d x}{d t}=2 \mathrm{~m} / \mathrm{s} & v_{x}=\frac{d y}{d t}=2 t \mathrm{~m} / \mathrm{s} \\
v_{x}(t=1 \mathrm{~s})=2 \mathrm{~m} / \mathrm{s} & v_{y}(t=1 \mathrm{~s})=2 \mathrm{~m} / \mathrm{s} \\
\vec{v}=2 \hat{i}+2 \hat{j}(\mathrm{~m} / \mathrm{s}) &
\end{array}
\]
Q. 10 A particle moves in \(x y\) plane as \(x(t)=2 t(m)\) and \(y(t)=t^{2}-1(m)\). The velocity of the particle at \(t=2 s\) is: (A) \(2 \hat{i}+4 \hat{j}(\mathrm{~m} / \mathrm{s})\)
(B) \(2 \hat{\imath}+\hat{\mathrm{i}}(\mathrm{m} / \mathrm{s})\)
(C) \(2 \hat{i}+2 \hat{j}(\mathrm{~m} / \mathrm{s})\)
(D) \(2 \hat{\imath}-\hat{j}(\mathrm{~m} / \mathrm{s})\)
(E) \(10(\mathrm{~m} / \mathrm{s})\)
\[
\begin{array}{ll}
v_{x}=\frac{d x}{d t}=2 \mathrm{~m} / \mathrm{s} & v_{x}=\frac{d y}{d t}=2 t \mathrm{~m} / \mathrm{s} \\
v_{x}(t=2 \mathrm{~s})=2 \mathrm{~m} / \mathrm{s} & v_{y}(t=2 \mathrm{~s})=4 \mathrm{~m} / \mathrm{s} \\
\vec{v}=2 \overparen{i}+4 \overparen{j}(\mathrm{~m} / \mathrm{s}) &
\end{array}
\]

\section*{Sample Problem}

A particle with velocity \(\vec{v}_{0}=-2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}\) (in meters per second) at \(t=0\) undergoes a constant acceleration \(\vec{a}\) of magnitude \(a=3.0 \mathrm{~m} / \mathrm{s}^{2}\) at an angle \(\theta=130^{\circ}\) from the positive direction of the \(x\) axis. What is the particle's velocity \(\vec{v}\) at \(t=5.0 \mathrm{~s}\) ?

In these equations, \(v_{0 x}(=-2.0 \mathrm{~m} / \mathrm{s})\) and \(v_{0 y}(=4.0 \mathrm{~m} / \mathrm{s})\)
\[
\begin{aligned}
& a_{x}=a \cos \theta=\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\cos 130^{\circ}\right)=-1.93 \mathrm{~m} / \mathrm{s}^{2}, \\
& a_{y}=a \sin \theta=\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\sin 130^{\circ}\right)=+2.30 \mathrm{~m} / \mathrm{s}^{2} . \\
& v=v_{0}+a t \\
& v_{x}=-2.0 \mathrm{~m} / \mathrm{s}+\left(-1.93 \mathrm{~m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~s})=-11.65 \mathrm{~m} / \mathrm{s}, \\
& v_{y}=4.0 \mathrm{~m} / \mathrm{s}+\left(2.30 \mathrm{~m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~s})=15.50 \mathrm{~m} / \mathrm{s} . \\
& \vec{v}=(-12 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(16 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}} . \quad \text { (Answer) } \\
& v=\sqrt{v_{x}^{2}+v_{y}^{2}}=19.4 \approx 19 \mathrm{~m} / \mathrm{s} \quad \text { (Answer) } \\
& \theta=\tan ^{-1} \frac{v_{y}}{v_{x}}=127^{\circ} \approx 130^{\circ} . \quad \text { (Answer) }
\end{aligned}
\]

\section*{Constant Acceleration}
Q. 9 At \(t=0\), a car moves with velocity \(\vec{v}_{0}=2 \hat{i}+\hat{j}(\mathrm{~m} / \mathrm{s})\) and acceleration \(\vec{a}=2 \hat{j}\left(\mathrm{~m} / \mathrm{s}^{2}\right)\). The velocity of the car at \(\mathrm{t}=2 \mathrm{~s}\) is:
(A) \(6 \hat{i}+\hat{j}\)
(B) \(2 \hat{i}+5 \hat{j}\)
(C) \(2 \hat{i}+\hat{j}\)
(D) \(\hat{i}+5 \hat{j}\)
(E) 1
\[
\begin{aligned}
& v_{0}=2 \widehat{i}+\overparen{j} \quad a=2 \overparen{j} \mathrm{~m} / \mathrm{s} \quad \mathrm{t}=2 \mathrm{~s} \quad \overrightarrow{\mathrm{v}}=? \quad \overrightarrow{\mathrm{r}}=\text { missed } \\
& v_{0 x}=2 \quad v_{0 y}=1 \quad a_{x}=0 \quad a_{y}=2 \\
& v_{x}=v_{0 x}+a_{x} t=2+0 \times 2=2 \\
& \overrightarrow{\mathrm{v}}=v_{0 x} \overparen{i}+v_{0 x} \overparen{j}=2 \widehat{i}+5 \widehat{j}
\end{aligned}
\]

\section*{Projectile Motion}

The projectile is launched at initial velocity
\[
\vec{v}_{0}=v_{0 x} \hat{i}+\vec{v}_{0 y} \widehat{j}
\]
\[
v_{0 x}=v_{0} \cos \theta_{0} \quad v_{0 y}=v_{0} \sin \theta_{0}
\]

\section*{The Horizontal Motion}
\[
x-x_{0}=v_{0 x} t
\]

Because there is no acceleration in the horizontal direction
\[
x-x_{0}=v_{0 x} t+\frac{1}{2} a_{x} t^{2}
\]
\[
x-x_{0}=v_{0 x} t=\left(v_{0} \cos \theta_{0}\right) t
\]

\section*{Projectile Motion}

The Vertical Motion
\[
y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2}=v_{0} \sin \theta_{0} t-\frac{1}{2} g t^{2}
\]
\[
v_{y}=v_{0} \sin \theta_{0}-g t
\]
\[
\begin{aligned}
v_{y}^{2} & =\left(v_{0} \sin \theta_{0}\right)^{2}-2 g t\left(v_{0} \sin \theta_{0}\right)+g^{2} t^{2}=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(t\left(v_{0} \sin \theta_{0}\right)-\frac{1}{2} g t^{2}\right) \\
& =\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right)
\end{aligned}
\]

\section*{Equation of path (trajectory)}
\[
y=\left(\tan \theta_{x}\right) x-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}} \text { Converted parabola }
\]

\section*{The Horizontal Range}
\[
\begin{array}{cc}
x-x_{0}=\left(v_{0} \cos \theta_{0}\right) t & y-y_{0}=v_{0} \sin \theta_{0} t-\frac{1}{2} g t^{2} \\
\text { put } x-x_{0}=\mathrm{R} & \text { put } y-y_{0}=\mathrm{R}
\end{array}
\]
\[
R=\left(v_{0} \cos \theta_{0}\right) t
\]
and
\[
0=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2} .
\]

Eliminating \(t\) between these two equations yields

\[
R=\frac{2 v_{0}^{2}}{g} \sin \theta_{0} \cos \theta_{0}
\]

Using the identity \(\sin 2 \theta_{0}=2 \sin \theta_{0} \cos \theta_{0}\) (see Appendix E), we obtain
\[
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}
\]

The horizontal range \(R\) is maximum for a launch angle of \(45^{\circ}\).

\section*{Sample Problem}

Figure \(4-16\) shows a pirate ship 560 m from a fort defending a harbor entrance. A defense cannon, located at sea level, fires balls at initial speed \(v_{0}=82 \mathrm{~m} / \mathrm{s}\).
(a) At what angle \(\theta_{0}\) from the horizontal must a ball be fired to hit the ship?
\[
\begin{align*}
& \left(R=\left(v_{0}^{2} / g\right) \sin 2 \theta_{0}\right) \quad \sin 2 \theta_{0}=\frac{g R}{v_{0}^{2}} \\
\theta_{0}= & \frac{1}{2} \sin ^{-1} \frac{g R}{v_{0}^{2}}=\frac{1}{2} \sin ^{-1} \frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(560 \mathrm{~m})}{(82 \mathrm{~m} / \mathrm{s})^{2}} \\
= & \frac{1}{2} \sin ^{-1} 0.816 . \tag{4-31}
\end{align*}
\]
(b) What is the maximum range of the cannonballs?
\[
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}=\frac{(82 \mathrm{~m} / \mathrm{s})^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \sin \left(2 \times 45^{\circ}\right)
\]

\[
=686 \mathrm{~m} \approx 690 \mathrm{~m} .
\]

\section*{Exercise}
-26 In Fig. 4-36, a stone is projected at a cliff of height \(h\) with an initial speed of \(42.0 \mathrm{~m} / \mathrm{s}\) directed at angle \(\theta_{0}=60.0^{\circ}\) above the horizontal. The stone strikes at \(A, 5.50 \mathrm{~s}\) after launching. Find (a) the height \(h\) of the cliff,(b) the speed of the stone just before impact at \(A\), and (c) the maximum height \(H\) reached above the ground.
(a) \(h=y-y_{0}=v_{0} \sin \theta_{0} t-\frac{1}{2} g t^{2}=42 \times \sin 60 \times 5.5-\frac{1}{2} \times 9.8 \times(5.5)^{2}=* * \mathrm{~m}\)
(b) \(v_{\mathrm{x}}=v_{0} \cos \theta_{0} \quad v_{\mathrm{y}}=v_{0} \sin \theta_{0}-g t\)
\[
v=\sqrt{\left(v_{0} \cos \theta_{0}\right)^{2}+\left(v_{0} \sin \theta_{0}-g t\right)^{2}}=\sqrt{(42 \cos 60)^{2}+(42 \sin 60-9.8 \times 5.5)^{2}}=27 \mathrm{~m} / \mathrm{s}
\]
(c) \(v_{y}=0 \quad y-\mathrm{y}_{0}=\mathrm{H}\)
\[
\begin{aligned}
& v_{y}^{2}=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) \Rightarrow 0=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g H \\
& H=\frac{\left(v_{0} \sin \theta_{0}\right)^{2}}{2 g}=\frac{(42 \mathrm{x} \sin 60)^{2}}{2 \times 9.8}=67.5 \mathrm{~m}
\end{aligned}
\]

\section*{Exercise}
-21 A projectile is fired horizontally from a gun that is 45.0 m above flat ground, emerging from the gun with a speed of \(250 \mathrm{~m} / \mathrm{s}\). (a) How long does the projectile remain in the air? (b) At what horizontal distance from the firing point does it strike the ground? (c) What is the magnitude of the vertical component of its velocity as it strikes the ground?
\[
\theta_{0}=0 \text { motion is downward }\left[-\left(y-y_{0}\right)=-\mathrm{h}\right]
\]
\[
\begin{equation*}
y-y_{0}=v_{0} \sin \theta_{0} t-\frac{1}{2} g t^{2} \Rightarrow-h=-\frac{1}{2} g t^{2} \Rightarrow \mathrm{t}=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \mathrm{x} 45}{9.8}}=3.03 \mathrm{~s} \tag{a}
\end{equation*}
\]
(b) \(x-x_{0}=v_{0} t=250 \times 3.03=758 \mathrm{~m}\)
(C) \(v_{y}=v_{0} \sin \theta_{0}-g t=-g t \Rightarrow\left|v_{y}\right|=g t=9.8 \times 3.03=29.7 \mathrm{~m} / \mathrm{s}\)
- 27 A certain airplane has a speed of \(290.0 \mathrm{~km} / \mathrm{h}\) and is diving at an angle of \(\theta=30.0^{\circ}\) below the horizontal when the pilot releases a radar decoy (Fig. 4-37). The horizontal distance between the release point and the point where the decoy strikes the ground is \(d=\) 700 m . (a) How long is the decoy in the air? (b) How high was the release point? iLw

FIG. 4-37 Problem 27.
(a) \(v 0=290 \mathrm{~km} / \mathrm{h}=290 \mathrm{~km} / \mathrm{h} \frac{5 \mathrm{~m} / \mathrm{s}}{18 \mathrm{~km} / \mathrm{h}}=80.6 \mathrm{~m} / \mathrm{s}\)
\[
\Delta x=x-x_{0}=\left(v_{0} \cos \theta_{0}\right) t \Rightarrow \mathrm{t}=\frac{\Delta x}{v_{0} \cos \theta_{0}}=\frac{700}{80.6 \cos (-30)}=10 \mathrm{~s}
\]
(b) \(y-y_{0}=v_{0} \sin \theta_{0} t-\frac{1}{2} g t^{2} \Rightarrow-h=v_{0} \sin \theta_{0} t-\frac{1}{2} g t^{2}\)
\[
-h=-80.6 \times \sin (-30) \times 10-\frac{1}{2} \times 9.8 \times 10^{2} \Rightarrow h=897 m
\]

