Chapter 3: Mass Relationships in Chemical Reactions Part I

Dr. Dalal Alezi
dalezi@kau.edu.sa

07/10/2018

Average Atomic Mass

Gallium has two naturally occurring isotopes. The mass of gallium-69 is 68.9256 amu and it is 60.108 \% abundant. The mass of gallium-71 is 70.9247 amu and it is 39.892% abundant. Find the atomic mass (average atomic mass) of gallium.
Average Atomic Mass $=\left(\frac{\% \text { abundance of isotope } 1}{100}\right)($ mass of isotope 1$)+\left(\frac{\% \text { abundance of isotope } 2}{100}\right)($ mass of isotope 2$)+\ldots$

Average atomic mass of Gallium (Ga):

$$
\frac{(60.108 \times 68.9256)+(39.892 \times 70.9247)}{100}=69.69 \mathrm{amu}
$$

Antimony has two naturally occurring isotopes. The mass of antimony-121 is 120.904 amu and the mass of antimony-123 is 122.904 amu . Calculate the natural abundance of these two isotopes.
The average atomic mass of antimony ($\mathrm{Sb}=121.76 \mathrm{amu}$).

Average atomic mass $=\Sigma$ (The natural abundance x Atomic Mass) for each isotope
Remember that the sum of the two abundances must be 100.
Assume that : the natural abundance of ${ }^{121} \mathrm{Sb}=\mathrm{X} \%$ and ${ }^{123} \mathrm{Sb}=\mathrm{Y} \%$
$X \%+Y \%=100 \% \quad X+Y=1 \quad \rightarrow \quad Y=1-X$
Average atomic mass $=\left(\right.$ The natural abundance x Atomic Mass) ${ }^{121} \mathrm{Sb}+\left(\right.$ The natural abundance x Atomic Mass) ${ }^{123} \mathrm{Sb}$
$121.76=(X$ * 120.904 $)+(Y$ * 122.904 $)$
$121.76=(X * 120.904)+((1-x) * 122.904)$
$121.76=120.904 X+122.904$-122.904 X
$-1.144=-2 x$
$X=0.572 \quad Y=1-0.572=0.428$
$X \%=57.2 \%\left({ }^{121} \mathrm{Sb}\right) \quad \mathrm{Y} \%=42.8 \%\left({ }^{123} \mathrm{Sb}\right)$

Argon has three naturally occurring isotopes: argon-36, argon-38, and argon-40. Based on argon's reported atomic mass, which isotope do you think is the most abundant in nature? Explain

Answer:

Argon-40

Explanation:

The mass of Argon on the periodic table is 39.948.

The periodic table's atomic mass is the AVERAGE weight of ALL its isotopes.
If one isotope is MORE abundant than the others, the average will be closest to the mass of that isotope. So, the periodic table's 39.948 is closest to Argon-40

Gram-Mole Conversions

$$
n=\frac{\operatorname{mass}(m)}{\operatorname{Molar} \operatorname{Mass}(M)}
$$

$$
n=\frac{N(\text { atoms or molecules })}{N_{A}(\text { Avogadro's number })}
$$

One mole $=N_{A}\left(6.0221367 \times 10^{23}\right)$

How many moles are in $2.1 \times \mathbf{1 0}^{\mathbf{2 4}}$ atoms of sodium?

$$
\begin{gathered}
n=\frac{N}{N_{A}} \\
n=\frac{2.1 \times 10^{24}}{6.022 \times 10^{23}} \\
n=3.49 \mathrm{~mol}
\end{gathered}
$$

> | Gram-Mole Conversions | $n=\frac{\text { mass }(m)}{\text { Molar Mass }(M)}$ |
| :--- | :--- |
| | $n=\frac{N(\text { atoms or molecules })}{N_{A}(\text { Avogadro's number })}$ |
| One mole $=N_{A}\left(6.0221367 \times 10^{23}\right)$ | |

How many moles of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, are in a tablespoon of sugar that contains 2.85 g ? $\mathrm{m}=2.85 \mathrm{~g}, \quad \mathrm{n}=? ? ?$

Molar Mass $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=(12 \times 12.01)+(22 \times 1.008)+(11 \times 16)=342.2965 \mathrm{~g} / \mathrm{mol}$

$$
\begin{gathered}
n=\frac{m}{M} \\
n=\frac{2.85}{342.2965} \\
n=0.00833 \mathrm{~mol}
\end{gathered}
$$

Gram-Mole Conversions
 $n=\frac{\operatorname{mass}(m)}{\operatorname{Molar} \operatorname{Mass}(M)}$
 $n=\frac{N(\text { atoms or molecules })}{N_{A}(\text { Avogadro's number })}$

A sample of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, contains 1.52×10^{25} molecules. How many kilograms of glucose is this?
$\mathrm{N}=1.52 \times 10^{25}$ molecules $\quad \mathrm{m}(\mathrm{kg})=$? ???

