Current and Resistance

Prepared by Dr. Ahmed Abdelbaset

Current and Resistance

- 1. Electric Current
- 2. Ohm>s Law

Chapter 9:

- 3. Electric Power
- 4. Connecting resistors

1. Electric Current

The electric current is defined as the rate of flow of negative charges of the

conductor. The unit of the electric current is ampere A

$$I = \frac{dq}{dt} \qquad \qquad I = n e v A$$

Example: 9.1

How much the electrical current is generated by the passage of an electrical charge of 10 C in a 50-ms time period .

$\overrightarrow{E} \longrightarrow$

The direction of the current

Solution

$$I = \frac{\Delta q}{\Delta t} = \frac{10}{50 \times 10^{-3}} = 200A$$

1. Electric Current

The density of the electric current (J) is defined as the amount electric current of passing through the vertical unit area of the conductor cross-section.

The unit of the density of the electric current is A/m^2

$$J = \frac{I}{A} \qquad \qquad J = n e \iota$$

Example: 9.2

How much the density of the electric current is generated by the passage of an electrical

current of 2 A in a 0.1 cm cross-section area of the conductor.

Solution

$$J = \frac{I}{A} = \frac{2}{0.1 \times 10^{-2}} = 2000 \frac{A}{m^2}$$

2. Ohm's Law

Ohm law state that the voltage difference between the two ends of a conductor is proportional to the intensity of the electrical current passing through it, when its temperature is constant.

2. Ohm's Law

The electrical resistance R is directly proportional to the length of the conductor and inversely proportional to the area of the conductor cross section.

Where ρ is the specific resistance of the material corresponds to another quantity called electrical conductivity σ .

$$\rho = \frac{1}{\sigma}$$

The electrical resistance is measured by the ohm Ω .

2. Ohm's Law

Example: 9.5

Nickel chrome alloy wire1 m long, 0.2 mm diameter, and its quality resistance $1 \times 10^{-6} \ \Omega \cdot m$

- a. Calculate the resistance of the wire.
- b. If the voltage difference of 20 V between the ends of the wire is affected. How much current is passing?

Solution
a.
$$R = \rho \frac{\ell}{A} = \rho \frac{\ell}{\pi r^2}$$

 $= (1 \times 10^{-6}) \frac{1}{\pi (0.2 \times 10^{-3})^2} = 7.96 \ \Omega$
b. $I = \frac{V}{R}$
 $= \frac{20}{7.96} = 2.5 \ A$

3. Electric Power

Electrical power P is the energy or work done to transfer electrical charges in a conductor per unit time.

P = V I

The electrical power is measured by the watt.

$$1 watt = \frac{1 J}{1 sec}$$

$$\downarrow I R P = VI = \frac{V^2}{R} = I^2 R$$

3. Electric Power

Example: 9.6

nickel chrome heater has an 8 Ω resistant, works on a 120 V voltage. Find the current and electrical power that passes through the heater wire.

Solution

We find the strength of the current first:

$$I = \frac{V}{R}$$
$$= \frac{120}{8} = 15 \text{ A}$$

Then we compensate in the Law of power as follows:

$$P = \frac{V^2}{R} = \frac{(120)^2}{8} = 1800 \text{ Watt}$$

Connecting resistors in series

$$R_{eq} = R_1 + R_2 + R_3$$

Connecting resistors in parallel

Example: 9.7

Three resistances amounting to 18Ω , 12Ω , 6Ω connected in series, how much of the equivalent resistance?

Solution

 $R_{equ} = R_1 + R_2 + R_3$

 $= 18 + 12 + 6 = 36\Omega$

Example: 9.8

Three resistances amounting to 18 Ω , 12 Ω , 6 Ω connected in partlel, how much of the equivalent resistance?

Solution

$$\frac{1}{R_{equ}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
$$= \frac{1}{18} + \frac{1}{12} + \frac{1}{6} = \frac{11}{36}$$
$$R_{equ} = 3.3 \ \Omega$$

Example: 9.9

Four resistant conducting as in the Figure.

- a. Find the equivalent resistance between the $a \stackrel{R_1 = 10\Omega}{\longrightarrow}$ points a and c?
- b. How much of the current in each resistance

if a total voltage difference of 15 V is applied between points a and c?

Solution

 $R_2 = 5\Omega$ $R_3 = 5\Omega$

 $R_{4} = 10\Omega$

a. Equivalent resistance:

Resistance (R_{23}) equivalent to R_3 and R_2 is equal to

$$R_{23} = R_2 + R_3$$
$$= 5\Omega + 5\Omega = 10\Omega$$

Resistance (R_{234}) equivalent to R_4 and R_3 and R_2 is equal to

$$\frac{1}{R_{234}} = \frac{1}{R_{23}} + \frac{1}{R_4}$$
$$= \frac{1}{10} + \frac{1}{10} = \frac{1+1}{10} = \frac{2}{10}$$
$$R_{234} = 5\Omega$$

Resistance (R_{ac}) equivalent to R_4 and R_3 and R_2 and R_1 between the two points a and c

$$R_{ac} = R_1 + R_{234}$$

= 10 + 5 = 15 Ω

b. Total current I in the resistance system:

$$I = \frac{V}{R}$$
$$= \frac{15V}{15\Omega} = 1A$$