\section*{Protacta}
Q.5 A boy kicks a ball at an angle of \(40^{\circ}\) to the horizontal with a speed of \(14.0 \mathrm{~m} / \mathrm{s}\). The time it takes to reach the highest point is:
(A) 0.92 s
(B) 0.77 s
(C) 0.15 s
(D) 1.12 s
(E) 0.38 s
\[
\begin{aligned}
& \theta_{0}=40^{\circ} \quad \mathrm{v}_{0}=14 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{\mathrm{y}}=0 \\
& v_{\mathrm{y}}=v_{0} \sin \theta_{0}-g t \quad \Rightarrow \quad 0=v_{0} \sin \theta_{0}-g t \\
& \Rightarrow \quad \mathrm{t}=\frac{v_{0} \sin \theta_{0}}{g}=\frac{14 \sin 40}{9.8}=0.92 \mathrm{~s}
\end{aligned}
\]
Q. 6 Referring to question 5, the maximum height that the ball can reach is:
(A) 9.87 m
(B) 4.13 m
(C) 15.33 m
(D) 12.68 m
(E) 14.0 m
\[
\begin{aligned}
& v_{y}=0 \quad y-\mathrm{y}_{0}=\mathrm{H} \\
& v_{y}^{2}=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) \Rightarrow 0=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g H \\
& H=\frac{\left(v_{0} \sin \theta_{0}\right)^{2}}{2 g}=\frac{(14 \times \sin 40)^{2}}{2 \times 9.8}=\frac{(14 \times 0.643)^{2}}{2 \times 9.8}=4.13 \mathrm{~m}
\end{aligned}
\]
Q. 7 Referring to question 5 , the horizontal range that the ball can reach is:
(A) 9.87 m
(B) 14.7 m
(C) 15.33 m
(D) 12.68 m
(E) 19.7 m
\[
\mathrm{R}=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}=\frac{14 \times 14}{9.8} \sin 2 \times 40=\frac{196}{9.8} \sin 80=19.7 \mathrm{~m}
\]
Q. 5 A boy kicks a ball at an angle of \(30^{\circ}\) to the horizontal with a speed of \(14.0 \mathrm{~m} / \mathrm{s}\). The time it takes to reach the highest point is:
(A) 0.92 s
(B) 0.71 s
(C) 0.15 s
(D) 1.12 s
(E) 0.38 s
Q. 6 Referring to question 5 , the maximum height that the ball can reach is:
(A) 9.87 m
(B) 4.13 m
(C) 15.33 m
(D) 12.68 m
(E) 2.5 m
(1) \(\theta_{0}=30^{\circ} \quad \mathrm{v}_{0}=14 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{\mathrm{y}}=0\)
\[
v_{\mathrm{y}}=v_{0} \sin \theta_{0}-g t \Rightarrow 0=v_{0} \sin \theta_{0}-g t \Rightarrow \mathrm{t}=\frac{v_{0} \sin \theta_{0}}{g}=\frac{14 \sin 30}{9.8}=0.71 \mathrm{~s}
\]
(2) \(H=\frac{\left(v_{0} \sin \theta_{0}\right)^{2}}{2 g}=\frac{(14 \mathrm{x} \sin 30)^{2}}{2 \times 9.8}=2.5 \mathrm{~m}\)
(3) \(\mathrm{R}=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}=\frac{14 \mathrm{x} 14}{9.8} \sin 2 \mathrm{x} 30=\frac{196}{9.8} \sin 60=17.32 \mathrm{~m}\)
Q. 5 A boy kicks a ball at an angle of \(35^{\circ}\) to the horizontal with a speed of \(14.0 \mathrm{~m} / \mathrm{s}\). The time it takes to reach
the highest point is:
(A) 0.92 s
(B) 0.71 s
(C) 0.15 s
(D) 0.82 s
(E) 0.38 s
Q. 6 Referring to question 5 , the maximum height that the ball can reach is:
(A) 9.87 m
(B) 4.13 m
(C) 3.29 m
(D) 12.68 m
(E) 2.5 m
Q. 7 Referring to question 5 , the horizontal range that the ball can reach is:
(A) 17.32 m
(B) 18.79 m
(C) 15.33 m
(D) 12.68 m
(E) 14.0 m
(1) \(\theta_{0}=35^{\circ} \quad \mathrm{v}_{0}=14 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{\mathrm{y}}=0\)
\[
v_{\mathrm{y}}=v_{0} \sin \theta_{0}-g t \Rightarrow 0=v_{0} \sin \theta_{0}-g t \Rightarrow \mathrm{t}=\frac{v_{0} \sin \theta_{0}}{g}=\frac{14 \sin 35}{9.8}=0.82 \mathrm{~s}
\]
(2) \(H=\frac{\left(v_{0} \sin \theta_{0}\right)^{2}}{2 g}=\frac{(14 \mathrm{x} \sin 35)^{2}}{2 \times 9.8}=3.29 \mathrm{~m}\)
(3) \(\mathrm{R}=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}=\frac{14 \times 14}{9.8} \sin 2 \mathrm{x} 35=\frac{196}{9.8} \sin 70=18.79 \mathrm{~m}\)
Q. 11 A projectile is launched to achieve a maximum range of 140 m , the speed of the projectile must be:
\(R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0} \quad \Rightarrow \quad R_{\max }=\frac{v_{0}^{2}}{g} \quad \Rightarrow v_{0}=\sqrt{g R_{\max }}=\sqrt{9.8 \times 140}=37 \mathrm{~m} / \mathrm{s}\)
Q. 11 A projectile is launched to achieve a maximum range of 100 m , the speed of the projectile must be: (A) \(17 \mathrm{~m} / \mathrm{s}\)
(B) \(31.3 \mathrm{~m} / \mathrm{s}\)
(C) \(37 \mathrm{~m} / \mathrm{s}\)
(D) \(45 \mathrm{~m} / \mathrm{s}\)
(E) \(10 \mathrm{~m} / \mathrm{s}\)
\[
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0} \quad \Rightarrow \quad R_{\max }=\frac{v_{0}^{2}}{g} \quad \Rightarrow v_{0}=\sqrt{g R_{\max }}=\sqrt{9.8 \times 100}=31.3 \mathrm{~m} / \mathrm{s}
\]
Q. 11 A projectile is launched to achieve a maximum range of 150 m , the speed of the projectile must be:
\(R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0} \Rightarrow R_{\max }=\frac{v_{0}^{2}}{g} \Rightarrow v_{0}=\sqrt{g R_{\max }}=\sqrt{9.8 \times 150}=38.34 \mathrm{~m} / \mathrm{s}\)
Q. 11 A projectile is launched to achieve a maximum range of 120 m , the speed of the projectile must be:
(B) \(31.3 \mathrm{~m} / \mathrm{s}\)
(C) \(37 \mathrm{~m} / \mathrm{s}\)
(D) \(45 \mathrm{~m} / \mathrm{s}\)
(E) \(34.29 \mathrm{~m} / \mathrm{s}\)
\[
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0} \quad \Rightarrow \quad R_{\max }=\frac{v_{0}^{2}}{g} \quad \Rightarrow v_{0}=\sqrt{g R_{\max }}=\sqrt{9.8 \times 120}=34.29 \mathrm{~m} / \mathrm{s}
\]

\section*{Uniform Circular Motion}
\[
\begin{gathered}
m a=m \frac{v^{2}}{r} \quad \begin{array}{c}
\text { Centripetal } \\
\text { force }
\end{array} \\
a=\frac{v^{2}}{r}: \text { centripetal acceleration } \\
\hline
\end{gathered}
\]

force \& acceleration are perpendicular to velocity to the center

Angular velocity \(\omega=\frac{2 \pi}{T}=\frac{v}{r}\)

\section*{Circular Motion}
Q. 15 The velocity and acceleration of a body in a uniform circular motion are:
(A) differed by \(45^{\circ}\)
(B) perpendicular
(C) differed by \(135^{\circ}\)
(D) parallel
(E) none of these
Q. 24 A car rounds a 20 m radius curve at \(10 \mathrm{~m} / \mathrm{s}\). The magnitude of its acceleration is:
(D) \(4 \mathrm{~m} / \mathrm{s}^{2}\)
(E) \(6 \mathrm{~m} / \mathrm{s}^{2}\)
\[
a=\frac{v^{2}}{r}=\frac{10^{2}}{20}=5 \mathrm{~m} / \mathrm{s}^{2}
\]
2. A projectile is fired over level ground with an initial velocity that has a vertical component of \(20 \mathrm{~m} / \mathrm{s}\) and a horizontal component of \(30 \mathrm{~m} / \mathrm{s}\). The distance from launching to landing points is:
a) 40 m
b) 60 m
c) 80 m
d) 122.5 m
> -6 An electron's position is given by \(\vec{r}=3.00 t \hat{\mathrm{i}}-\) \(4.00 t^{2} \hat{\mathrm{j}}+2.00 \hat{\mathrm{k}}\), with \(t\) in seconds and \(\vec{r}\) in meters. (a) In unitvector notation, what is the electron's velocity \(\vec{v}(t)\) ? At \(t=\) 2.00 s , what is \(\vec{v}\) (b) in unit-vector notation and as (c) a magnitude and (d) an angle relative to the positive direction of the \(x\) axis?
6. To emphasize the fact that the velocity is a function of time, we adopt the notation \(v(t)\) for \(d x / d t\).
(a) Eq. 4-10 leads to
\[
v(t)=\frac{d}{d t}\left(3.00 t \hat{\mathbf{i}}-4.00 t^{2} \hat{\mathbf{j}}+2.00 \hat{\mathrm{k}}\right)=(3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(8.00 t \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}
\]
(b) Evaluating this result at \(t=2.00 \mathrm{~s}\) produces \(\hat{\boldsymbol{v}}=(3.00 \hat{\mathrm{i}}-16.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\).
(c) The speed at \(t=2.00 \mathrm{~s}\) is \(v=|\vec{v}|=\sqrt{(3.00 \mathrm{~m} / \mathrm{s})^{2}+(-16.0 \mathrm{~m} / \mathrm{s})^{2}}=16.3 \mathrm{~m} / \mathrm{s}\).
(d) The angle of \(\vec{v}\) at that moment is
\[
\tan ^{-1}\left(\frac{-16.0 \mathrm{~m} / \mathrm{s}}{3.00 \mathrm{~m} / \mathrm{s}}\right)=-79.4^{\circ} \text { or } 101^{\circ}
\]

\title{
\(\bullet 17\) A particle leaves the origin with an initial velocity \(\vec{v}=\) \((3.00 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}\) and a constant acceleration \(\vec{a}=(-1.00 \hat{\mathrm{i}}-\) \(0.500 \mathrm{j}) \mathrm{m} / \mathrm{s}^{2}\). When it reaches its maximum \(x\) coordinate, what are its (a) velocity and (b) position vector?
}
(a) The velocity of the particle at any time \(t\) is given by \(\vec{v}=\vec{v}_{0}+\vec{a} t\), where \(\vec{v}_{0}\) is the initial velocity and \(\vec{a}\) is the (constant) acceleration. The \(x\) component is \(v_{x}=v_{0 x}+a_{x} t=\) \(3.00-1.00 t\), and the \(y\) component is
\[
v_{y}=v_{0 \mathrm{y}}+a_{y} t=-0.500 t
\]
since \(v_{0 y}=0\). When the particle reaches its maximum \(x\) coordinate at \(t=t_{m}\), we must have \(v_{x}=0\). Therefore, \(3.00-1.00 t_{m}=0\) or \(t_{m}=3.00 \mathrm{~s}\). The \(y\) component of the velocity at this time is
\[
v_{y}=0-0.500(3.00)=-1.50 \mathrm{~m} / \mathrm{s}
\]
this is the only nonzero component of \(\vec{v}\) at \(t_{m}\).
(b) Since it started at the origin, the coordinates of the particle at any time \(t\) are given by \(\vec{r}=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}\). At \(t=t_{m}\) this becomes
\[
\vec{r}=(3.00 \hat{\mathrm{i}})(3.00)+\frac{1}{2}(-1.00 \hat{\mathrm{i}}-0.50 \hat{\mathrm{j}})(3.00)^{2}=(4.50 \hat{\mathrm{i}}-2.25 \hat{\mathrm{j}}) \mathrm{m}
\]

\section*{Newton's First Law}

Newton's First Law: If no force acts on a body, the body's velocity cannot change; that is, the body cannot accelerate.

In other words, if the body is at rest, it stays at rest. If it is moving, it continues to move with the same velocity (same magnitude and same direction).

FIG. 5-1 A force \(\vec{F}\) on the standard kilogram gives that body an acceleration \(\vec{a}\).

Newton's First Law: If no net force acts on a body (\(\vec{F}_{\text {net }}=0\)), the body's velocity cannot change; that is, the body cannot accelerate.

\section*{Newton's Second Law}

Newton's Second Law: The net force on a body is equal to the product of the body's mass and its acceleration.
In equation form,
\[
\begin{equation*}
\vec{F}_{\mathrm{net}}=m \vec{a} \quad \text { (Newton's second law). } \tag{5-1}
\end{equation*}
\]

Like other vector equations, Eq. 5-1 is equivalent to three component equations, one for each axis of an \(x y z\) coordinate system:
\[
\begin{equation*}
F_{\text {net }, x}=m a_{x}, \quad F_{\text {net }, y}=m a_{y}, \quad \text { and } \quad F_{\text {net }, z}=m a_{z} . \tag{5-2}
\end{equation*}
\]

The acceleration component along a given axis is caused only by the sum of the force components along that same axis, and not by force components along any other axis.

For SI units, Eq. 5-1 tells us that
\[
\begin{equation*}
1 \mathrm{~N}=(1 \mathrm{~kg})\left(1 \mathrm{~m} / \mathrm{s}^{2}\right)=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \tag{5-3}
\end{equation*}
\]

Figures 5-3a to \(c\) show three situations in which one or two forces act on a puck that moves over frictionless ice along an \(x\) axis, in one-dimensional motion. The puck's mass is \(m=0.20 \mathrm{~kg}\). Forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) are directed along the axis and have magnitudes \(F_{1}=4.0 \mathrm{~N}\) and \(F_{2}=\) 2.0 N . Force \(\vec{F}_{3}\) is directed at angle \(\theta=30^{\circ}\) and has magnitude \(F_{3}=1.0 \mathrm{~N}\). In each situation, what is the acceleration of the puck?

Situation A: For Fig. 5-3d, where only one horizontal force acts, Eq. 5-4 gives us
\[
F_{1}=m a_{x}
\]
which, with given data, yields
\[
a_{x}=\frac{F_{1}}{m}=\frac{4.0 \mathrm{~N}}{0.20 \mathrm{~kg}}=20 \mathrm{~m} / \mathrm{s}^{2} . \quad \text { (Answer) }
\]

The positive answer indicates that the acceleration is in the positive direction of the \(x\) axis.

Situation B: In Fig. 5-3e, two horizontal forces act on the puck, \(\vec{F}_{1}\) in the positive direction of \(x\) and \(\vec{F}_{2}\) in the negative direction. Now Eq. 5-4 gives us
which, with given data, yields
\[
a_{x}=\frac{F_{1}-F_{2}}{m}=\frac{4.0 \mathrm{~N}-2.0 \mathrm{~N}}{0.20 \mathrm{~kg}}=10 \mathrm{~m} / \mathrm{s}^{2}
\]

Situation C: In Fig. 5-3f, force \(\vec{F}_{3}\) is not directed along the direction of the puck's acceleration; only \(x\) component \(F_{3, x}\) is. (Force \(\vec{F}_{3}\) is two-dimensional but the motion is only one-dimensional.) Thus, we write Eq. 5-4 as
\[
\begin{equation*}
F_{3, x}-F_{2}=m a_{x} . \tag{5-5}
\end{equation*}
\]

From the figure, we see that \(F_{3, x}=F_{3} \cos \theta\). Solving for the acceleration and substituting for \(F_{3, x}\) yield
\[
\begin{aligned}
a_{x} & =\frac{F_{3, x}-F_{2}}{m}=\frac{F_{3} \cos \theta-F_{2}}{m} \\
& =\frac{(1.0 \mathrm{~N})\left(\cos 30^{\circ}\right)-2.0 \mathrm{~N}}{0.20 \mathrm{~kg}}=-5.7 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
\]
(Answer)
Thus, the net force accelerates the puck in the negative direction of the \(x\) axis.