1

$$
\begin{gathered}
n=\frac{N}{N_{A}} \\
n=\frac{1.52 \times 1025}{6.022 \times 10^{23}} \\
n=25.24 \mathrm{~mol}
\end{gathered}
$$

2 Molar Mass $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.156 \mathrm{~g} / \mathrm{mol}$

$$
n=\frac{m}{M}
$$

$$
25.24=\frac{m}{180.156}
$$

$$
m=4547.27 \mathrm{~g}
$$

$$
\mathrm{m}=4.55 \mathrm{~kg}
$$

Gram-Mole Conversions
 $n=\frac{\operatorname{mass}(m)}{\operatorname{Molar} \operatorname{Mass}(M)}$
 $n=\frac{N(\text { atoms or molecules })}{N_{A}(\text { Avogadro's number })}$

A sample of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, contains 1.52×10^{25} molecules. How many kilograms of glucose is this?
$\mathrm{N}=1.52 \times 10^{25}$ molecules $\quad \mathrm{m}(\mathrm{kg})=$? ???

1

$$
\begin{gathered}
n=\frac{N}{N_{A}} \\
n=\frac{1.52 \times 1025}{6.022 \times 10^{23}} \\
n=25.24 \mathrm{~mol}
\end{gathered}
$$

2 Molar Mass $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.156 \mathrm{~g} / \mathrm{mol}$

$$
n=\frac{m}{M}
$$

$$
25.24=\frac{m}{180.156}
$$

$$
m=4547.27 \mathrm{~g}
$$

$$
\mathrm{m}=4.55 \mathrm{~kg}
$$

Gram-Mole Conversions
 $n=\frac{\operatorname{mass}(m)}{\operatorname{Molar} \operatorname{Mass}(M)}$
 $n=\frac{N(\text { atoms or molecules })}{N_{A}(\text { Avogadro's number })}$

How many molecules are in 23 moles of HBr ?

$$
N=\text { ??? molecules } \quad n=23 \mathrm{~mol}
$$

$$
\begin{gathered}
n=\frac{N}{N_{A}} \\
23=\frac{N}{6.022 \times 10^{23}} \\
N=23 \times 6.022 \times 10^{23}=1.39 \times 10^{25} \text { molecules }
\end{gathered}
$$

How many S atoms are in 16.3 g of S ?

$$
n(S)=\frac{m}{M}=\frac{16.3 \mathrm{~g}}{32.07 \mathrm{~g} / \mathrm{mol}}=0.508 \mathrm{~mol}
$$

$$
\begin{aligned}
n(S) & =\frac{N}{N_{A}} \Rightarrow N=n x N_{A} \\
& =0.508 \mathrm{~mol} \times 6.022 \times 10^{23} \text { atoms } / \mathrm{mol} \\
& =3.06 \times 10^{23} \text { atoms }
\end{aligned}
$$

How many oxygen atoms are in 4.5 gram of KMnO_{4} ?

1- convert mass to moles
Molar Mass $\mathrm{KMnO}_{4}=39.098+54.938+(4 \times 16)=158.036 \mathrm{~g} / \mathrm{mol}$

$$
\begin{gathered}
n=\frac{m}{M} \\
n=\frac{4.5}{158.036} \\
n=0.0285 \mathrm{~mol}
\end{gathered}
$$

2- From the formula
1 mol of $\mathrm{KMnO} 4 \rightarrow 4 \mathrm{~mol}$ of oxygen
0.0285 mol of KMno4 $\rightarrow \mathrm{x} \mathrm{mol}$ of oxygen
$\mathrm{n}(\mathrm{mol}$ of oxygen $)=0.1138 \mathrm{~mol}$

