Current and Resistance

Prepared by Dr. Ahmed Abdelbaset

Chapter 9:

Current and Resistance

1. Electric Current
2. Ohmis Law
3. Electric Power
4. Connecting resistors

1. Electric Current

The electric current is defined as the rate of flow of negative charges of the conductor. The unit of the electric current is ampere A

$$
I=\frac{d q}{d t} \quad I=n e v A
$$

Example: 9.1

How much the electrical current is generated by the passage of an electrical charge of 10 C in a $50-\mathrm{ms}$ time period .

Solution

$$
I=\frac{\Delta q}{\Delta t}=\frac{10}{50 \times 10^{-3}}=200 A
$$

1. Electric Current

The density of the electric current (J) is defined as the amount electric current of passing through the vertical unit area of the conductor cross-section.

The unit of the density of the electric current is $\mathrm{A} / \mathrm{m}^{2}$

$$
J=\frac{I}{A} \quad J=n e v
$$

Example: 9.2

How much the density of the electric current is generated by the passage of an electrical current of 2 A in a 0.1 cm cross-section area of the conductor.

Solution

$$
J=\frac{I}{A}=\frac{2}{0.1 \times 10^{-2}}=2000 \frac{A}{\mathrm{~m}^{2}}
$$

2. Ohm's Law

Ohm law state that the voltage difference between the two ends of a conductor is proportional to the intensity of the electrical current passing through it, when its temperature is constant.

2. Ohm's Law

The electrical resistance R is directly proportional to the length of the conductor and inversely proportional to the area of the conductor cross section.

$$
R=\rho \frac{\ell}{A}
$$

Where ρ is the specific resistance of the material corresponds to another quantity called electrical conductivity σ.

$$
\rho=\frac{1}{\sigma}
$$

The electrical resistance is measured by the ohm Ω.

Example: 9.5
Nickel chrome alloy wire 1 m long, 0.2 mm diameter, and its quality resistance
$1 \times 10^{-6} \Omega \cdot m$
a. Calculate the resistance of the wire.
b. If the voltage difference of 20 V between the ends of the wire is affected. How much current is passing?

Solution

a. $R=\rho \frac{\ell}{A}=\rho \frac{\ell}{\pi r^{2}}$

$$
=\left(1 \times 10^{-6}\right) \frac{1}{\pi\left(0.2 \times 10^{-3}\right)^{2}}=7.96 \Omega
$$

b. $\mathrm{I}=\frac{V}{R}$

$$
=\frac{20}{7.96}=2.5 \mathrm{~A}
$$

3. Electric Power

Electrical power P is the energy or work done to transfer electrical charges in a conductor per unit time.

$$
P=V I
$$

The electrical power is measured by the watt.

$$
\begin{aligned}
& 1 \text { watt }=\frac{1 \mathrm{~J}}{1 \boldsymbol{s e c}} \\
&
\end{aligned}
$$

Brightness and Power

3. Electric Power

Example: 9.6

nickel chrome heater has an 8Ω resistant, works on a 120 V voltage. Find the current and electrical power that passes through the heater wire.

Solution

We find the strength of the current first:

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{V}}{R} \\
& =\frac{120}{8}=15 \mathrm{~A}
\end{aligned}
$$

Then we compensate in the Law of power as follows:

$$
\begin{aligned}
P & =\frac{V^{2}}{R} \\
& =\frac{(120)^{2}}{8}=1800 \mathrm{Watt}
\end{aligned}
$$

4. Connecting resistors

Connecting resistors in series

$$
\boldsymbol{R}_{e q}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}+\boldsymbol{R}_{\mathbf{3}}
$$

Connecting resistors in parallel

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

4. Connecting resistors

Example: 9.7

Three resistances amounting to $18 \Omega, 12 \Omega, 6 \Omega$ connected in series, how much of the equivalent resistance?

Solution

$$
\begin{aligned}
R_{\text {equ }} & =R_{1}+R_{2}+R_{3} \\
& =18+12+6=36 \Omega
\end{aligned}
$$

4. Connecting resistors

Example: 9.8

Three resistances amounting to $18 \Omega, 12 \Omega, 6 \Omega$ connected in parrlel, how much of the equivalent resistance?

Solution

$$
\begin{aligned}
\frac{1}{R_{e q u}} & =\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
& =\frac{1}{18}+\frac{1}{12}+\frac{1}{6}=\frac{11}{36} \\
R_{\text {equ }} & =3.3 \Omega
\end{aligned}
$$

4. Connecting resistors

Solution

Example: 9.9

Four resistant conducting as in the Figure.
a. Find the equivalent resistance between the $a \stackrel{R_{1}=10 \Omega}{\stackrel{-1}{l} \overbrace{l}^{b}}$
points a and c ?
b. How much of the current in each resistance
if a total voltage difference of 15 V is applied between points a and c ?
a. Equivalent resistance:

Resistance (R_{23}) equivalent to R_{3} and R_{2} is equal to

$$
\begin{aligned}
R_{23} & =R_{2}+R_{3} \\
& =5 \Omega+5 \Omega=10 \Omega
\end{aligned}
$$

Resistance (R_{234}) equivalent to R_{4} and R_{3} and R_{2} is equal to

$$
\begin{aligned}
\frac{1}{R_{234}} & =\frac{1}{R_{23}}+\frac{1}{R_{4}} \\
& =\frac{1}{10}+\frac{1}{10}=\frac{1+1}{10}=\frac{2}{10} \\
R_{234} & =5 \Omega
\end{aligned}
$$

Resistance (R_{ac}) equivalent to R_{4} and R_{3} and R_{2} and R_{1} between the two points a and c

$$
\begin{aligned}
R_{a c} & =R_{1}+R_{234} \\
& =10+5=15 \Omega
\end{aligned}
$$

b. Total current I in the resistance system:

$$
\begin{aligned}
I & =\frac{V}{R} \\
& =\frac{15 \mathrm{~V}}{15 \Omega}=1 \mathrm{~A}
\end{aligned}
$$