\section*{Sample Problem}

In the overhead view of Fig. \(5-4 a\), a 2.0 kg cookie tin is accelerated at \(3.0 \mathrm{~m} / \mathrm{s}^{2}\) in the direction shown by \(\vec{a}\), over a frictionless horizontal surface. The acceleration is caused by three horizontal forces, only two of which are shown: \(\vec{F}_{1}\) of magnitude 10 N and \(\vec{F}_{2}\) of magnitude 20 N . What is the third force \(\vec{F}_{3}\) in unit-vector notation and in magnitude-angle notation?
\(x\) components: Along the \(x\) axis we have
\[
\begin{aligned}
F_{3, x} & =m a_{x}-F_{1, x}-F_{2, x} \\
& =m\left(a \cos 50^{\circ}\right)-F_{1} \cos \left(-150^{\circ}\right)-F_{2} \cos 90^{\circ} .
\end{aligned}
\]

Then, substituting known data, we find
\[
\begin{aligned}
F_{3, x}= & (2.0 \mathrm{~kg})\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 50^{\circ}-(10 \mathrm{~N}) \cos \left(-150^{\circ}\right) \\
& -(20 \mathrm{~N}) \cos 90^{\circ} \\
= & 12.5 \mathrm{~N} .
\end{aligned}
\]

\(y\) components: Similarly, along the \(y\) axis we find
\[
\begin{aligned}
F_{3, y}= & m a_{y}-F_{1, y}-F_{2, y} \\
= & m\left(a \sin 50^{\circ}\right)-F_{1} \sin \left(-150^{\circ}\right)-F_{2} \sin 90^{\circ} \\
= & (2.0 \mathrm{~kg})\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 50^{\circ}-(10 \mathrm{~N}) \sin \left(-150^{\circ}\right) \\
& -(20 \mathrm{~N}) \sin 90^{\circ} \\
= & -10.4 \mathrm{~N} .
\end{aligned}
\]

Vector: In unit-vector notation, we can write
\[
\begin{aligned}
\vec{F}_{3} & =F_{3, x} \hat{i}+F_{3, y} \hat{\mathrm{j}}=(12.5 \mathrm{~N}) \hat{\mathrm{i}}-(10.4 \mathrm{~N}) \hat{\mathrm{j}} \\
& \approx(13 \mathrm{~N}) \hat{\mathrm{i}}-(10 \mathrm{~N}) \hat{\mathrm{j}} . \quad \text { (Answer) }
\end{aligned}
\]

We can now use a vector-capable calculator to get the magnitude and the angle of \(\vec{F}_{3}\). We can also use Eq. 3-6 to obtain the magnitude and the angle (from the positive direction of the \(x\) axis) as
and
\[
\begin{align*}
F_{3} & =\sqrt{F_{3, x}^{2}+F_{3, y}^{2}}=16 \mathrm{~N} \\
\theta & =\tan ^{-1} \frac{F_{3, y}}{F_{3, x}}=-40^{\circ} . \tag{Answer}
\end{align*}
\]

\section*{5-7 | Some Particular Forces}

\section*{The Gravitational Force}

Newton's second law can be written in the form \(F_{\text {net, } y}=m a_{y}\), which, in our situation, becomes
\[
\begin{gather*}
-F_{g}=m(-g) \\
F_{g}=m g \tag{5-8}
\end{gather*}
\]

\section*{Weight}
\[
F_{\text {net }, y}=m a_{y} .
\]

In our situation, this becomes
\[
\begin{equation*}
W-F_{g}=m(0) \tag{5-10}
\end{equation*}
\]
or
\[
\begin{equation*}
W=F_{g} \quad(\text { weight, with ground as inertial frame }) . \tag{5-11}
\end{equation*}
\]
\(W=m g\)
\(\mathrm{m}=\mathrm{W} / \mathrm{g}\)
\(\mathrm{F}=(\mathrm{W} / \mathrm{g}) \mathrm{a}\)

\section*{The Normal Force}
\[
F_{N}-F_{g}=m a_{y} .
\]

From Eq. 5-8, we substitute \(m g\) for \(F_{g}\), finding
\[
F_{N}-m g=m a_{y} .
\]

Then the magnitude of the normal force is
\[
\begin{equation*}
F_{N}=m g+m a_{y}=m\left(g+a_{y}\right) \tag{5-13}
\end{equation*}
\]
\(a_{y}=0\) and Eq. \(5-13\) yields
\[
\begin{equation*}
F_{N}=m g . \tag{5-14}
\end{equation*}
\]

Scale marked in either weight or mass units

\section*{Friction}

If we either slide or attempt to slide a body over a surface, the motion is resisted by a bonding between the body and the surface. (We discuss this bonding more in the next chapter.) The resistance is considered to be a single force \(\vec{f}\), called either the frictional force or simply friction. This force is directed along the surface, opposite the direction of the intended motion (Fig. 5-8). Sometimes, to simplify a situation, friction is assumed to be negligible (the surface is frictionless).

FIG. 5-8 A frictional force \(\vec{f}\) opposes the attempted slide of a body over a surface.

\section*{5-8 | Newton's Third Law}

Newton's Third Law: When two bodies interact, the forces on the bodies from each other are always equal in magnitude and opposite in direction.

(a)

(b)

For the book and crate, we can write this law as the scalar relation
\[
F_{B C}=F_{C B} \quad \text { (equal magnitudes) }
\]
or as the vector relation
\[
\vec{F}_{B C}=-\vec{F}_{C B} \quad \text { (equal magnitudes and opposite directions), }
\]

The reaction of force on a body is always an equal and opposite direction of the force

\section*{Sample Problem \(\mid 5-5\)}

In Fig. 5-16a, a cord pulls on a box of sea biscuits up along a frictionless plane inclined at \(\theta=30^{\circ}\). The box has mass \(m=5.00 \mathrm{~kg}\), and the force from the cord has magnitude \(T=25.0 \mathrm{~N}\). What is the box's acceleration component \(a\) along the inclined plane?

We write Newton's second law \(\left(\vec{F}_{\text {net }}=m \vec{a}\right)\) for motion along the \(x\) axis as
\[
\begin{equation*}
T-m g \sin \theta=m a . \tag{5-22}
\end{equation*}
\]

Substituting data and solving for \(a\), we find
\[
a=0.100 \mathrm{~m} / \mathrm{s}^{2},
\]
where the positive result indicates that the box accelerates up the plane.

(c)

\section*{\begin{tabular}{|l|l|l|}
\hline Sample Problem & 5-8 & Build your skill
\end{tabular}}

In Fig. 5-19a, a passenger of mass \(m=72.2 \mathrm{~kg}\) stands on a platform scale in an elevator cab. We are concerned with the scale readings when the cab is stationary and when it is moving up or down.
(a) Find a general solution for the scale reading, whatever the vertical motion of the cah
or
\[
\begin{align*}
& F_{N}-F_{g}=m a \\
& F_{N}=F_{g}+m a . \tag{5-27}
\end{align*}
\]

This tells us that the scale reading, which is equal to \(F_{N}\), depends on the vertical acceleration. Substituting \(m g\) for \(F_{g}\) gives us
\[
\begin{equation*}
F_{N}=m(g+a) \quad \text { (Answer) } \tag{5-28}
\end{equation*}
\]
(b) What does the scale read if the cab is stationary or moving upward at a constant \(0.50 \mathrm{~m} / \mathrm{s}\) ?

KEYIDEA For any constant velocity (zero or otherwise), the acceleration \(a\) of the passenger is zero.

Calculation: Substituting this and other known values into Eq. 5-28, we find
\[
F_{N}=(72.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+0\right)=708 \mathrm{~N} .
\]
(c) What does the scale read if the cab accelerates upward at \(3.20 \mathrm{~m} / \mathrm{s}^{2}\) and downward at \(3.20 \mathrm{~m} / \mathrm{s}^{2}\) ?

Calculations: For \(a=3.20 \mathrm{~m} / \mathrm{s}^{2}\), Eq. \(5-28\) gives
\[
\begin{aligned}
F_{N} & =(72.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+3.20 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =939 \mathrm{~N},
\end{aligned}
\]
(Answer)
and for \(a=-3.20 \mathrm{~m} / \mathrm{s}^{2}\), it gives
\[
\begin{align*}
F_{N} & =(72.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}-3.20 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =477 \mathrm{~N} . \tag{Answer}
\end{align*}
\]
(d) During the upward acceleration in part (c), what is the magnitude \(F_{\text {net }}\) of the net force on the passenger, and what is the magnitude \(a_{\mathrm{p}, \text { cab }}\) of his acceleration as measured in the frame of the cab? Does \(\vec{F}_{\text {net }}=m \vec{a}_{\mathrm{p}, \text { cab }}\) ?

Calculation: The magnitude \(F_{g}\) of the gravitational force on the passenger does not depend on the motion of the passenger or the cab; so, from part (b), \(F_{g}\) is 708 N . From part (c), the magnitude \(F_{N}\) of the normal force on the passenger during the upward acceleration is the 939 N reading on the scale. Thus, the net force on the passenger is
\[
F_{\text {net }}=F_{N}-F_{g}=939 \mathrm{~N}-708 \mathrm{~N}=231 \mathrm{~N},
\]
(Answer)

\section*{Sample Problem}

Figure 5-18a shows the general arrangement in which two forces are applied to a 4.00 kg block on a frictionless floor, but only force \(\vec{F}_{1}\) is indicated. That force has a fixed magnitude but can be applied at angle \(\theta\) to the positive direction of the \(x\) axis. Force \(\vec{F}_{2}\) is horizontal and fixed in both magnitude and angle. Figure 5-18b gives the horizontal acceleration \(a_{x}\) of the block for any given value of \(\theta\) from \(0^{\circ}\) to \(90^{\circ}\). What is the value of \(a_{x}\) for \(\theta=180^{\circ}\) ?

(a)

Calculations: The \(x\) component of \(\vec{F}_{2}\) is \(F_{2}\) because the vector is horizontal. The \(x\) component of \(\vec{F}_{1}\) is \(F_{1} \cos \theta\). Using these expressions and a mass \(m\) of 4.00 kg , we can write Newton's second law (\(\left.\vec{F}_{\text {net }}=m \vec{a}\right)\) for motion along the \(x\) axis as
\[
\begin{equation*}
F_{1} \cos \theta+F_{2}=4.00 a_{x} . \tag{5-25}
\end{equation*}
\]

From this equation we see that when \(\theta=90^{\circ}, F_{1} \cos \theta\) is zero and \(F_{2}=4.00 a_{x}\). From the graph we see that the corresponding acceleration is \(0.50 \mathrm{~m} / \mathrm{s}^{2}\). Thus, \(F_{2}=2.00 \mathrm{~N}\) and \(\vec{F}_{2}\) must be in the positive direction of the \(x\) axis.

From Eq. 5-25, we find that when \(\theta=0^{\circ}\),
\[
\begin{equation*}
F_{1} \cos 0^{\circ}+2.00=4.00 a_{x} \tag{5-26}
\end{equation*}
\]

From the graph we see that the corresponding acceleration is \(3.0 \mathrm{~m} / \mathrm{s}^{2}\). From Eq. \(5-26\), we then find that \(F_{1}=10 \mathrm{~N}\).

Substituting \(F_{1}=10 \mathrm{~N}, F_{2}=2.00 \mathrm{~N}\), and \(\theta=180^{\circ}\) into Eq. 5-25 leads to
\[
a_{x}=-2.00 \mathrm{~m} / \mathrm{s}^{2}
\]

In Fig. 5-20a, a constant horizontal force \(\vec{F}_{\text {app }}\) of magnitude 20 N is applied to block \(A\) of mass \(m_{A}=4.0 \mathrm{~kg}\),
which pushes against block \(B\) of mass \(m_{B}=6.0 \mathrm{~kg}\). The blocks slide over a frictionless surface, along an \(x\) axis.
(a) What is the acceleration of the blocks?

(a)

(b)

(c)
(b) What is the (horizontal) force \(\vec{F}_{B A}\) on block \(B\) from block \(A\) (Fig. 5-20c)?

Here, once again for the \(x\) axis, we can write that law as
\[
F_{\mathrm{app}}=\left(m_{A}+m_{B}\right) a,
\]
where now we properly apply \(\vec{F}_{\text {app }}\) to the system with total mass \(m_{A}+m_{B}\). Solving for \(a\) and substituting known values, we find
\[
a=\frac{F_{\mathrm{app}}}{m_{A}+m_{B}}=\frac{20 \mathrm{~N}}{4.0 \mathrm{~kg}+6.0 \mathrm{~kg}}=2.0 \mathrm{~m} / \mathrm{s}^{2} .
\]

Calculation: Here we can write that law, still for components along the \(x\) axis, as
\[
F_{B A}=m_{B} a
\]
which, with known values, gives
\[
F_{B A}=(6.0 \mathrm{~kg})\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)=12 \mathrm{~N} . \quad \text { (Answer) }
\]

Thus, force \(\vec{F}_{B A}\) is in the positive direction of the \(x\) axis and has a magnitude of 12 N .
\(\bullet 5\) There are two forces on the 2.00 kg box in the overhead view of Fig. 5-31, but only one is shown. For \(F_{1}=\) \(20.0 \mathrm{~N}, a=12.0 \mathrm{~m} / \mathrm{s}^{2}\), and \(\theta=\) \(30.0^{\circ}\), find the second force (a) in unit-vector notation and as (b) a magnitude and (c) an angle relative to the positive direction of the \(x\) axis. SSM

FIG. 5-31 Problem 5.
5. We denote the two forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\). According to Newton's second law, \(\vec{F}_{1}+\vec{F}_{2}=m \vec{a}\), so \(\vec{F}_{2}=m \vec{a}-\vec{F}_{1}\).
(a) In unit vector notation \(\vec{F}_{1}=(20.0 \mathrm{~N}) \hat{\mathrm{i}}\) and
\[
\vec{a}=-\left(12.0 \sin 30.0^{\circ} \mathrm{m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}-\left(12.0 \cos 30.0^{\circ} \mathrm{m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}=-\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}-\left(10.4 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}
\]

Therefore,
\[
\begin{aligned}
\vec{F}_{2} & =(2.00 \mathrm{~kg})\left(-6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+(2.00 \mathrm{~kg})\left(-10.4 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}-(20.0 \mathrm{~N}) \hat{\mathrm{i}} \\
& =(-32.0 \mathrm{~N}) \hat{\mathrm{i}}-(20.8 \mathrm{~N}) \hat{\mathrm{j}}
\end{aligned}
\]
(b) The magnitude of \(\vec{F}_{2}\) is
\[
\left|\vec{F}_{2}\right|=\sqrt{F_{2 x}^{2}+F_{2 y}^{2}}=\sqrt{(-32.0 \mathrm{~N})^{2}+(-20.8 \mathrm{~N})^{2}}=38.2 \mathrm{~N} .
\]
(c) The angle that \(\vec{F}_{2}\) makes with the positive \(x\) axis is found from
\[
\tan \theta=\left(F_{2 y} / F_{2 x}\right)=[(-20.8 \mathrm{~N}) /(-32.0 \mathrm{~N})]=0.656
\]

Consequently, the angle is either \(33.0^{\circ}\) or \(33.0^{\circ}+180^{\circ}=213^{\circ}\). Since both the \(x\) and \(y\) components are negative, the correct result is \(213^{\circ}\). An alternative answer is \(213^{\circ}-360^{\circ}=-147^{\circ}\).
\(\bullet 6\) While two forces act on it, a particle is to move at the constant velocity \(\vec{v}=(3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(4 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\). One of the forces is \(\vec{F}_{1}=(2 \mathrm{~N}) \hat{\mathrm{i}}+(-6 \mathrm{~N}) \hat{\mathrm{j}}\). What is the other force?
6. Since \(\vec{v}=\) constant, we have \(\vec{a}=0\), which implies
\[
\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}=m \vec{a}=0 .
\]

Thus, the other force must be
\[
\vec{r}_{2}=-\vec{r}_{1}=(-2 \mathrm{~N}) \hat{\mathbf{i}}+(6 \mathrm{~N}) \hat{\mathbf{j}} .
\]
\(\bullet 10\) A 0.150 kg particle moves along an \(x\) axis according to \(x(t)=-13.00+2.00 t+4.00 t^{2}-3.00 t^{3}\), with \(x\) in meters and \(t\) in seconds. In unit-vector notation, what is the net force acting on the particle at \(t=3.40 \mathrm{~s}\) ?
10. To solve the problem, we note that acceleration is the second time derivative of the position function, and the net force is related to the acceleration via Newton's second law. Thus, differentiating
\[
x(t)=-13.00+2.00 t+4.00 t^{2}-3.00 t^{3}
\]
twice with respect to \(t\), we get
\[
\frac{d x}{d t}=2.00+8.00 t-9.00 t^{2}, \quad \frac{d^{2} x}{d t^{2}}=8.00-18.0 t
\]

The net force acting on the particle at \(t=3.40 \mathrm{~s}\) is
\[
\vec{F}=m \frac{d^{2} x}{d t^{2}} \hat{\mathrm{i}}=(0.150)[8.00-18.0(3.40)] \hat{\mathrm{i}}=(-7.98 \mathrm{~N}) \hat{\mathrm{i}}
\] mass of the block be 8.5 kg and the angle \(\theta\) be \(30^{\circ}\). Find (a) the tension in the cord and (b) the normal force acting on the block. (c) If the cord is cut, find the magnitude of the resulting acceleration of the block. SSM www

