
Al Sham Private University

Faculty of Informatics Engineering

 جامعة الشام الخاصة

 كلية الهندسة المعلوماتية

 نظم معلومات موزعة
Distributed Information Systems

Lecture 7: Synchronization (Physical and Logical Time)

هسامغاندي . أ: اعداد

Introduction

• Time is an important and interesting issue in distributed systems, for
several reasons.

• First, time is a quantity we often want to measure accurately. In order
to know at what time of day a particular event occurred at a
particular computer it is necessary to synchronize its clock with an
authoritative, external source of time.

• Second, algorithms that depend upon clock synchronization have
been developed for several problems in distribution. These include
maintaining the consistency of distributed data, checking the
authenticity of a request sent to a server and eliminating the
processing of duplicate updates.

By Eng. Ghandy Hessam 2

• The relative order of two events can even be reversed for two different
observers. But this cannot happen if one event causes the other to
occur.

• In that case, the physical effect follows the physical cause for all
observers, although the time elapsed between cause and effect can vary.

• The concept of physical time is also problematic in a distributed system.

• The problem is based on a similar limitation in our ability to timestamp
events at different nodes sufficiently accurately to know the order in
which any pair of events occurred, or whether they occurred
simultaneously.

• There is no absolute, global time to which we can appeal.

By Eng. Ghandy Hessam 3

Synchronizing physical clocks

 Cristian’s method:

• Coordinated Universal Time – abbreviated as UTC (from the French
equivalent) – is an international standard for timekeeping.

• UTC signals are synchronized and broadcast regularly from land-based
radio stations and satellites (Global Positioning System (GPS))
covering many parts of the world.

• Cristian [1989] suggested the use of a time server, connected to a
device that receives signals from a source of UTC, to synchronize
computers externally.

• Upon request, the server process S supplies the time according to its
clock

By Eng. Ghandy Hessam 4

• A process p requests the time in a message mr , and receives the time
value t in a message mt (t is inserted in mt at the last possible point
before transmission from S’s computer).

• Process p records the total round-trip time Tround taken to send the
request mr and receive the reply mt .

• A simple estimate of the time to which p should set its clock is t +
Tround/2.

By Eng. Ghandy Hessam 5

1) The process on the client machine sends the request for fetching clock
time(time at server) to the Clock Server at time T0.
2) The Clock Server listens to the request made by the client process and
returns the response in form of clock server time.
3) The client process fetches the response from the Clock Server at time T1
and calculates the synchronized client clock time using the formula given
below.

By Eng. Ghandy Hessam 6

 The Berkeley algorithm:

• A coordinator computer is chosen to act as the master. Unlike in
Cristian’s protocol, this computer periodically polls the other
computers whose clocks are to be synchronized, called slaves.

• The slaves send back their clock values to it. The master estimates
their local clock times by observing the round-trip times and it
averages the values obtained.

• The accuracy of the protocol depends upon a nominal maximum
round-trip time between the master and the slaves.

• The master sends the amount by which each individual slave’s clock
requires adjustment. This can be a positive or negative value.

By Eng. Ghandy Hessam 7

• Diagram below illustrates how the master sends request to slave nodes:

By Eng. Ghandy Hessam 8

• Diagram below illustrates how slave nodes send back time given by their
system clock:

By Eng. Ghandy Hessam 9

• Diagram below illustrates the last step of Berkeley’s algorithm:

By Eng. Ghandy Hessam 10

Logical time and logical clocks

• Lamport [1978] pointed out, since we cannot synchronize clocks
perfectly across a distributed system, we cannot in general use
physical time to find out the order of any arbitrary pair of events
occurring within it.

• In general, we can use a scheme that is similar to physical causality
but that applies in distributed systems to order some of the events
that occur at different processes.

• Lamport called the partial ordering obtained by generalizing these
two relationships the happened-before relation. It is also sometimes
known as the relation of causal ordering or potential causal ordering.

By Eng. Ghandy Hessam 11

 Logical clocks (Lamport):

• A Lamport logical clock is a monotonically increasing software
counter, whose value need bear no particular relationship to any
physical clock.

• Each process pi keeps its own logical clock, Li , which it uses to apply
so-called Lamport timestamps to events.

• We denote the timestamp of event e at pi by Li(e) , and by L(e) we
denote the timestamp of event e at whatever process it occurred at.

• To capture the happened-before relation , processes update their
logical clocks and transmit the values of their logical clocks in
messages as follows:

By Eng. Ghandy Hessam 12

• It can easily be shown, by induction on the length of any sequence of
events relating two events e and e’, that

• Note that the converse is not true. If then we cannot infer
that

By Eng. Ghandy Hessam 13

• Each of the processes p1 , p2 and p3 has its logical clock initialized to 0.

• The clock values given are those immediately after the event to which
they are adjacent.

• Note that, for example,

By Eng. Ghandy Hessam 14

 Vector clocks:

• to overcome the shortcoming of Lamport’s clocks: the fact that from

 we cannot conclude that

• A vector clock for a system of N processes is an array of N integers.

• Each process keeps its own vector clock, Vi , which it uses to
timestamp local events.

• there are simple rules for updating the clocks:

By Eng. Ghandy Hessam 15

• Example #1:

By Eng. Ghandy Hessam 16

• We may compare vector timestamps as follows:

• In our example: We can tell when two events are concurrent by
comparing their timestamps.

By Eng. Ghandy Hessam 17

• Example #2:

By Eng. Ghandy Hessam 18

• Example #3:

By Eng. Ghandy Hessam 19

End of Lecture 7

By Eng. Ghandy Hessam 20

