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ensure that f(x) is as close as we want to L by taking x close enough to ¢, but "
\ e , we say that the function f approaches the limit L as x
7(5 = 0, M & 5)= A approaches a, and we write

5= 0% H() =

lim f(x) =E.
L il ‘mo) ey ' Xda SBY) co=T - ‘

r .
/“15 ¢ A ? . ~— 78 -
P _ Y\“ 1; ' J y—-3

,w\) . * ;EIS definition is informal because phrases such as close as we want and close
X = C\be‘ AGRYS ough are imprecise; their meaning depends on the context. To a machinist

\ manufacturing a piston, close enough may mean within a few thousandths of

prove theorems about limits like Theorems 2—4. stated later in this sectnon

o -%- M_}(,J.o an inch. To an astronomer studying distant galaxies, close enough may mean
o AN kb' 009—‘4& within a few thousand light-years. The definition should be clear enough,
Vo (wL. /..u /, r-_.;_,,,  however, to enable us to recognize and evaluate limits of specific functions. A
Y m i 9—’3..) more precise “formal” definition, given in Section 7.4, is needed if we want to
0O




4Pproaches 0; there is no single number L that they approachi. ot N\
The following example shows that even if /(x) is defined at x = 4. e Sy }
OFf(x) as x approaches @ may not be equal to f(a).
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el of s annsmamqne‘nf
= tofihand side of @ then L= M. Al ,. o aﬁmcnonfmonlyha
1 — o~ means x approaches a from the left . '
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Figure 3 One-sided approach
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* Note the use of the suffix + 16 denote approach fro o (the poe
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.,rLUL | lim sgn(x)=~1  and lim sgn(x)=1

y=~I L / because the values of sgn (x) approach —1 (they are 1) if x is negative apg

—— approaches 0, and they approach 1 if x is positive and approaches 0. Since fhes,
' left and right limits are not equal, lim,_,, sgn (x) does not exist.

As suggested in Home Work 3, the relationship between ordinary (two-sided)
}imits and one-sided limits can be stated as follows:

Figure 4 l’igsgn(x)does

not exist, because

lim sgn (x)=~1, lim sgn (x) =1

—\iwa =TTE X
L e |

k=2 . _
= 2+ ax-¢ find: lim f(x), lim f(x), and lim f(x).

- SOLUTION Observe that |x 2| =x~ 2 if x> 2, and |x - 2| = x~ 2) if <2
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— The following theorem will enable ¢

¢ Theorem because it refers to a function g whose values are squeezed ¢
mormmmuom/uuhmmummu.
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, In Exercises 4|

In Exercises 2~
given in Figure
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Product Rule for limits that lim,
use this fact in the following ¢
limits at 1o for the function x/,,
making a table of values or draw

PRI IPNHENE Y e . .

J o N oY
-wj*w ) d,\j“)x Wi < Evaluate lim f(x) and lim f(x)!
(\?(Si)l '}%t —Mg -h-:—’ U&}'—i SOLUTION Rewrite the expres:

-.’é»‘t’\éj Flx) = X S
A’J)&\d‘ A“A/IA.J Lz:_,, # X

CDJL»:,JA’-’ ‘v@?u Hy1+ 3z
"" _ sgnx
i ), (V'S B o

- (LJM»< }a@\ i2sf8 e
- The factor V1 + (1/x°) approache:
= ao.)“‘*’ & ﬁ—éd/w’ the same limits as x — +e0 as doe

\53) 5’5 37N B, L5) oo lim f(x)= 1
,,(‘\4_.)' B NS g,»JS)

imits at :too are constam ones, F
““rational functions. Recall that a rat
The following examples show hos
limits at infinity and negative inf
do this is to divide the numerato
appearing in the denominator. T
negative infinity either both fail to

HOMEWORK 1

2xl—x+3

Evaluate im; 4+

2 +5

SUMMARY OF LIMITS AT ++ FOR

RATIONAL FUNCTIONS HOMEWORK 2

Lot PAx) =@, X"+« + ayand

= b, ¥ + - « + + by be polynomial : Sx+2

Qux)=by "+ <+ bybe poynomitht B aluate lim, v ———.