FIG. 5-38 Problem 19.
19. (a) Since the acceleration of the block is zero, the components of the Newton's second law equation yield
\[
\begin{aligned}
T-m g \sin \theta & =0 \\
F_{N}-m g \cos \theta & =0 .
\end{aligned}
\]

Solving the first equation for the tension in the string, we find
\[
T=m g \sin \theta=(8.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 30^{\circ}=42 \mathrm{~N} .
\]
(b) We solve the second equation in part (a) for the normal force \(F_{N}\) :
\[
F_{N}=m g \cos \theta=(8.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 30^{\circ}=72 \mathrm{~N} .
\]
(c) When the string is cut, it no longer exerts a force on the block and the block accelerates. The \(x\) component of the second law becomes \(-m g \sin \theta=m a\), so the acceleration becomes
\[
a=-g \sin \theta=-\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 30^{\circ}=-4.9 \mathrm{~m} / \mathrm{s}^{2} .
\]

The negative sign indicates the acceleration is down the plane. The magnitude of the acceleration is \(4.9 \mathrm{~m} / \mathrm{s}^{2}\).
-14 A block with a weight of 3.0 N is at rest on a horizontal surface. A 1.0 N upward force is applied to the block by means of an attached vertical string. What are the (a) magnitude and (b) direction of the force of the block on the horizontal surface?
14. Three vertical forces are acting on the block: the earth pulls down on the block with gravitational force 3.0 N ; a spring pulls up on the block with elastic force 1.0 N ; and, the surface pushes up on the block with normal force \(F_{N}\). There is no acceleration, so
\[
\sum F_{y}=0=F_{N}+(1.0 \mathrm{~N})+(-3.0 \mathrm{~N})
\]
yields \(F_{N}=2.0 \mathrm{~N}\).
(a) By Newton's third law, the force exerted by the block on the surface has that same magnitude but opposite direction: 2.0 N .
(b) The direction is down.
-15 Figure \(5-36\) shows an arrangement in which four disks are suspended by cords. The longer, top cord loops over a frictionless pulley and pulls with a force of magnitude 98 N on the wall to which it is attached. The tensions in the shorter cords are \(T_{1}=58.8 \mathrm{~N}\), \(T_{2}=49.0 \mathrm{~N}\), and \(T_{3}=9.8 \mathrm{~N}\). What are the masses of (a) disk \(A\), (b) disk \(B\), (c) disk \(C\), and (d) disk \(D\) ?

15. (a) From the fact that \(T_{3}=9.8 \mathrm{~N}\), we conclude the mass of disk \(D\) is 1.0 kg . Both this and that of disk \(C\) cause the tension \(T_{2}=49 \mathrm{~N}\), which allows us to conclude that disk \(C\) has a mass of 4.0 kg . The weights of these two disks plus that of disk \(B\) determine the tension \(T_{1}=58.8 \mathrm{~N}\), which leads to the conclusion that \(m_{B}=1.0 \mathrm{~kg}\). The weights of all the disks must add to the 98 N force described in the problem; therefore, \(\operatorname{disk} A\) has mass 4.0 kg .
(b) \(m_{B}=1.0 \mathrm{~kg}\), as found in part (a).
(c) \(m_{C}=4.0 \mathrm{~kg}\), as found in part (a).
(d) \(m_{D}=1.0 \mathrm{~kg}\), as found in part (a).
-•59 A block of mass \(m_{1}=\) 3.70 kg on a frictionless plane inclined at angle \(\theta=30.0^{\circ}\) is connected by a cord over a massless, frictionless pulley to a second block of mass \(m_{2}=2.30\) kg (Fig. 5-55). What are (a) the magnitude of the acceleration

FIG. 5-55 Problem 59. of each block, (b) the direction of the acceleration of the hanging block, and (c) the tension in the cord?
59. The free-body diagram for each block is shown below. \(T\) is the tension in the cord and \(\theta=30^{\circ}\) is the angle of the incline. For block 1, we take the \(+x\) direction to be up the incline and the \(+y\) direction to be in the direction of the normal force \(\vec{F}_{N}\) that the plane exerts on the block. For block 2, we take the \(+y\) direction to be down. In this way, the accelerations of the two blocks can be represented by the same symbol \(a\), without ambiguity. Applying Newton's second law to the \(x\) and \(y\) axes for block 1 and to the \(y\) axis of block 2, we obtain
\[
\begin{aligned}
T-m_{1} g \sin \theta & =m_{1} a \\
F_{N}-m_{1} g \cos \theta & =0 \\
m_{2} g-T & =m_{2} a
\end{aligned}
\]
respectively. The first and third of these equations provide a simultaneous set for obtaining values of \(a\) and \(T\). The second equation is not needed in this problem, since the normal force is neither asked for nor is it needed as part of some further computation (such as can occur in formulas for friction).

(a) We add the first and third equations above:
\[
m_{2} g-m_{1} g \sin \theta=m_{1} a+m_{2} a
\]

Consequently, we find
\[
a=\frac{\left(m_{2}-m_{1} \sin \theta\right) g}{m_{1}+m_{2}}=\frac{\left[2.30 \mathrm{~kg}-(3.70 \mathrm{~kg}) \sin 30.0^{\circ}\right]\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{3.70 \mathrm{~kg}+2.30 \mathrm{~kg}}=0.735 \mathrm{~m} / \mathrm{s}^{2}
\]
(b) The result for \(a\) is positive, indicating that the acceleration of block 1 is indeed up the incline and that the acceleration of block 2 is vertically down.
(c) The tension in the cord is
\[
T=m_{1} a+m_{1} g \sin \theta=(3.70 \mathrm{~kg})\left(0.735 \mathrm{~m} / \mathrm{s}^{2}\right)+(3.70 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 30.0^{\circ}=20.8 \mathrm{~N}
\]
-•54 In Fig. 5-52, three ballot boxes are connected by cords, one of which wraps over a pulley having negligible friction on its axle and negligible mass. The three masses are \(m_{A}=30.0 \mathrm{~kg}\), \(m_{B}=40.0 \mathrm{~kg}\), and \(m_{C}=10.0 \mathrm{~kg}\). When the assembly is released from rest, (a) what is the tension in the cord connecting \(B\) and \(C\), and (b) how far does \(A\) move in the first 0.250 s (assuming it does not reach the pulley)?

FIG. 5-52 Problem 54.
54. (a) The net force on the system (of total mass \(M=80.0 \mathrm{~kg}\)) is the force of gravity acting on the total overhanging mass (\(m_{B C}=50.0 \mathrm{~kg}\)). The magnitude of the acceleration is therefore \(a=\left(m_{B C} g\right) / M=6.125 \mathrm{~m} / \mathrm{s}^{2}\). Next we apply Newton's second law to block \(C\) itself (choosing down as the \(+y\) direction) and obtain
\[
m_{C} g-T_{B C}=m_{C} a .
\]

This leads to \(T_{B C}=36.8 \mathrm{~N}\).
(b) We use Eq. 2-15 (choosing rightward as the \(+x\) direction): \(\Delta x=0+\frac{1}{2} a t^{2}=0.191 \mathrm{~m}\).
\(\bullet 55\) Figure 5-53 shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. One block has mass \(m_{1}=1.30\) kg ; the other has mass \(m_{2}=2.80 \mathrm{~kg}\). What are (a) the magnitude of the blocks' acceleration and (b) the tension in the cord? (so

55. The free-body diagrams for \(m_{1}\) and \(m_{2}\) are shown in the figures below. The only forces on the blocks are the upward tension \(\vec{T}\) and the downward gravitational forces \(\vec{F}_{1}=m_{1} g\) and \(\vec{F}_{2}=m_{2} g\). Applying Newton's second law, we obtain:
\[
\begin{aligned}
& T-m_{1} g=m_{1} a \\
& m_{2} g-T=m_{2} a
\end{aligned}
\]
which can be solved to yield
\[
a=\left(\frac{m_{2}-m_{1}}{m_{2}+m_{1}}\right) g
\]

Substituting the result back, we have

\[
T=\left(\frac{2 m_{1} m_{2}}{m_{1}+m_{2}}\right) g
\]
(a) With \(m_{1}=1.3 \mathrm{~kg}\) and \(m_{2}=2.8 \mathrm{~kg}\), the acceleration becomes
\[
a=\left(\frac{2.80 \mathrm{~kg}-1.30 \mathrm{~kg}}{2.80 \mathrm{~kg}+1.30 \mathrm{~kg}}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=3.59 \mathrm{~m} / \mathrm{s}^{2} .
\]
(b) Similarly, the tension in the cord is
\[
T=\frac{2(1.30 \mathrm{~kg})(2.80 \mathrm{~kg})}{1.30 \mathrm{~kg}+2.80 \mathrm{~kg}}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=17.4 \mathrm{~N} .
\]
\(\bullet\) ••65 Figure 5-57 shows three blocks attached by cords that loop over frictionless pulleys. Block \(B\) lies on a frictionless table; the masses are \(m_{A}=\) \(6.00 \mathrm{~kg}, m_{B}=8.00 \mathrm{~kg}\), and \(m_{C}=\) 10.0 kg . When the blocks are released, what is the tension in the

FIG. 5-57 Problem 65.
65. First we analyze the entire system with "clockwise" motion considered positive (that is, downward is positive for block \(C\), rightward is positive for block \(B\), and upward is positive for block \(A\)): \(m_{C} g-m_{A} g=M a\) (where \(M=\) mass of the \(s y s t e m=24.0 \mathrm{~kg}\)). This yields an acceleration of
\[
a=g\left(m_{C}-m_{A}\right) / M=1.63 \mathrm{~m} / \mathrm{s}^{2} .
\]

Next we analyze the forces just on block \(C: m_{C} g-T=m_{C} a\). Thus the tension is
\[
T=m_{C} g\left(2 m_{A}+m_{B}\right) / M=81.7 \mathrm{~N}
\]
\(\bullet \bullet 66\) Figure \(5-58\) shows a box of mass \(m_{2}=1.0 \mathrm{~kg}\) on a frictionless plane inclined at angle \(\theta=30^{\circ}\). It is connected by a cord of negligible mass to a box of mass \(m_{1}=3.0 \mathrm{~kg}\) on a horizontal frictionless surface. The pulley is frictionless and massless. (a) If the magnitude of

FIG. 5-58 Problem 66. horizontal force \(\vec{F}\) is 2.3 N , what is the tension in the connecting cord? (b) What is the largest value the magnitude of \(\vec{F}\) may have without the cord becoming slack?
66. The \(+x\) direction for \(m_{2}=1.0 \mathrm{~kg}\) is "downhill" and the \(+x\) direction for \(m_{1}=3.0 \mathrm{~kg}\) is rightward, thus, they accelerate with the same sign.

(a) We apply Newton's second law to the \(x\) axis of each box:
\[
\begin{aligned}
m_{2} g \sin \theta-T & =m_{2} a \\
F+T & =m_{1} a
\end{aligned}
\]

Adding the two equations allows us to solve for the acceleration:
\[
a=\frac{m_{2} g \sin \theta+F}{m_{1}+m_{2}}
\]

With \(F=2.3 \mathrm{~N}\) and \(\theta=30^{\circ}\), we have \(a=1.8 \mathrm{~m} / \mathrm{s}^{2}\). We plug back and find \(T=3.1 \mathrm{~N}\).
(b) We consider the "critical" case where the \(F\) has reached the \(m a x\) value, causing the tension to vanish. The first of the equations in part (a) shows that \(a=g \sin 30^{\circ}\) in this case; thus, \(a=4.9 \mathrm{~m} / \mathrm{s}^{2}\). This implies (along with \(T=0\) in the second equation in part (a)) that
\[
F=(3.0 \mathrm{~kg})\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right)=14.7 \mathrm{~N} \approx 15 \mathrm{~N}
\]
in the critical case.

\section*{Friction and Motion}

A block rests on a tabletop with the gravitational force \(\vec{F}_{g}\) balanced by a normal force \(\vec{F}_{N}\)
One exerts a force on the block \(\vec{F}\)

There is no attempt at sliding. Thus, no friction and no motion.

Frictional force \(=0\)

\section*{Friction and Motion}

An external force \(F\), applied to the block, is balanced by a static frictional force \(f_{s}\). As \(F\) increases, \(f_{s}\) also increases, until \(f_{s}\) reaches a certain maximum value.

Force \(\vec{F}\) attempts
sliding but is balanced by the frictional force. No motion.

Force \(\vec{F}\) is now stronger but is still balanced by the frictional force. No motion.

Force \(\vec{F}\) is now even stronger but is still balanced by the frictional force. No motion.

(b)

(c)
(d)

Frictional force \(=F\)

Frictional force \(=F\)

Frictional force \(=F\)

\section*{Friction and Motion}

The block then "breaks away," accelerating suddenly in the direction of \(F\).
Finally, the applied force has overwhelmed the static frictional force. Block slides and accelerates.

(e)

Weak kinetic
frictional force \(\vec{f}_{k}\)

Same weak kinetic frictional force

Some experimental results for the sequence (a) through (f)

\section*{Properties of Friction}

Property 1. If the body does not move, then the static frictional force \(\vec{f}_{s}\) and the component of \(\vec{F}\) that is parallel to the surface balance each other. They are equal in magnitude, and \(\vec{f}_{s}\) is directed opposite that component of \(\vec{F}\).

\section*{Properties of Friction}

Property 2. The magnitude of \(\vec{f}_{s}\) has a maximum value \(f_{s, \text { max }}\) that is given by
\[
\begin{equation*}
f_{s, \text { max }}=\mu_{s} F_{N}, \tag{6-1}
\end{equation*}
\]
where \(\mu_{s}\) is the coefficient of static friction and \(F_{N}\) is the magnitude of the normal force on the body from the surface. If the magnitude of the component of \(\vec{F}\) that is parallel to the surface exceeds \(f_{s, \text { max }}\), then the body begins to slide along the surface.

\section*{Properties of Friction}

Property 3. If the body begins to slide along the surface, the magnitude of the frictional force rapidly decreases to a value \(f_{k}\) given by
\[
\begin{equation*}
f_{k}=\mu_{k} F_{N}, \tag{6-2}
\end{equation*}
\]
where \(\mu_{k}\) is the coefficient of kinetic friction. Thereafter, during the sliding, a kinetic frictional force \(\vec{f}_{k}\) with magnitude given by Eq. \(6-2\) opposes the motion.
\(>\) The coefficients \(\mu_{\mathrm{s}}\) and \(\mu_{k}\) are dimensionless.
\(>\) Their values depend on certain properties of both the body and the surface; hence, they are usually referred to with the preposition "between,"

\section*{CHECKPOINT}

A block lies on a floor. (a) What is the magnitude of the frictional force on it from the floor?
(b) If a horizontal force of 5 N is now applied to the block, but the block does not move, what is the magnitude of the frictional force on it?
(c) If the maximum value \(f_{s, \max }\) of the static frictional force on the block is 10 N , will the block move if the magnitude of the horizontally applied force is 8 N ?
(d) If it is 12 N ?
(e) What is the magnitude of the frictional force in part (c)?

\section*{Sanmple problen}

If a car's wheels are "locked" during emergency braking, the car slides along the road. Ripped-off bits of tire and small melted sections of road form the "skid marks" that reveal that cold-welding occurred during the slide. The marks were 290 m long! Assuming that \(\mu_{k}=0.60\) and the car's acceleration was constant during the braking, how fast was the car going when the wheels became locked?

