ID:
Group Number:
I) Choose the correct answer:
(a) If If $u=(0,1,3), v=(1,-1,2)$ and $w=(1,1,-3)$, then $\frac{u \cdot v}{w \cdot w} w$ equals
$\frac{5}{11}(1,1,-3) \quad-18 \quad \frac{6}{11}(1,1,-3) \quad$ NONE
(b) The coordinate vector of $(2,0)$ relative to the basis $B=\{(1,-1),(0,2)\}$ is

$(2,-1)$	$(-2,-1) \quad$ NONE

(c) If $\lambda=2$ is an eigenvalue for a matrix A, then an eigenvalue for A^{3} is

6

(d) If $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a reflection about the y-axis and $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rotation operator through $\theta=\frac{\pi}{2}$, then the matrix $\left[T_{1} \circ T_{2}\right]$ is
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
NONE
(e) The inverse of the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=(4 x+y,-x)$ is

$$
\bar{T}^{-1}(x, y)=(-x, 4 x+y) \quad T^{-1}(x, y)=(-y, 4 x+y) \quad T^{-1}(x, y)=(-y, x+4 y) \quad \text { NONE }
$$

II) Decide if the following statements are true (T) or false (F). Justify your answer.
(a) If A is an $n \times n$ matrix and $\operatorname{det} A=2$, then $\operatorname{det}\left(A^{T} A\right)=4$.

(b) If A and B are $n \times n$ invertible matrices of the same size and $A B=B A$, then A and B^{-1} commute.

(c) The set $S=\left\{A \in M_{22}: \operatorname{det} A=0\right\}$ is a subspace of M_{22}.
(d) If V is a vector space of dimension n, then any set of $n-1$ vectors of V is linearly dependent.

F
(e) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=\left(x, y^{2}\right)$ is a linear transformation.

(f) The linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=(4 x-y, x)$ is one-to-one.

(g) If $\lambda=0$ is an eigenvalue of a matrix A, then A is not invertible.

F
(h) If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $a+c=b+d=\lambda$, then λ is an eigenvalue of A.

(i) If A and B are square matrices with the same dimension, then $\operatorname{rank}(B A)=\operatorname{rank}\left(A^{T} B^{T}\right)$.

(j) If A is a square matrix, such that $A A^{T}$ is singular, then so is A.

III) Consider the linear system

$$
\left\{\begin{array}{l}
x+2 y+3 z=1 \\
2 x+5 y+3 z=2 \\
x+8 z=1
\end{array}\right.
$$

(a) Write down the linear system in matrix form $A x=b$;
(b) Find the determinant of the coefficient matrix A, by row operations;
(c) Use the answer of (b) to prove that the column vectors of A are linearly independent;
(d) Without solving the system, determine if it has a unique solution;
(e) Solve the system.
-white page for the solution of Question \#III)-
IV) (a) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 5 & -10 \\
1 & 0 & 2 & 0 \\
1 & 0 & 0 & 3
\end{array}\right]
$$

(b) Find a basis of the eigenspace corresponding to the eigenvalue $\lambda=2$ of A;
(c) Is A invertible?
V) Find the rank and the nullity of the matrix

$$
A=\left[\begin{array}{ccc}
2 & -1 & 3 \\
4 & -2 & 1 \\
2 & 1 & 0
\end{array}\right]
$$

VI) Show that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T(x, y, z)=(2 x+3 y-z, x+z,-x+7 y)$ is a linear transformation.
VII) Define the linear operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, through $T(u)=A u$, where

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3 \\
1 & 3 & 2
\end{array}\right]
$$

(a) Find $T\left(e_{1}\right), T\left(e_{2}\right)$ and $T\left(e_{3}\right)$, where e_{1}, e_{2}, e_{3} are the vectors in the standard basis of \mathbb{R}^{3};
(b) Find $T\left(3 e_{1}-4 e_{2}+6 e_{3}\right)$.