3- number of Oxygen atoms

$$
\begin{gathered}
0.1138=\frac{N}{6.022 \times 10^{23}} \\
N=0.1138 \times 6.022 \times 10^{23}=6.85 \times 10^{22} \text { atoms of oxygen }
\end{gathered}
$$

Percent Composition of Compounds

Glucose, or blood sugar, has the molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
a. What is the percent composition of glucose?

$$
\frac{n \times \text { molar mass of element }}{\text { molar mass of compound }} \times 100 \%
$$

Molar mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.156 \mathrm{~g} / \mathrm{mol}$

$$
\begin{aligned}
\% \mathrm{C}= & \frac{6 \times 12.01}{180.156} \times 100 \%=40 \% \\
\% \mathrm{H}= & \frac{12 \times 1.008}{180.156} \times 100 \%=6.714 \% \\
\% \mathrm{O}= & \frac{6 \times 16}{180.156} \times 100 \%=53.29 \% \\
& 40 \%+6.714 \%+53.29 \%=100.0 \%
\end{aligned}
$$

b. How many grams of carbon are in 39.0 g of glucose (the amount of sugar in a typical soft drink)? Answer: 15.6 g C

Percent Composition of Compounds

Which is richer source of nitrogen Urea $\left(\mathrm{NH}_{2}\right)_{2} \mathbf{C O}$ or Ammonia NH_{3} on a mass percentage basis?

$$
\frac{n \times \text { molar mass of element }}{\text { molar mass of compound }} \times 100 \%
$$

$$
\begin{aligned}
& \left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}=\frac{2 \times 14.01}{(2 \times 14.01)+(4 \times 1.008)+12.01+16} \times 100=\frac{28.02}{60.062} \times 100=46.6 \% \\
& \mathrm{NH}_{3}=\frac{14.01}{(14.01)+(3 \times 1.008)} \times 100=\frac{14.01}{17.034} \times 100=82.2 \%
\end{aligned}
$$

$\therefore \mathrm{NH}_{3}$ is richer

Determination of the Empirical and molecular Formula from the Percent

Composition by Mass

$$
\begin{aligned}
& \text { خطوات الحل } \\
& \text { 1. ننشأ جدول نضع فيه العناصر المذكورة في السؤال } \\
& \text { 2. نحتبر أن النسبة المئوية معبر عنها بالجرام فلو كان عندنا } 100 \text { جرام من المركب فهزه ال } 100 \\
& \text { جرام موز عة على العناصر حسب نسبتها. } \\
& \text { 3. نوجد عدد المولات n لكل عنصر باستخدام القانون n=m/M . } \\
& \text { 4. نقسم عدد المولات على أصغر مول من العناصر. } \\
& \text { 5. الأرقام التي نحصل عليها تمثل empirical formula بشرط أن تكون أعداد صحيحة أما في } \\
& \text { حالة ظهور أعداد عشرية فنقوم بضرب الأرقام التي في الأسفل الموجودة في الصيغة بأعداد بداً } \\
& \text { من 2، } 3 \text {....... حتى نحصل على أعداد صحيحة. } \\
& \text { 6. في حال طلب molecular formula فلابد من توفير الوزن الجزئيي molar mas\$) للمركب } \\
& \text { في السؤ ال ثم نقوم بايجاد (molar mass) للصيغة الاولية empirical formula وحساب } \\
& \text { النسبة بينهما باستخدام العلاقة } \\
& \text { Ratio }=\frac{\text { molar mass of compound }}{\text { empirical molar mass }} \\
& \text { ثم نضرب الناتج في اعداد الذرات فيempirical formula }
\end{aligned}
$$

These steps are written by Dr.Effat

Empirical and Molecular Formulas

Spodumene, lithium aluminium inosilicate, is one of the most common lithium-containing minerals. It consists of $3.730 \% \mathrm{Li}, 14.50 \% \mathrm{Al}, 30.18 \% \mathrm{Si}$, and $51.59 \% \mathrm{O}$. What is the empirical formula of spodumene?