Acceleration a was due only to a kinetic frictional force

\[
\begin{aligned}
& -f_{k}=m a \quad f_{k}=\mu_{k} F_{N} \\
& a=-\frac{f_{k}}{m}=-\frac{\mu_{k} m g}{m}=-\mu_{k} g
\end{aligned}
\]

Acceleration is constant
\[
\& v=0
\]
\[
\& x-x_{0}=290 m
\]
\[
\begin{aligned}
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right) \\
v_{0} & =\sqrt{2 \mu_{k} g\left(x-x_{0}\right)} \\
& =\sqrt{(2)(0.60)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(290 \mathrm{~m})} \\
& =58 \mathrm{~m} / \mathrm{s}=210 \mathrm{~km} / \mathrm{h} .
\end{aligned}
\]

A block of mass \(m=3 \mathrm{~kg}\) slides along a floor while a force \(F\) of magnitude 12.0 N is applied to it at an upward angle \(\theta\). The coefficient of kinetic friction between the block and the floor is \(\mu_{k}=0.4\). We can vary \(\theta\) from 0 to \(90^{\circ}\) (the block remains on the floor). What \(\theta\) gives the maximum value of the block's acceleration magnitude a?

Along y-direction \(\quad F_{N}+F \sin \theta-m g=m(0) \quad F_{N}=m g-F \sin \theta\)
Along x-direction \(\quad F \cos \theta-\mu_{k} F_{N}=m a\)
Substituting for \(F_{N} \quad a=\frac{F}{m} \cos \theta-\mu_{k}\left(g-\frac{F}{m} \sin \theta\right)\)
Finding a maximum \(\frac{d a}{d \theta}=-\frac{F}{m} \sin \theta+\mu_{k} \frac{F}{m} \cos \theta=0 \quad \square \tan \theta=\mu_{k}\)
\[
\theta=\tan ^{-1} \mu_{k}=21.8^{\circ} \approx 22^{\circ}
\]

\section*{The Drag Force and Terminal Speed}
\(>\) A fluid is anything that can flow, generally either a gas or a liquid.
\(>\) When there is a relative velocity between a fluid and a body, the body experiences a drag force \(D\)
\(>\) The drag force opposes the relative motion and points in the direction in which the fluid flows relative to the body..

\section*{Fall of blunt (like a baseball) in air}

The drag force
\(\rho\) : air density
\(\vec{v}\) : body speed

The drag force increases until it balances \(F_{g}\) on the body. The body now falls at constant terminal speed.

Newton's second law for a vertical \(y\) axis \(F_{\text {net ,y }}=m a_{y}\)
\[
D-F_{g}=m a \quad \frac{1}{2} C \rho A v_{t}^{2}-F_{g}=0
\]
terminal speed
\[
v_{t}=\sqrt{\frac{2 F_{g}}{C \rho A}}
\]

A raindrop with radius \(R=1.5 \mathrm{~mm}\) falls from a cloud that is at height \(h=\) 1200 m above the ground. The drag coefficient C for the drop is 0.60 . Assume that the drop is spherical throughout its fall. The density of water \(p^{\prime \prime}\), is \(1000 \mathrm{~kg} / \mathrm{m}^{3}\), and the density of air \(\rho_{\mathrm{a}}\) is \(1.2 \mathrm{~kg} / \mathrm{m}^{3}\). (a) What is the terminal speed?
\(F_{g}=V \rho_{w} g=\frac{4}{3} \pi R^{3} \rho_{w} g\)

\[
=7.4 \mathrm{~m} / \mathrm{s} \approx 27 \mathrm{~km} / \mathrm{h}
\]
(b) What would be the drop's speed just before impact if there were no drag force?.

The initial velocity \(v_{0}=0\), displacement \(x-x_{0}\) is \(-h\)
\[
\begin{aligned}
v & =\sqrt{2 g h}=\sqrt{(2)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1200 \mathrm{~m})} \\
& =153 \mathrm{~m} / \mathrm{s} \approx 550 \mathrm{~km} / \mathrm{h} .
\end{aligned}
\]

\section*{Uniform Circular Motion}
> A particle moves in a circular path with a constant speed v
\(>\) It then has centripetal force of
\[
a=\frac{v^{2}}{R} \quad \text { centripetal acceleartion }
\]

From Newton's second law, the centripetal force is:
\[
F=m a=m \frac{v^{2}}{R}
\]
\(>\) Both velocity and acceleration are constant
\(>\) Both a and F are directed to the center. They are perpendicular to \(v\) (in the direction of the tangent)

\section*{Example:}

A car moves with a constant speed in a circular motion of radius 50 m and makes a full cycle in 0.2 min . Find the speed and the acceleration of the car.

Since the speed of the car is constant , therefore
\[
\begin{aligned}
& v=\frac{X}{t}=\frac{2 \pi r}{t}=\frac{2 \times 3.14 \times 50}{0.2 \times 60}=26.2 \mathrm{~m} / \mathrm{s} \\
& a=\frac{v^{2}}{R}=\frac{26.2^{2}}{50}=13.7 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\]
-1 A bedroom bureau with a mass of 45 kg , including drawers and clothing, rests on the floor. (a) If the coefficient of static friction between the bureau and the floor is 0.45 , what is the magnitude of the minimum horizontal force that a person must apply to start the bureau moving? (b) If the drawers and clothing, with 17 kg mass, are removed before the bureau is pushed, what is the new minimum magnitude? SSM www

The minimum force \(F_{\text {min }}\) is equal to the maximum static friction \(f_{s, \text { max }}\)
\[
\begin{align*}
F_{\min } & =f_{s, \max }=\mu_{s} F_{N}=\mu_{s} m g \\
& =(45-17) \times 0.45 \times 9.8=123 \mathrm{~N} \tag{b}
\end{align*}
\]
\(\bullet 18\) A 4.10 kg block is pushed along a floor by a constant applied force that is horizontal and has a magnitude of 40.0 N . Figure 6-27 gives the block's speed \(v\) versus time \(t\) as the block moves along an \(x\) axis on the floor. The scale of the figure's vertical axis is set by \(v_{s}=5.0\)

FIG. 6-27 Problem 18. \(\mathrm{m} / \mathrm{s}\). What is the coefficient of kinetic friction between the block and the floor?

Acceleration \(=\) slope \(=0.45\)
Kinetic friction \(\quad f_{k}=\mu_{k} F_{N}=\mu_{k} m g\)
Newton's 2nd law: \(F-f_{k}=m a\)
\(F-\mu_{k} F_{N}=m a \quad \Rightarrow \quad \mu_{k} m g=F-m a \quad \Rightarrow \quad \mu_{k} F_{N}=\frac{F-m a}{m g}=\frac{40-4.1 \times 4.5}{4.1 \times 9.8}\)
\(6-13 a\) represents a car of mass \(m\) as it moves at a constant speed \(v\) of \(20 \mathrm{~m} / \mathrm{s}\) around a banked circular track of radius \(R=190 \mathrm{~m}\). (It is a normal car, rather than a race car, which means any vertical force from the passing air is negligible.) If the frictional force from the track is negligible, what bank angle \(\theta\) prevents sliding?

Radial calculation:
\[
-F_{N} \sin \theta=m\left(-\frac{v^{2}}{R}\right)
\]

Vertical calculations:
\[
F_{N} \cos \theta-m g=m(0),
\]
from which
\[
F_{N} \cos \theta=m g .
\]

Combining results:
\[
\begin{aligned}
\theta & =\tan ^{-1} \frac{v^{2}}{g R} \\
& =\tan ^{-1} \frac{(20 \mathrm{~m} / \mathrm{s})^{2}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(190 \mathrm{~m})}=12^{\circ} . \text { (Answer) }
\end{aligned}
\]
Q. 16 A 60 kg person weighs 100 N on the moon. The acceleration of gravity on the moon is:
(A) zero
(B) \(4.9 \mathrm{~m} / \mathrm{s}^{2}\)
(C) \(19.6 \mathrm{~m} / \mathrm{s}^{2}\)
(D) \(1.67 \mathrm{~m} / \mathrm{s}^{2}\)
(E) \(9.8 \mathrm{~m} / \mathrm{s}^{2}\)
\[
W=m g_{\text {moon }} \quad g_{\text {moon }}=\frac{W}{m}=\frac{100}{60}=1.67 \mathrm{~m} / \mathrm{s}^{2}
\]
Q. 17 A block slides on a rough surface (see Figure). The block starts to slide when a parallel force of 30 N is applied. The coefficient of static friction \(\mu_{\mathrm{s}}\) is:

(E) Zero
\[
\begin{aligned}
& F_{N}=45 \mathrm{~N} \\
& f_{s, \max }=30 \mathrm{~N}=\mu_{s} F_{N} \quad \mu_{s}=\frac{30}{45}=0.67
\end{aligned}
\]
Q. 18 A cable holds a ball of weight 250 N in static equilibrium. The tension in the cord is:
(A) 500 N
(B) 9.8 N
(C) 250 N
(D) zero
(E) 50 N
Q. 19 The formula for the centripetal force is:
(A) \(a=\frac{v^{2}}{R}\)
(B) \(F=m a\)
(C) \(F=m g\)
(D) \(F=m \frac{v^{2}}{R}\)
(E) none of these
Q. 24 A car rounds a 20 m radius curve at \(10 \mathrm{~m} / \mathrm{s}\). The magnitude of its acceleration is:
\[
a=\frac{v^{2}}{R}=\frac{10^{2}}{20}=5 \mathrm{~m} / \mathrm{s}^{2}
\]
(D) \(4 \mathrm{~m} / \mathrm{s}^{2}\)
(E) \(6 \mathrm{~m} / \mathrm{s}^{2}\)
Q. 12 The formula for the friction force is:
(A) \(f=\mu \mathrm{N}\)
(B) \(F=m a\)
(C) \(w=m g\)
(D) \(F=N\)
(E) \(F=2 f\)
Q. 29 A boy pulls a wooden box along a rough horizontal Floor at constant speed. Which of the followings must be true?
(A) \(F \cos \theta>f_{k}\) and \(N=W\)
(B) \(F=f_{k}\) and \(N>W\)
(C) \(\mathrm{F}>\mathrm{f}_{\mathrm{k}}\) and \(\mathrm{N}<\mathrm{W}\)
(D) \(\mathrm{F} \cos \theta=\mathrm{f}_{\mathrm{k}}\) and \(\mathrm{N}=\mathrm{W}-\mathrm{F} \sin \theta\)
(E) none of these

\section*{Friction and Motion}

A block rests on a tabletop with the gravitational force \(\vec{F}_{g}\) balanced by a normal force \(\vec{F}_{N}\)
One exerts a force on the block \(\vec{F}\)

There is no attempt at sliding. Thus, no friction and no motion.

Frictional force \(=0\)

\section*{Friction and Motion}

An external force \(F\), applied to the block, is balanced by a static frictional force \(f_{s}\). As \(F\) increases, \(f_{s}\) also increases, until \(f_{s}\) reaches a certain maximum value.

Force \(\vec{F}\) attempts
sliding but is balanced by the frictional force. No motion.

Force \(\vec{F}\) is now stronger but is still balanced by the frictional force. No motion.

Force \(\vec{F}\) is now even stronger but is still balanced by the frictional force. No motion.

(b)

(c)
(d)

Frictional force \(=F\)

Frictional force \(=F\)

Frictional force \(=F\)

\section*{Friction and Motion}

The block then "breaks away," accelerating suddenly in the direction of \(F\).
Finally, the applied force has overwhelmed the static frictional force. Block slides and accelerates.

(e)

Weak kinetic
frictional force \(\vec{f}_{k}\)

Same weak kinetic frictional force

Some experimental results for the sequence (a) through (f)

\section*{Properties of Friction}

Property 1. If the body does not move, then the static frictional force \(\vec{f}_{s}\) and the component of \(\vec{F}\) that is parallel to the surface balance each other. They are equal in magnitude, and \(\vec{f}_{s}\) is directed opposite that component of \(\vec{F}\).

\section*{Properties of Friction}

Property 2. The magnitude of \(\vec{f}_{s}\) has a maximum value \(f_{s, \text { max }}\) that is given by
\[
\begin{equation*}
f_{s, \text { max }}=\mu_{s} F_{N}, \tag{6-1}
\end{equation*}
\]
where \(\mu_{s}\) is the coefficient of static friction and \(F_{N}\) is the magnitude of the normal force on the body from the surface. If the magnitude of the component of \(\vec{F}\) that is parallel to the surface exceeds \(f_{s, \text { max }}\), then the body begins to slide along the surface.

\section*{Properties of Friction}

Property 3. If the body begins to slide along the surface, the magnitude of the frictional force rapidly decreases to a value \(f_{k}\) given by
\[
\begin{equation*}
f_{k}=\mu_{k} F_{N}, \tag{6-2}
\end{equation*}
\]
where \(\mu_{k}\) is the coefficient of kinetic friction. Thereafter, during the sliding, a kinetic frictional force \(\vec{f}_{k}\) with magnitude given by Eq. \(6-2\) opposes the motion.
\(>\) The coefficients \(\mu_{\mathrm{s}}\) and \(\mu_{k}\) are dimensionless.
\(>\) Their values depend on certain properties of both the body and the surface; hence, they are usually referred to with the preposition "between,"

\section*{CHECKPOINT}

A block lies on a floor. (a) What is the magnitude of the frictional force on it from the floor?
(b) If a horizontal force of 5 N is now applied to the block, but the block does not move, what is the magnitude of the frictional force on it?
(c) If the maximum value \(f_{s, \max }\) of the static frictional force on the block is 10 N , will the block move if the magnitude of the horizontally applied force is 8 N ?
(d) If it is 12 N ?
(e) What is the magnitude of the frictional force in part (c)?

\section*{Sanmple problen}

If a car's wheels are "locked" during emergency braking, the car slides along the road. Ripped-off bits of tire and small melted sections of road form the "skid marks" that reveal that cold-welding occurred during the slide. The marks were 290 m long! Assuming that \(\mu_{k}=0.60\) and the car's acceleration was constant during the braking, how fast was the car going when the wheels became locked?

Acceleration a was due only to a kinetic frictional force

\[
\begin{aligned}
& -f_{k}=m a \quad f_{k}=\mu_{k} F_{N} \\
& a=-\frac{f_{k}}{m}=-\frac{\mu_{k} m g}{m}=-\mu_{k} g
\end{aligned}
\]

Acceleration is constant
\[
\& v=0
\]
\[
\& x-x_{0}=290 m
\]
\[
\begin{aligned}
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right) \\
v_{0} & =\sqrt{2 \mu_{k} g\left(x-x_{0}\right)} \\
& =\sqrt{(2)(0.60)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(290 \mathrm{~m})} \\
& =58 \mathrm{~m} / \mathrm{s}=210 \mathrm{~km} / \mathrm{h} .
\end{aligned}
\]

A block of mass \(m=3 \mathrm{~kg}\) slides along a floor while a force \(F\) of magnitude 12.0 N is applied to it at an upward angle \(\theta\). The coefficient of kinetic friction between the block and the floor is \(\mu_{k}=0.4\). We can vary \(\theta\) from 0 to \(90^{\circ}\) (the block remains on the floor). What \(\theta\) gives the maximum value of the block's acceleration magnitude a?

Along y-direction \(\quad F_{N}+F \sin \theta-m g=m(0) \quad F_{N}=m g-F \sin \theta\)
Along x-direction \(\quad F \cos \theta-\mu_{k} F_{N}=m a\)
Substituting for \(F_{N} \quad a=\frac{F}{m} \cos \theta-\mu_{k}\left(g-\frac{F}{m} \sin \theta\right)\)
Finding a maximum \(\frac{d a}{d \theta}=-\frac{F}{m} \sin \theta+\mu_{k} \frac{F}{m} \cos \theta=0 \quad \square \tan \theta=\mu_{k}\)
\[
\theta=\tan ^{-1} \mu_{k}=21.8^{\circ} \approx 22^{\circ}
\]

\section*{The Drag Force and Terminal Speed}
\(>\) A fluid is anything that can flow, generally either a gas or a liquid.
\(>\) When there is a relative velocity between a fluid and a body, the body experiences a drag force \(D\)
\(>\) The drag force opposes the relative motion and points in the direction in which the fluid flows relative to the body..

