

HOMEWORK CHAPTER 3

Question 1:

A vector \vec{A} is given by the components : $A_{x}=-3 \mathrm{~cm}$ and $A_{y}=-5 \mathrm{~cm}$.
a- Write \vec{A} in terms of unit vectors $\hat{\imath}$ and $\hat{\jmath}$.
b- To which quarter does \vec{A} belong ?
c- Calculate the magnitude of \vec{A}.
d- Calculate the direction of \vec{A} by giving its θ_{A}.

Question 2:

The magnitudes of the vectors \vec{A} and \vec{B} in the figure below, are respectively $\mathrm{a}=40$ and $B=30$.
a- Find the components of each vector.
b- Find those of $\vec{A}+\vec{B}$ and $\vec{B}-\vec{A}$

Question 3:

Which of the following vectors is a unit vector?
a) $\vec{u}=\hat{x}-\hat{y}$
b) $\vec{v}=\frac{1}{3} \hat{x}-\frac{2 \sqrt{2}}{3} \hat{y}$
c) $\vec{w}=2 \hat{x}-\hat{y}$

Question 4:

Given the vectors $\vec{A}=2 \hat{x}+5 \hat{y}$ and $\vec{B}=-\hat{x}+3 \hat{y}$. Find the magnitude and the direction of the following vectors:
a) $\vec{C}=-\vec{A}+3 \vec{B}$
b) $\vec{D}=2 \vec{A}-3 \vec{B}$
c) $\vec{E}=\vec{C}+\vec{D}$

Question 5:

A car travels 8 km due west in 10 minutes and then 12 km due north in 20 minutes. Find :
a- the total displacement of the car.
b- the average velocity of the car.
c- the average speed of the car.
Question 6: $\{$ Example 5 P 75\}
A position of a particle as a function of time is given by :
$\vec{r}=\left[(5.0 \mathrm{~m} / \mathrm{s}) t+\left(6.0 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}\right] \hat{\imath}+\left[7.0 \mathrm{~m}-\left(3.0 \mathrm{~m} / \mathrm{s}^{3}\right) t^{3}\right] \hat{\jmath}$ where r is in meters and t in seconds
a- What is the particle's displacement between $t_{1}=2.0 \mathrm{~s}$ and $t_{2}=3.0 \mathrm{~s}$?
b- Determine the velocity and acceleration of the particle as function of time
c- Evaluate \vec{v} and \vec{a} at $t=3.0 \mathrm{~s}$