of degree m and n, respectively, so 2¢ - |

that a,, # 0 and b, # 0. Then
- PAx) e . g 1o
T The limiting behavior of ration:

Qulx summarized at the left.
() cowets o M < 8, The technique used in the p
(b) cqull* — ifm=n, general kinds of functions. Tl
| (c) does oot exist i m > 1. rational, and the limit seems to

matters by rationalizing the num




_ v X
'JE hes 1 as x approaches oo or —eo 50 f(x)
1 + (1/x°) approaches e st e
9‘5,)5 gesamefacm:igs a(s x — +oo as does sgn (x). Therefore (see Figure 7),
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HOMEWORKX 4

@ lim, . 3¢’ - + 2= (b) lim
f@ lim, . (& =S’ —x)=e (d) lim,

> : The highest-degree term of a polynomial dom
w‘&f-s 4-;»‘&»:\—},»% large. o the limits of this term at s and —e
3 dOJLX—r ok polynomial. For the polynomial in parts (a) ar

o -+ 2= 31
%2A) ds sl (

Dl = 3603
Kyow &

The factor in the large parentheses approache
havior of the polynomial is just that of its hig

| -_} We can now say a bit more about the limits a
3 = rational function whose numerator has higl

a hpg =3(=00) 2 =) Eardier in this section we said that such a limi
X =00 can assign o or —o to such limits, as the follc

Cj Jim = (02)4 - @ EXAMPLE 5
X &7

5|

8|

x4+
77 Evaluate l‘_l.ﬂl 5 '
CU lirt = (“w,wziqy) e+l
7 SOLUTION Divide the numerator and the de
o of x in the denominator:
X+ ‘
) .
i || = lim ——-!i— =
B ybe
. ‘ + ;5
: () can have
A polynomial Q(x) of degree a >4
m&o n different real uumb;; r (u)wx .'
a rational function R(x) V(x e

those finitely many zeros of Q At
infinite limits, oF One=3

x-2) f L
(a) hm,s—z—z—:;" }‘I,“,( ~2)(x+2)
9] =7
e A
(b) lim 57 3" }‘3‘2 (x - 2)(x +2)




: 7 shows how o he
. ie : \ xamples. Example 2 :
o use this fact in the following ¢ 15 without re R

-

limits at e for the function x//x" + 1 by algebraic n_\ja sk
3% oe e making atable of values or drawing a graph, as we did & .
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& v, ¥ i Product Rule for limits that lim, ... 1/x" = 0 for any positive integer |

. OO0
"."- hH 4 & N T m——-—-'—-‘M- - .
¥ I e e g Evaluate lim f(x) and lim f(x) for f(x) = -\7:;-‘2—":’-“ - ’
r y ‘NS ;-'_a.b SOLUTION Rewrite the expression for f(x) as follows:
. by rl;g-‘ ;\9 . > lx) X % Remember V' =|x|.
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P ot Ve A LW € o,
A o8 N0~ 3y Qge sgn x ' X \ x>0
)V < ..; ‘\ SENX = = = \ .
{ MJ' < }:&- = —————‘-. where sg \\\ -1 Hx<\
*z ' o X | 4 -3
- ; - 7 o g’ ,.." X
X7\ %\ Xt A

AR Thef r vl o+ (ll?) approaches | as x approaches eo or —eo, 50 f(x) must hav
the same limits as x — %o as does sgn (x). Therefore (see Figure 7),
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h*lm]ucommmummwmtpwm of its domain if its graph

80 DIt in it at the point (¢, f{c)); in other words, if you can draw the graph
rougl uﬂmmgyoutpcnﬁmnlhcpapﬂ Consider Figure 10
In (a), 1 continuous at ¢. In (b), fis discontinuous at ¢ because him_ _ fix) #

_In (¢). / is discontinuous at ¢ because lim, . fix) does not exist In both

i’i’é@uwam.m.‘x =c.

@ ’T ) 1
| e | /"\
. | .
Bl —
e
Figure 10

% (a) fis contineoss 3t ¢
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