\section*{Fall of blunt (like a baseball) in air}

The drag force
\(\rho\) : air density
\(\vec{v}\) : body speed

The drag force increases until it balances \(F_{g}\) on the body. The body now falls at constant terminal speed.

Newton's second law for a vertical \(y\) axis \(F_{\text {net ,y }}=m a_{y}\)
\[
D-F_{g}=m a \quad \frac{1}{2} C \rho A v_{t}^{2}-F_{g}=0
\]
terminal speed
\[
v_{t}=\sqrt{\frac{2 F_{g}}{C \rho A}}
\]

A raindrop with radius \(R=1.5 \mathrm{~mm}\) falls from a cloud that is at height \(h=\) 1200 m above the ground. The drag coefficient C for the drop is 0.60 . Assume that the drop is spherical throughout its fall. The density of water \(p^{\prime \prime}\), is \(1000 \mathrm{~kg} / \mathrm{m}^{3}\), and the density of air \(\rho_{\mathrm{a}}\) is \(1.2 \mathrm{~kg} / \mathrm{m}^{3}\). (a) What is the terminal speed?
\(F_{g}=V \rho_{w} g=\frac{4}{3} \pi R^{3} \rho_{w} g\)

\[
=7.4 \mathrm{~m} / \mathrm{s} \approx 27 \mathrm{~km} / \mathrm{h}
\]
(b) What would be the drop's speed just before impact if there were no drag force?.

The initial velocity \(v_{0}=0\), displacement \(x-x_{0}\) is \(-h\)
\[
\begin{aligned}
v & =\sqrt{2 g h}=\sqrt{(2)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1200 \mathrm{~m})} \\
& =153 \mathrm{~m} / \mathrm{s} \approx 550 \mathrm{~km} / \mathrm{h} .
\end{aligned}
\]

\section*{Uniform Circular Motion}
> A particle moves in a circular path with a constant speed v
\(>\) It then has centripetal force of
\[
a=\frac{v^{2}}{R} \quad \text { centripetal acceleartion }
\]

From Newton's second law, the centripetal force is:
\[
F=m a=m \frac{v^{2}}{R}
\]
\(>\) Both velocity and acceleration are constant
\(>\) Both a and F are directed to the center. They are perpendicular to \(v\) (in the direction of the tangent)

\section*{Example:}

A car moves with a constant speed in a circular motion of radius 50 m and makes a full cycle in 0.2 min . Find the speed and the acceleration of the car.

Since the speed of the car is constant , therefore
\[
\begin{aligned}
& v=\frac{X}{t}=\frac{2 \pi r}{t}=\frac{2 \times 3.14 \times 50}{0.2 \times 60}=26.2 \mathrm{~m} / \mathrm{s} \\
& a=\frac{v^{2}}{R}=\frac{26.2^{2}}{50}=13.7 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\]
-1 A bedroom bureau with a mass of 45 kg , including drawers and clothing, rests on the floor. (a) If the coefficient of static friction between the bureau and the floor is 0.45 , what is the magnitude of the minimum horizontal force that a person must apply to start the bureau moving? (b) If the drawers and clothing, with 17 kg mass, are removed before the bureau is pushed, what is the new minimum magnitude? SSM www

The minimum force \(F_{\text {min }}\) is equal to the maximum static friction \(f_{s, \text { max }}\)
\[
\begin{align*}
F_{\min } & =f_{s, \max }=\mu_{s} F_{N}=\mu_{s} m g \\
& =(45-17) \times 0.45 \times 9.8=123 \mathrm{~N} \tag{b}
\end{align*}
\]
\(\bullet 18\) A 4.10 kg block is pushed along a floor by a constant applied force that is horizontal and has a magnitude of 40.0 N . Figure 6-27 gives the block's speed \(v\) versus time \(t\) as the block moves along an \(x\) axis on the floor. The scale of the figure's vertical axis is set by \(v_{s}=5.0\)

FIG. 6-27 Problem 18. \(\mathrm{m} / \mathrm{s}\). What is the coefficient of kinetic friction between the block and the floor?

Acceleration \(=\) slope \(=0.45\)
Kinetic friction \(\quad f_{k}=\mu_{k} F_{N}=\mu_{k} m g\)
Newton's 2nd law: \(F-f_{k}=m a\)
\(F-\mu_{k} F_{N}=m a \quad \Rightarrow \quad \mu_{k} m g=F-m a \quad \Rightarrow \quad \mu_{k} F_{N}=\frac{F-m a}{m g}=\frac{40-4.1 \times 4.5}{4.1 \times 9.8}\)
\(6-13 a\) represents a car of mass \(m\) as it moves at a constant speed \(v\) of \(20 \mathrm{~m} / \mathrm{s}\) around a banked circular track of radius \(R=190 \mathrm{~m}\). (It is a normal car, rather than a race car, which means any vertical force from the passing air is negligible.) If the frictional force from the track is negligible, what bank angle \(\theta\) prevents sliding?

Radial calculation:
\[
-F_{N} \sin \theta=m\left(-\frac{v^{2}}{R}\right)
\]

Vertical calculations:
\[
F_{N} \cos \theta-m g=m(0),
\]
from which
\[
F_{N} \cos \theta=m g .
\]

Combining results:
\[
\begin{aligned}
\theta & =\tan ^{-1} \frac{v^{2}}{g R} \\
& =\tan ^{-1} \frac{(20 \mathrm{~m} / \mathrm{s})^{2}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(190 \mathrm{~m})}=12^{\circ} . \text { (Answer) }
\end{aligned}
\]
Q. 16 A 60 kg person weighs 100 N on the moon. The acceleration of gravity on the moon is:
(A) zero
(B) \(4.9 \mathrm{~m} / \mathrm{s}^{2}\)
(C) \(19.6 \mathrm{~m} / \mathrm{s}^{2}\)
(D) \(1.67 \mathrm{~m} / \mathrm{s}^{2}\)
(E) \(9.8 \mathrm{~m} / \mathrm{s}^{2}\)
\[
W=m g_{\text {moon }} \quad g_{\text {moon }}=\frac{W}{m}=\frac{100}{60}=1.67 \mathrm{~m} / \mathrm{s}^{2}
\]
Q. 17 A block slides on a rough surface (see Figure). The block starts to slide when a parallel force of 30 N is applied. The coefficient of static friction \(\mu_{\mathrm{s}}\) is:

(E) Zero
\[
\begin{aligned}
& F_{N}=45 \mathrm{~N} \\
& f_{s, \max }=30 \mathrm{~N}=\mu_{s} F_{N} \quad \mu_{s}=\frac{30}{45}=0.67
\end{aligned}
\]
Q. 18 A cable holds a ball of weight 250 N in static equilibrium. The tension in the cord is:
(A) 500 N
(B) 9.8 N
(C) 250 N
(D) zero
(E) 50 N
Q. 19 The formula for the centripetal force is:
(A) \(a=\frac{v^{2}}{R}\)
(B) \(F=m a\)
(C) \(F=m g\)
(D) \(F=m \frac{v^{2}}{R}\)
(E) none of these
Q. 24 A car rounds a 20 m radius curve at \(10 \mathrm{~m} / \mathrm{s}\). The magnitude of its acceleration is:
\[
a=\frac{v^{2}}{R}=\frac{10^{2}}{20}=5 \mathrm{~m} / \mathrm{s}^{2}
\]
(D) \(4 \mathrm{~m} / \mathrm{s}^{2}\)
(E) \(6 \mathrm{~m} / \mathrm{s}^{2}\)
Q. 12 The formula for the friction force is:
(A) \(f=\mu \mathrm{N}\)
(B) \(F=m a\)
(C) \(w=m g\)
(D) \(F=N\)
(E) \(F=2 f\)
Q. 29 A boy pulls a wooden box along a rough horizontal Floor at constant speed. Which of the followings must be true?
(A) \(F \cos \theta>f_{k}\) and \(N=W\)
(B) \(F=f_{k}\) and \(N>W\)
(C) \(\mathrm{F}>\mathrm{f}_{\mathrm{k}}\) and \(\mathrm{N}<\mathrm{W}\)
(D) \(\mathrm{F} \cos \theta=\mathrm{f}_{\mathrm{k}}\) and \(\mathrm{N}=\mathrm{W}-\mathrm{F} \sin \theta\)
(E) none of these

\section*{Kinetic Energy}

1 Rank the following velocities according to the kinetic energy a particle will have with each velocity, greatest first: (a) \(\vec{v}=4 \hat{i}+3 \hat{\hat{j}}\), (b) \(\vec{v}=-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}\), (c) \(\vec{v}=-3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}\), (d) \(\vec{v}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}\), (e) \(\vec{v}=5 \hat{\mathrm{i}}\), and (f) \(v=5 \mathrm{~m} / \mathrm{s}\) at \(30^{\circ}\) to the horizontal.
(a) \(\mathrm{K} . \mathrm{E}=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}\right)=\frac{1}{2} m(4 \times 4+3 \times 3)=12.5 m\)
(b) \(\mathrm{K} . \mathrm{E}=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}\right)=\frac{1}{2} m((-4) \mathrm{x}(-4)+3 \times 3)=12.5 m\)
(c) \(\mathrm{K} . \mathrm{E}=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}\right)=\frac{1}{2} m((-3) \mathrm{x}(-3)+4 \mathrm{x} 4)=12.5 m\)
(d) \(\mathrm{K} . \mathrm{E}=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}\right)=\frac{1}{2} m(3 \times 3+(-4) \mathrm{x}(-4))=12.5 m\)
(e) \(\mathrm{K} . \mathrm{E}=\frac{1}{2} m v^{2}=\frac{1}{2} m v_{x}^{2}=\frac{1}{2} m(5 \mathrm{x} 5)=12.5 m\)
(f) \(\mathrm{K} . \mathrm{E}=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}\right)=\frac{1}{2} m\left[(5 \mathrm{x} \cos 30)^{2}+(5 \mathrm{xsin} 30)^{2}\right]=\frac{25}{2} m\left[\cos ^{2} 30+\sin ^{2} 30\right]=12.5\)

\section*{Work}

\section*{Energy transferred to or from an object by means of a force acting on the object.}
\(>\) It has the same units as energy and is a scalar quantity

\section*{Work and Kinetic Energy}
\(F_{x}=m a_{x} \quad v^{2}=v_{0}^{2}+2 a_{x} d \quad \frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}=F_{x} d\).
\[
K_{f}-K_{i}=W=F_{x} d
\]
\(\mathrm{K}_{\mathrm{f}}\) \& \(\mathrm{K}_{\mathrm{i}}\) : kinetic energy after \& start of displacement

\[
W=F d \cos \phi=\vec{F} \bullet \vec{d} \quad \text { (work done by constant force) }
\]

Units for work: \(\quad 1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \mathrm{~N} \cdot \mathrm{~m}=0.738 \mathrm{ft} \cdot \mathrm{lb}\).
\[
W=F d \cos \phi=\vec{F} \bullet \vec{d} \quad \text { (work done by constant force) }
\]
\(>\mathrm{W}=+\) ve when \(\phi<90^{\circ}\), F parallel to d
\(>\mathrm{W}=-\) ve when \(\phi>90^{\circ}, \mathrm{F}\) opposite to d
\(>\mathrm{W}=0\) when \(\phi=0^{\circ}\), \(\quad\) F perpendicular to d

\section*{Theory of Work - Kinetic Energy}
\[
\begin{array}{cc}
\Delta K=K_{f}-K_{i}=W, & K_{f}=K_{i}+W, \\
\binom{\text { kinetic energy after }}{\text { the net work is done }}=\binom{\text { kinetic energy }}{\text { before the net work }}+\binom{\text { the net }}{\text { work done }}
\end{array}
\]

\section*{CHECKPOINT 1}

A particle moves along an \(x\) axis. Does the kinetic energy of the particle increase, decrease, or remain the same if the particle's velocity changes
(a) from \(-3 \mathrm{~m} / \mathrm{s}\) to \(-2 \mathrm{~m} / \mathrm{s}\) ?
(b) from -2 mls to 2 mls ?
(c) In each situation, is the work done on the particle positive, negative, or zero?

Figure 7-4a shows two industrial spies sliding an initially stationary 225 kg floor safe a displacement \(\vec{d}\) of magnitude 8.50 m , straight toward their truck. The push \(\vec{F}_{1}\) of spy 001 is 12.0 N , directed at an angle of \(30.0^{\circ}\) downward from the horizontal; the pull \(\vec{F}_{2}\) of spy 002 is 10.0 N , directed at \(40.0^{\circ}\) above the horizontal. The magnitudes and directions of these forces do not change as the safe moves, and the floor
 and safe make frictionless contact.
(a) What is the net work done on the safe by forces \(F_{1}\) and \(F_{2}\) during the displacement \(d\) ?
\[
\begin{aligned}
W_{1} & =F_{1} d \cos \phi_{1}=(12.0 \mathrm{~N})(8.50 \mathrm{~m})\left(\cos 30.0^{\circ}\right) \\
& =88.33 \mathrm{~J} \\
W_{2} & =F_{2} d \cos \phi_{2}=(10.0 \mathrm{~N})(8.50 \mathrm{~m})\left(\cos 40.0^{\circ}\right) \\
& =65.11 \mathrm{~J} \\
W & =W_{1}+W_{2}=88.33 \mathrm{~J}+65.11 \mathrm{~J} \\
& =153.4 \mathrm{~J} \approx 153 \mathrm{~J} .
\end{aligned}
\]

Only force components parallel to the displacement do work.

(b) During the displacement, what is the work \(W_{g}\) done on the safe by the gravitational force \(F g\) ? and what is the work \(W_{N}\) done on the safe by the normal force \(F_{N}\) from the floor?
\[
\begin{aligned}
& W_{g}=m g d \cos 90^{\circ}=m g d(0)=0 \\
& W_{N}=F_{N} d \cos 90^{\circ}=F_{N} d(0)=0
\end{aligned}
\]
(c) The safe is initially stationary. What is its speed \(v_{f}\) at the end of the 8.50 m displacement?
\[
\begin{gathered}
W=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} . \\
\begin{aligned}
v_{\mathrm{i}}=0 \rightarrow \quad v_{f} & =\sqrt{\frac{2 W}{m}}=\sqrt{\frac{2(153.4 \mathrm{~J})}{225 \mathrm{~kg}}} \\
& =1.17 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\end{gathered}
\]

If \(\vec{d}=(-3.0 \mathrm{~m}) \hat{\hat{i}}\) and \(\vec{F}=(2.0 \mathrm{~N}) \hat{\mathrm{i}}+(-6.0 \mathrm{~N}) \hat{\mathrm{j}}\) calculate the work done?
\[
\begin{aligned}
W & =\vec{F} \cdot \vec{d}=[(2.0 \mathrm{~N}) \hat{\mathrm{i}}+(-6.0 \mathrm{~N}) \hat{\mathrm{j}}] \cdot[(-3.0 \mathrm{~m}) \hat{\mathrm{i}}] . \\
W & =(2.0 \mathrm{~N})(-3.0 \mathrm{~m}) \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}+(-6.0 \mathrm{~N})(-3.0 \mathrm{~m}) \hat{\mathrm{j}} \cdot \hat{\mathrm{i}} \\
& =(-6.0 \mathrm{~J})(1)+0=-6.0 \mathrm{~J} . \quad \text { (Answer) }
\end{aligned}
\]

If the kinetic energy at the beginning of displacement is 10 J , what is its kinetic energy at the end of \(d\) ?
\[
K_{f}=K_{i}+W=10 \mathrm{~J}+(-6.0 \mathrm{~J})=4.0 \mathrm{~J} .
\]

\section*{Work Done by the Gravitational Force}

For a rising object
\[
W_{g}=m g d \cos 180^{\circ}=m g d(-1)=-m g d .
\]

After the object has reached its maximum height and is falling back down, the angle \(\mathbb{\Phi}\) between force \(F_{g}\) and displacement \(d\) is zero.
\[
W_{g}=m g d \cos 0^{\circ}=m g d(+1)=+m g d
\]
which becomes opposite when lowering the object.