	$\mathbf{L i}$	$\mathbf{A l}$	$\mathbf{S i}$	\mathbf{O}
$\mathbf{\%} \rightarrow \mathbf{1 0 0 g}$	3.73 g	14.5 g	30.18 g	51.95 g
$\mathbf{n = m / M}$	$3.73 / 6.941$ $=0.537 \mathrm{~mol}$	$14.5 / 27$ $=0.537 \mathrm{~mol}$	$30.18 / 28.0855$ $=1.075 \mathrm{~mol}$	$51.95 / 16$ $=3.247 \mathrm{~mol}$
\% on smallest no. of mole	$0.537 / 0.537$ $=1$	$1.116 / 0.537$ $=1$	$1.075 / 0.537$ $=2$	$3.247 / 0.537$ $=6$
The empirical formula	Li	Al	Si_{2}	O_{6}

PNA is a compound of $\mathrm{C}, \mathrm{N}, \mathrm{H}$ and O , determine the percent composition of O and the empirical formula from $19.8 \% \mathrm{C}, 2.5 \% \mathrm{H}$ and $11.6 \% \mathrm{~N}$ and the molecular mass if molar mass is about 120 g ?

	C	H	N	0
\% \rightarrow 100g	19.8 g	2.5g	11.6 g	66.1 g
$n=m / M$	$\begin{aligned} & 19.8 / 12.01 \\ & =1.648 \mathrm{~mol} \end{aligned}$	$\begin{gathered} 2.5 / 1.008 \\ =2.48 \mathrm{~mol} \end{gathered}$	$\begin{gathered} 11.6 / 14.01 \\ =0.828 \mathrm{~mol} \end{gathered}$	$\begin{gathered} \\ 66.1 / 16 \\ =4.1 \mathrm{~mol} \end{gathered}$
\div on smallest no. of mole	$\begin{gathered} 1.648 / 0.828 \\ =1.99=2 \end{gathered}$	$\begin{gathered} 2.48 / 0.828 \\ =2.99=3 \end{gathered}$	$\begin{gathered} 0.828 / 0.828 \\ =1 \end{gathered}$	$\begin{gathered} 4.1 / 0.828 \\ =4.95=5 \end{gathered}$
The empirical	C_{2}	H_{3}	N_{1}	O_{5}
	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}_{5}$			

Molar mass of empirical formula $=(2 \times 12.01)+(3 \times 1.008)+14.01+(5 \times 16)=121.054 \mathrm{~g}$
Ratio $=120 / 121.054=0.99=1$
$\therefore 1 \mathrm{X}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}_{5}\right)=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}_{5}$
molecular formula has the same empirical formula

Elemental analysis of styrene shows its percent composition to be $92.26 \% \mathrm{C}$ and $7.75 \% \mathrm{H}$. Its molecular mass is found to be $104.15 \mathrm{~g} / \mathrm{mol}$. What are the empirical and molecular formulas of styrene?

	\mathbf{C}	\mathbf{H}
$\boldsymbol{\%} \rightarrow \mathbf{1 0 0 g}$	92.26 g	7.75 g
$\mathrm{n}=\mathrm{m} / \mathrm{M}$	$92.26 / 12.01$ $=7.68 \mathrm{~mol}$	$7.75 / 1.008$ $=7.68 \mathrm{~mol}$
on smallest no. of mole	$7.68 / 7.68=1$	$7.68 / 7.68=1$
The empirical formula	C	H
	CH	

Molar mass of empirical formula $=(12.01)+(1.008)=13.018 \mathrm{~g} / \mathrm{mol}$
Ratio $=104.15 / 13.018=8$
$\therefore 8 \mathrm{X}(\mathrm{CH})=\mathrm{C}_{8} \mathrm{H}_{8}$

Balancing chemical equations

Balance the following chemical equation:

$$
\begin{array}{cc}
\ldots \mathrm{AgI}+\ldots \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3} \rightarrow \ldots \mathrm{Fel}_{3}+\ldots \mathrm{Ag}_{2} \mathrm{CO}_{3} & \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
6 \mathrm{AgI}+\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3} \rightarrow 2 \mathrm{Fel}_{3}+3 \mathrm{Ag}_{2} \mathrm{CO}_{3} & \mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O} \\
& 2 \times\left[\mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}\right] \\
& 2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O} \\
& \\
\mathrm{H}_{2} \mathrm{SO}_{4}+\ldots \mathrm{B}(\mathrm{OH})_{3} \rightarrow \ldots \mathrm{~B}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{H}_{2} \mathrm{O} & \\
3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{~B}(\mathrm{OH})_{3} \rightarrow \mathrm{~B}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O} &
\end{array}
$$