\section*{Work done in lifting an object}
\[
\Delta K=K_{f}-K_{i}=W_{a}+W_{g},
\]

It becomes opposite when lowering the object.
If the object is stationary before and after the lift, then \(K_{f}=K_{i}=0\)
\[
\begin{gathered}
W_{a}+W_{g}=0 \\
W_{a}=-W_{g}
\end{gathered}
\]

An elevator cab of mass \(m=500 \mathrm{~kg}\) is descending with speed \(v_{i}=4.0 \mathrm{mls}\) when its supporting cable begins to slip, allowing it to fall with constant acceleration \(a=g / 5\).
(a) During the fall through a distance \(d=12 \mathrm{~m}\), what is the work \(W_{g}\) done on the cab by the gravitational force?
\[
\begin{aligned}
W_{g} & =m g d \cos 0^{\circ}=(500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m})(1) \\
& =5.88 \times 10^{4} \mathrm{~J} \approx 59 \mathrm{~kJ} .
\end{aligned}
\]
(Answer)
(b) During the 12 m fall, what is the work \(W_{T}\) done on the cab by the upward pull \(T\) of the elevator cable?
\[
\begin{aligned}
& \quad W_{T}=T d \cos \phi=m(a+g) d \cos \phi \\
& W_{T}=m\left(-\frac{g}{5}+g\right) d \cos \phi=\frac{4}{5} m g d \cos \phi \\
&= \frac{4}{5}(500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m}) \cos 180^{\circ} \\
&=-4.70 \times 10^{4} \mathrm{~J} \approx-47 \mathrm{~kJ}
\end{aligned}
\]

(b)
(c) What is the net work \(W\) done on the cab during the fall?
\[
\begin{align*}
W & =W_{g}+W_{T}=5.88 \times 10^{4} \mathrm{~J}-4.70 \times 10^{4} \mathrm{~J} \\
& =1.18 \times 10^{4} \mathrm{~J}=12 \mathrm{~kJ} . \tag{Answer}
\end{align*}
\]
(d) What is the cab's kinetic energy at the end of the 12 m fall?
\[
\begin{aligned}
K_{f} & =K_{i}+W=\frac{1}{2} m v_{i}^{2}+W \\
& =\frac{1}{2}(500 \mathrm{~kg})(4.0 \mathrm{~m} / \mathrm{s})^{2}+1.18 \times 10^{4} \mathrm{~J} \\
& =1.58 \times 10^{4} \mathrm{~J} \approx 16 \mathrm{~kJ} .
\end{aligned}
\]

\section*{Work Done by a Spring Force}

\section*{The spring force is}
\[
\vec{F}_{s}=-k \vec{d} \quad \text { (Hooke's law), }
\]
\(>\) The (-) sign is because the direction of \(F\) is always opposite to d
\(>k\) is the spring (or force) constant. It measures of the spring stiffness

spring in a relaxed state

block is displaced by \(d\) spring is stretched

spring is compressed

\section*{The work done by an applied force}

If the block is stationary before and after the displacement
\[
W_{d \mathrm{t}}=-W_{s}
\]

\section*{Work Done by a General Variable Force}

\section*{(1) One-dimensional analysis}

If the force magnitude to vary with position \(x\).
\[
W=\int_{x_{\mathrm{r}}}^{x_{f}} F(x) d x \quad \text { (work: variable force) }
\]

\section*{(2) Three-dimensional analysis}
\[
W=\int_{r_{1}}^{r_{y}} d W=\int_{x_{i}}^{x_{y}} F_{x} d x+\int_{y_{i}}^{y_{y_{y}}} F_{y} d y+\int_{z_{i}}^{z_{y}} F_{z} d z
\]

\section*{}

Force \(\vec{F}=\left(3 x^{2} \mathrm{~N}\right) \hat{\mathrm{i}}+(4 \mathrm{~N}) \hat{\mathrm{j}}\), with \(x\) in meters, acts on a particle, changing only the kinetic energy of the particle. How much work is done on the particle as it moves from coordinates \((2 \mathrm{~m}, 3 \mathrm{~m})\) to \((3 \mathrm{~m}, 0 \mathrm{~m})\) ? Does the speed of the
\[
\begin{aligned}
W & =\int_{2}^{3} 3 x^{2} d x+\int_{3}^{0} 4 d y=3 \int_{2}^{3} x^{2} d x+4 \int_{3}^{0} d y \\
& =3\left[\frac{1}{3} x^{3}\right]_{2}^{3}+4[y]_{3}^{0}=\left[3^{3}-2^{3}\right]+4[0-3] \\
& =7.0 \mathrm{~J} .
\end{aligned}
\] particle increase, decrease, or remain the same?

\section*{Power}

\section*{The time rate at which work is done by a force}

If a force does an amount of work \(W\) in an amount of time \(\Delta t\), the average power due to the force during that time interval is
\[
P_{\text {avg }}=\frac{W}{\Delta t} \quad \text { (average power) }
\]

Instantaneous power \(P\) is the instantaneous time rate of doing work
\[
P=\frac{d W}{d t} \quad \text { (instantaneous power). }
\]

For a particle moving along a straight line and is acted on by a constant force \(F\) directed at some angle \(\phi\).
\[
\begin{aligned}
P & =\frac{d W}{d t}=\frac{F \cos \phi d x}{d t}=F \cos \phi\left(\frac{d x}{d t}\right) \\
& =F v \cos \phi
\end{aligned}
\]
\[
P=\vec{F} \cdot \vec{v} \quad \text { (instantaneous power). }
\]

\section*{CHECKPOINT}

A block moves with uniform circular motion because a cord tied to the block is anchored at the center of a circle. Is the power due to the force on the block from the cord positive, negative, or zero?

\section*{Units of power}
\[
1 \mathrm{watt}=1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=0.738 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}
\]

Work is then expressed as power multiplied by time, as in the common unit kilowatt-hour.
\[
\begin{aligned}
1 \text { kilowatt-hour } & =1 \mathrm{~kW} \cdot \mathrm{~h}=\left(10^{3} \mathrm{~W}\right)(3600 \mathrm{~s}) \\
& =3.60 \times 10^{6} \mathrm{~J}=3.60 \mathrm{MJ} .
\end{aligned}
\]

Figure 7-14 shows constant forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) acting on a box as the box slides rightward across a frictionless floor. Force \(\vec{F}_{1}\) is horizontal, with magnitude 2.0 N ; force \(\vec{F}_{2}\) is angled upward by \(60^{\circ}\) to the floor and has magnitude 4.0 N . The speed \(v\) of the box at a certain instant is \(3.0 \mathrm{~m} / \mathrm{s}\). What is the power due to each force acting on the box at that instant, and what is the net power? Is the net power changing at that instant?
\[
\begin{aligned}
P_{1} & =F_{1} v \cos \phi_{1}=(2.0 \mathrm{~N})(3.0 \mathrm{~m} / \mathrm{s}) \cos 180^{\circ} \\
& =-6.0 \mathrm{~W} \\
P_{2} & =F_{2} v \cos \phi_{2}=(4.0 \mathrm{~N})(3.0 \mathrm{~m} / \mathrm{s}) \cos 60^{\circ} \\
& =6.0 \mathrm{~W} \\
P_{\text {net }} & =P_{1}+P_{2} \\
& =-6.0 \mathrm{~W}+6.0 \mathrm{~W}=0
\end{aligned}
\]

\section*{0. 19 The SLunit of work is:}
(A) \(\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}\)
(B) \(\mathrm{kg} \cdot \mathrm{m}\)
(C) \(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}\)
(D) \(\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\)
(E) \(\mathrm{kg} \cdot \mathrm{s}\)
Q. 22 The kinetic energy of a moving object is:
(A) \(m v t^{2}\)
(B) \(\mathrm{Fd} \cos \theta\)
(C) ma
(D) mgh
(E) \(\frac{1}{2} m v^{2}\)
Q. 7 A man pulls a sled along a rough horizontal surface by applying a constant force \(\overline{\mathrm{F}}\) at an angle \(\theta\) above the horizontal. In pulling the sled a horizontal distance d, the work done by the man is:
(A) Fd
(B) \(F \cos \theta\)
(C) Fdsinध
(D) Fdtan \(\theta\)
(E) Fdcosi
\[
W=F d \cos \varphi
\]
Q. 6 A particle moves 3 m in the positive x direction while being acted upon by a constant force \(\vec{F}=(4 \hat{i}+2 \hat{j}-4 \hat{k}) N\) The work done on the particle by this force is:
(A) 20 J
(B) 12 J
(C) 30 J
(D) -20 J
\[
d=3 \hat{i} \quad W=\vec{F} \bullet \vec{d}=(4 \times 3+4 \times 0-4 \times 0)=12 \mathrm{~J}
\]
(E) none of these
Q. 24 A single constant force \(\vec{F}=(2 \hat{i}-5 \hat{j}) \mathrm{N}\) acts on a 4 kg particle. If the particle moves from the origin with vector position \(\vec{r}=(3 \hat{i}-5 \hat{j}) \mathrm{m}\). The work done by this force is:
(A) 19 J
(B) 15 J
(C) 6 J
(D) 31 J
(E) 25 J
\[
W=\vec{F} \cdot \vec{r}=(2 \times 3+(-5) \times(-5))=6+25=31 \mathrm{~J}
\]
Q. 30 A moving particle of mass 2 kg , has kinetic energy 16 J . Its speed is:
(A.) \(4 \mathrm{~m} / \mathrm{s}\)
(B) \(9.8 \mathrm{~m} / \mathrm{s}\)
(C) \(10 \mathrm{~m} / \mathrm{s}\)
(D) \(19.6 \mathrm{~m} / \mathrm{s}\)
(E) \(3.16 \mathrm{~m} / \mathrm{s}\)
\[
K=\frac{1}{2} m v^{2} \quad \mathrm{v}=\sqrt{\frac{2 K}{m}}=\sqrt{\frac{2 \mathrm{x} 16}{2}}=4 \mathrm{~m} / \mathrm{s}
\]
\[
W=K_{f}-K_{i}=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=\frac{1}{2} \times 800(64-0)=25600 \mathrm{~J}
\]
Q. 9 A 6 kg cart starts up an incline with a speed of \(3 \mathrm{~m} / \mathrm{s}\) and comes to rest up the incline. The total work done on the cart is:
(A) 6 J
(B) 8 J
(C) -27 J
(D) -18 J
(E) none of these
\[
W=K_{f}-K_{i}=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=\frac{1}{2} \times 6(0-9)=-27 \mathrm{~J}
\]
Q. 8 At time \(t=0\) a 2 kg particle has a velocity of \((4 \hat{i}-3 \hat{j}) \mathrm{m} / \mathrm{s}\). At \(t=3 \mathrm{~s}\) its velocity is \((2 \hat{i}+5 \hat{j}) \mathrm{m} / \mathrm{s}\). During this time the work done on it was:
(A) 4 J
(B) -4 J
(C) -12 J
(D) -40 J
(E) \((4 \hat{i}+3 \hat{g}) \mathrm{J}\)
\[
\begin{aligned}
& v_{i}^{2}=(4)^{2}+(-3)^{2}=25 \mathrm{~m} / \mathrm{s} \quad v_{f}^{2}=(2)^{2}+(5)^{2}=29 \mathrm{~m} / \mathrm{s} \\
& W=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=\frac{1}{2} \times 2(29-25)=4 \mathrm{~J}
\end{aligned}
\]
Q. 20 If the restoring force is 20 N , Then the work done in stretching a spring a distance of 0.5 m is:
(A) 3 J
(B) 6 J
(C) 9 J
(D) 12 J
(E) 5 J
\[
k=\frac{F}{x}=\frac{20}{0.5}=40 \mathrm{~N} / \mathrm{m} \quad W=\frac{1}{2} k x^{2}=\frac{1}{2} \mathrm{x} 40 \mathrm{x}(0.5)^{2}=9 \mathrm{~J}
\]
Q. 33 A spring has a force constant of \(150 \mathrm{~N} / \mathrm{m}\). The work done on the spring to stretch it by 0.02 m from its equilibrium position is:
(B) 10 J
(C) Zero
(D) 1 J
(E) 2 J
\[
W=\frac{1}{2} k x_{f}^{2}=\frac{1}{2} \mathrm{x} 150 \mathrm{x}(0.02)^{2}=0.03 \mathrm{~J}
\]
Q. 23 In the figure a 10 kg box is pushed up a rough incline (\(\mu_{\mathrm{k}}=0.2\)) angle at \(30^{\circ}\) to the horizontal, a force of 50 N parallel to the incline is applied. As the box slides 2 m , the work done by the applied force is:
(A) -200 J
(B) 50 J
(C) 100 J
(D) 200 J
(E) Zero

\[
W_{F}=F d=50 \times 2=100 \mathrm{~J}
\]
Q. 24 Refer to question 23, the work done by the normal force on the box is:
(A) 49 J
(B) 110.84 J
(C) Zero
(D) 98 J
(E) 101.84 J
\[
W_{N}=F_{N} d \cos 90=0 \mathrm{~J}
\]
Q. 25 Refer to question 23, the work done by the gravity force on the box is:
(A) -98 J
(B) -117.6 J
(C) 58.8 J
(D) 9.8 J
(E) Zero
\[
W_{g}=(m g \sin \theta)(d) \cos 180=-m g d \sin \theta=-10 \times 9.8 \times 2 \mathrm{x} \sin 30=-98 \mathrm{~J}
\]
Q. 36 In the figure a 5 kg crate is pushed up a frictionless inclined plane of \(30^{\circ}\) above the horizontal, by a horizontal force of 50 N . As the crate moves 2 m , the work done by the force is:
(A) Zero
(B) 45.27 J
(C) 24 J
(D) 12 J
(E) 86.60 J
\(\mathrm{F}=50 \mathrm{~N}\)
\[
W_{F}=F d \cos \varphi=F d \cos \theta=50 \times 2 \mathrm{x} \cos 30=86.6 \mathrm{~J}
\]
Q. 37 Referring to question (36), the work done by the gravitational force of the crate is:
(A) -49 J
\(\begin{array}{lll}\text { (B) }-5 \mathrm{~J} & \text { (C) }-59 \mathrm{~J} & \text { (D) }-980 \mathrm{~J} .\end{array}\)
(E) Zero
\[
W_{g}=(m g \sin \theta)(d) \cos 180=-m g d \sin \theta=-5 x 9.8 \times 2 \sin 30=-49 \mathrm{~J}
\]
Q. 38 Referring to question (36), the work done by the normal force is:
(A) Zero
(B) 980 J
(C) 105 J
(D) 49 J
(E) 9.8 J
\[
W_{N}=F_{N} d \cos 90=0
\]
Q. 28 lif the work done on a particle is 24 J in 6 s . The power is:
(A) 36 W
(B) 2 W
(C) 1 W
\[
P=\frac{W}{t}=\frac{24}{6}=4 \mathrm{~W}
\]
(D) 6 W
(E) 4 W
Q. 23 A ball of mass 0.25 kg is dropped from a height 35 m above the ground. The work done by gravitational force is:
(A) 5 J
(B) 40 J
(C) 85.75 J
(D) 4 J
(E) 1 J
\[
W_{g}=m g d=0.25 \times 9.8 \times 35=85.75 \mathrm{~J}
\]

\section*{Ch 8: Potential Energy and Conservation of Energy}

I is energy associated with the configuration of a system of objects that exert forces on one another.

\section*{Work and Potential Energy}
\[
\begin{gathered}
\Delta U=-W . \\
\Delta U_{g}=-W_{g}=m g d \quad \text { (for rising) }=-m g d \quad \text { (for falling) } \\
\Delta U_{s}=-W_{s}=\frac{1}{2} k x^{2} \\
W=\int_{x_{i}}^{x_{y}} F(x) d x . \quad \Delta U=-\int_{x_{i}}^{x_{s}} F(x) d x .
\end{gathered}
\]

\section*{Gravitational Potential Energy}
\[
\Delta U=m g\left(y_{f}-y_{i}\right)=m g \Delta y .
\]

Gravitational potential energy when the particle is at a certain height \(y\)
\[
U-U_{i}=m g\left(y-y_{i}\right)
\]

Usually, \(U_{i}=0\) and \(y_{i}=0\)
\[
U(y)=m g y \quad \text { (gravitational potential energy) }
\]

The gravitational potential energy associated with a particle-Earth system depends only on the vertical position \(y\) (or height) of the particle relative to the reference position \(y=0\), not on the horizontal position.

A 2.0 kg sloth hangs 5.0 m above the ground
(a) What is the gravitational potential energy \(U\) of the sloth - Earth system if \(y=0\) to be
(1) at the ground,
(2) at a balcony floor that is 3.0 m above ground,
(3) at the limb
(4) 1.0 m above the limb?

Take the gravitational potential energy \(=0\) at \(y=0\)
For choice (1) the sloth is at \(y=5.0 \mathrm{~m}\),
\[
U=m g y=(2.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~m})=98 \mathrm{~J} .
\]

For the other choices, the values of \(U\) are
(2) \(U=m g y=m g(2.0 \mathrm{~m})=39 \mathrm{~J}\),
(3) \(U=m g y=m g(0)=0 \mathrm{~J}\),
(4) \(U=m g y=m g(-1.0 \mathrm{~m})=-19.6 \mathrm{~J} \approx-20 \mathrm{~J}\).
(b) The sloth drops to the ground. For each choice of reference point, what is the change \(t\) :.. \(U\) in the potential energy of the sloth - Earth system due to the fall?
\[
\Delta U=m g \Delta y=(2.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(-5.0 \mathrm{~m})=-98 \mathrm{~J} .
\]

\section*{Elastic Potential Ennergy}
\[
\Delta U=\frac{1}{2} k x_{f}^{2}-\frac{1}{2} k x_{i}^{2} .
\]

If \(U_{i}=0\) and \(x_{i}=0\), the potential energy associated with the spring at position x
\[
U(x)=\frac{1}{2} k x^{2} \quad \text { (elastic potential energy). }
\]
Q. 36 A spring with spring constant of \(40 \mathrm{~N} / \mathrm{m}\) is compressed by a force a distance of 0.4 m . The potentia energy stored in the spring is:
(A) 0.5 J
(B) 2.5 J
(C) 3.2 J
(D) 10 J
(E) 200 J
\[
U=\frac{1}{2} k x^{2}=\frac{1}{2} \mathrm{x} 40 \mathrm{x}(0.4)^{2}=3.2 \mathrm{~J}
\]
Q. 28 A spring with spring constant of \(20 \mathrm{~N} / \mathrm{m}\) is compressed by force of 10 N . The potential energy stored in the spring is:
(B) 2.5 J
(C) 5 J
(D) 10 J
(E) 200 J
\[
x=\frac{F_{s}}{k}=\frac{10}{20}=0.5 \mathrm{~m} \quad U_{s}=\frac{1}{2} k x^{2}=\frac{1}{2} \times 20 \mathrm{x}(0.5)^{2}=2.5 \mathrm{~J}
\]

\section*{Conservation of Mechanical Energy}

The mechanical energy \(E_{\text {mec }}\) of a system is the sum of its potential energy \(U\) and the kinetic energy \(K\) of the objects within it
\[
E_{\mathrm{mec}}=K+U \quad \text { (mechanical energy). }
\]

The force transfers energy between \(K\) of the object and \(U\) of the system
\[
\begin{gathered}
\Delta K=W \quad \Delta U=-W . \quad \square \Delta K=-\Delta U . \\
K_{2}-K_{1}=-\left(U_{2}-U_{1}\right),
\end{gathered}
\]

We can rewrite
\[
K_{2}+U_{2}=K_{1}+U_{1} \quad \text { (conservation of mechanical energy). }
\]
\[
\binom{\text { the sum of } K \text { and } U \text { for }}{\text { any state of a system }}=\binom{\text { the sum of } K \text { and } U \text { for }}{\text { any other state of the system }},
\]

\section*{principle of conservation of mechanical energy}
\[
\Delta E_{\text {mec }}=\Delta K+\Delta U=0
\]

Principle of conservation of mechanical energy for a pendulum swing The energy of the pendulum - Earth system is transferred back and forth between \(K\) and gravitational potential energy \(U\), with \(K+U=\) constant. If we know the gravitational potential energy when the pendulum bob is at its highest point, the kinetic energy is obtained of the bob at the lowest point (Fig. 8-7e).

The total energy does not change (it is conserved).

(c)

All kinetic energy

\section*{Sample Problem}

A child of mass \(m\) is released from rest at the top of a water slide, at height \(h=8.5 \mathrm{~m}\) above the bottom of the slide. Assuming that the slide is frictionless because of the water on it, find the child's speed at the bottom of the slide.

The total mechanical energy at the top is equal to the total at the bottom.

Let the mechanical energy be \(E_{m e c, f}\) When the child is at the top of the slide and \(E_{\text {mec, } b}\) when she is at the bottom. Then the conservation principle tells us
\[
\begin{gathered}
E_{\mathrm{mec}, b}=E_{\mathrm{mec}, t} \cdot \\
K_{b}+U_{b}=K_{t}+U_{t}, \\
\frac{1}{2} m v_{b}^{2}+m g y_{b}=\frac{1}{2} m v_{t}^{2}+m g y_{t} \\
\\
\\
v_{b}^{2}=v_{t}^{2}+2 g\left(y_{t}-y_{b}\right) .
\end{gathered}
\]

Putting \(v_{t}=0\) and \(y_{t}-y_{b}=h\) leads to
\[
\begin{aligned}
v_{b} & =\sqrt{2 g h}=\sqrt{(2)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(8.5 \mathrm{~m})} \\
& =13 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]

\section*{Q. 29 The potential energy of a falling object of weight \(w\) from height \(h\) is:}
(A) \(\mathrm{mvt}^{2}\)
(B) \(\mathrm{Fd} \cos \theta\)
(C) mgh
(D) ma
(E) \(\frac{1}{2} m v^{2}\)
Q. 39 A 0.2 kg bead slides from rest on a frictionless curved wire. (see Figure). The speed of the bead at C is:
(A) \(6.26 \mathrm{~m} / \mathrm{s}\)
(B) \(9.9 \mathrm{~m} / \mathrm{s}\)
(C) \(2.52 \mathrm{~m} / \mathrm{s}\)
(D) \(8.85 \mathrm{~m} / \mathrm{s}\)
(E) \(6.6 \mathrm{~m} / \mathrm{s}\)
at A: \(\quad v_{A}=0 \& \mathrm{E}_{\text {mec, } \mathrm{A}}=U_{\max }=m g h_{A}\)
at \(C: \quad h=0 \quad \& E_{\operatorname{mec}, \mathrm{C}}=K_{\max }=\frac{1}{2} m v_{\max }^{2}\)
\(\mathrm{E}_{\text {mec, }, \mathrm{A}}=\mathrm{E}_{\text {mec }, \mathrm{C}} \quad m g h_{A}=\frac{1}{2} m v_{\max }^{2} \quad \mathrm{~V}_{\max }=\sqrt{2 g h_{\mathrm{A}}}=\sqrt{2 \mathrm{x} 9.8 \times 2}=6.26 \mathrm{~m} / \mathrm{s}\)

A 6 kg block is released from rest 80 m above the ground. When it has fallen 60 m its kinetic energy is
(a) 4000 J
(b) 400 J
(c) 380 J
(d) 3528 J

At height \(\mathrm{h}=80 \mathrm{~cm}\)
\[
E_{\text {mec }}=U+K=U_{\max }=m g h=6 \times 9.8 \times 80=4704 \mathrm{~J}
\]

At height \(\mathrm{h}=20 \mathrm{~cm}\)
\[
E_{\text {mec }}=4704 \mathrm{~J}=U+K=m g h+\frac{1}{2} m v^{2}=6 \times 9.8 \times 20+K=1176+K
\]
\[
K=4704-1176=3528 \mathrm{~J}
\]
\[
\mathrm{K}=\mathrm{mg}\left(\mathrm{~h}-\mathrm{h}^{\prime}\right)=\mathrm{mg}(80-20)
\]
\[
\begin{aligned}
& v_{\max }=\sqrt{2 g h}=\sqrt{2 x 9.8 x 80}=* * * J \\
& v(\text { at } 20 \mathrm{~m})=\sqrt{2 g\left(h-h^{\prime}\right)}=\sqrt{2 x 9.8 x(80-60)}=* * * J
\end{aligned}
\]
\[
80 \text { m }
\]

\section*{Work Done on a System by an External Force}

\section*{No Friction Involved}
\[
W=\Delta E_{\text {mee }} \quad \text { (work done on system, no friction involved) }
\]

\section*{Friction Involved}
\[
F d=\Delta E_{\text {tike }}+f_{k} d
\]
\[
\Delta E_{\mathrm{th}}=f_{k} d \quad \text { (increase in thermal energy by sliding). }
\]

If the friction results in change in the thermal energy
\[
\Delta E_{\mathrm{th}}=f_{k} d \quad \mid F d=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}} .
\]

In general
\[
W=\Delta E=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}}+\Delta E_{\mathrm{int}},
\]
\(\Delta \mathrm{E}\) : change in any other type of internal energy

Ex. A 0.2 kg bead slides from rest
on a frictionless cursed wire. The speed of the bead at \(B\) is:
(a) 7.7 mlis
(b) \(9.8 \mathrm{~m} / \mathrm{s}\)

(3) The greatest potential energy is at:
(a) Point A
(b) Point \(B\)
point \(C\)
(C) \(2.52 \mathrm{~m} / \mathrm{s}\)
(d) \(8.85 \mathrm{~m} / \mathrm{s}\) (e) \(6.6 \mathrm{~m} / \mathrm{s}\)
\[
\begin{array}{ll}
\text { at } \mathrm{A}: & v_{A}=0 \quad \& \mathrm{E}_{\text {meg, } \mathrm{A}}=U_{\max }=m g h_{A} \\
\text { at B: } & \mathrm{E}_{m e c, B}=\mathrm{E}_{m e c, A}=m g h_{A}=K+U_{B}=\frac{1}{2} m v_{B}^{2}+m g h_{B} \quad \frac{1}{2} m v_{B}^{2}=m g h_{A}-m g h \\
\frac{1}{2} v_{B}^{2}= & m g\left(h_{A}-h_{B}\right) \quad \mathrm{V}_{B}=\sqrt{2 g\left(h_{A}-h_{B}\right)}=\sqrt{2 \times 9.8 \times 3}=7.7 \mathrm{~m} / \mathrm{s} \\
\hline
\end{array}
\]
(2) What is the kinetic energy and speed at C?
\[
\begin{aligned}
& \text { at } \mathrm{C}: \quad h_{C}=0 \& \mathrm{E}_{\text {mes }, \mathrm{C}}=K_{C}=\frac{1}{2} m v_{\max }^{2}=E_{\text {me }, A}=m g h_{A} \\
& K_{C}=m g h_{A}=0.2 \times 9.8 \times 6=11.8 \mathrm{~J} \\
& v_{\max }=\sqrt{2 g h_{\mathrm{A}}}=\sqrt{2 \times 9.8 \times 6}=10.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]
frictionless Cursed wire. Find the speed
of the ball at point \(B\)
(a) \(8 \mathrm{~m} / \mathrm{s}\) (b) \(4.9 \mathrm{~m} / \mathrm{s}\)
(C) \(9.9 \mathrm{~m} / \mathrm{s}\)
(d) 3 ml

\[
v_{B}=\sqrt{2 g h_{A}}=\sqrt{2 \mathrm{x} 9.8 \mathrm{x} 5}=9.9 \mathrm{~m} / \mathrm{s}
\]

In the previous question, the kinetic energy of the ball at point \(C\) is
(a) 10 J
(b) 20 J
(c) 125
(d) \(\frac{14.7 \mathrm{~J} \text { (C) } 0}{\mathrm{ma}}\)
\[
\begin{aligned}
& K_{B}=U_{A}-U_{C}=m g h_{A}-m g h_{C}=m g\left(h_{A}-h_{C}\right)=0.5 \times 9.8 \times 3=14.7 \mathrm{~J} \\
& v_{B}=\sqrt{2 g\left(h_{A}-h_{B}\right)}=\sqrt{2 \times 9.8 \times 3}=7.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]
\(\qquad\) - קربور mass attached to a string. It is released frown frow rest at point \(P(D=1.54 \mathrm{~m})\) as shown.
The speed at the lowest point is:
(a) \(5.5 \mathrm{~m} / \mathrm{s}\)
(b) \(6 \mathrm{~m} / \mathrm{s}\)
(c) \(6.5 \mathrm{~m} / \mathrm{s}\)
(d) \(7 \mathrm{~m} / \mathrm{s}\)
(e) \(7.5 \mathrm{~m} / \mathrm{s}\)

at \(\mathrm{p}: \mathrm{E}_{\text {mex }}=\mathrm{U}_{\text {max }}=\mathrm{mgD}\)
at lowest point : \(\quad \mathrm{E}_{\text {mex }}=m g D=\mathrm{K}_{\max }=\frac{1}{2} m v_{\max }^{2}\)
\[
v_{\max }=\sqrt{2 g D}=\sqrt{2 \times 9.8 \times 1.54}=5.5 \mathrm{~m} / \mathrm{s}
\]

Ex A 4 kg block starts its motion with 100 J of kinetic energy. The maximum distance the block move up a \(30^{\circ}\) smooth incline is
(a) 5.1 mm (b) 3.1 m (C) 2.55 m (a) 1.53 m (e) 6 m
\(U_{i}=0 \quad K_{i}=100 \mathrm{~J}=\mathrm{E}_{\text {mex }}\)
When the body stops: \(\quad \mathrm{K}_{\mathrm{f}}=0 \quad \mathrm{E}_{\text {mex }}=\mathrm{U}_{\mathrm{f}}=K_{i}\)
\(100=\mathrm{mgh}=4 \mathrm{x} 9.8 \mathrm{xh} \quad \mathrm{h}=\frac{100}{4 \mathrm{x} 9.8}=2.55\)
\(\sin \theta=\frac{h}{x} \quad x=\frac{h}{\sin \theta}=\frac{2.55}{\sin 60}=2.94 \mathrm{~m}\)
```

