بكوريات وجامعات سوريا

القناة الرئيسية: <u>t.me/baca11111</u>

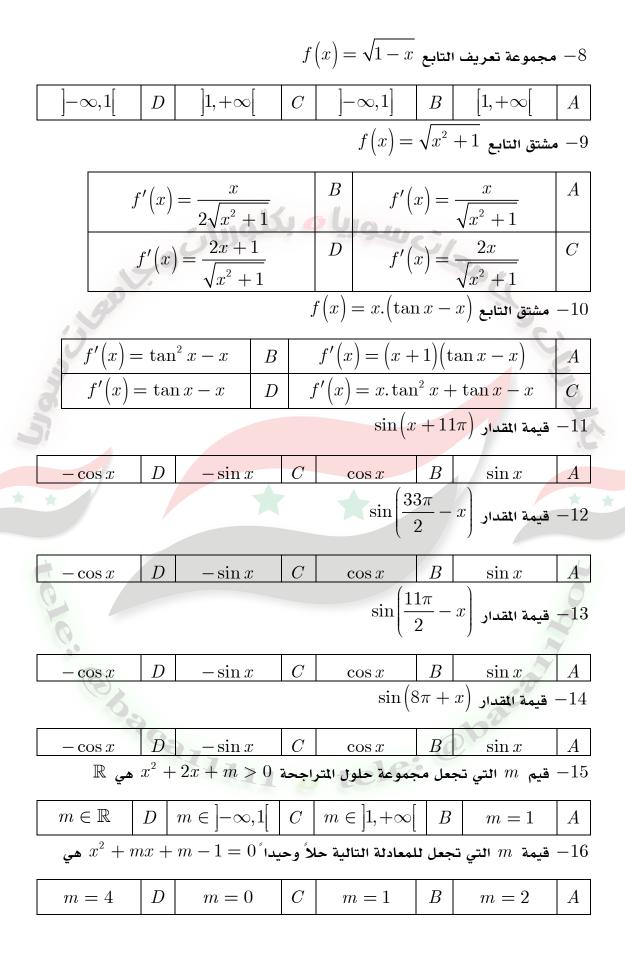
يون ملفان العلمي: t.me/baca11bot

t.me/baca1bot : لأدبي:

الرياضيات إعداد المدرس: أحمد عرابي الأحمد نموذج امتحان السبر الثالث الثانوي العلمى أولاً: اختر الإجابة الصحيحة فيما يأتي: على استقامة واحدة $C\left(-2,a
ight)$ ، $B\left(3,4
ight)$ ، $A\left(1,6
ight)$ على استقامة واحدة -1ally o ling a = -12شعاع التوجيه للمستقيم y=2x+3 هو -2u(2,-1)Big(-1,4ig) ، Aig(2,2ig) حيث ABig] حيث القطعة المستقيمة -3I(1,6)I(-3,2) $C\left(6,-3
ight)$ ، $B\left(3,5
ight)$ ، $A\left(0,1
ight)$ حيث ABC عداثيات مركز ثقل المثلث -4G(1,2)G(3,1)G(3,3)A $G\left[\frac{3}{2},2\right]$ Aig(0,0ig) في النقطة البياني للتابع $fig(xig)=x^2+3x$ في النقطة -5m = -1m = 5m = 0m = 3يطلق راميان على هدف ، احتمال أن يصيب الأول $rac{3}{5}$ ، واحتمال أن يصيب الثاني $rac{3}{4}$ ، فإن احتمال أن يصيب الراميان معاً يساوي 0.09 C0.6 $f\left(x
ight)=rac{x}{r^2+9}$ مجموعة تعريف التابع -7

C

 $\setminus \{9\}$


 $\setminus \{-3,3\}$

A

 $\mathbb{R} \setminus \{0\}$

 \mathbb{R}

D

				$\mathbb{R}\setminus$	$\{0\}$	تابع متزاید علی	-17
$m = \sqrt{x}$	D	$f(x) = x^2$	C	$f\left(x\right) = \frac{1}{x}$	B	$f(x) = -\frac{1}{x}$	A
			y	$= -\frac{1}{2}x + 1$	لستقيم	مستقيم يعامد الم	-18
	2x	+1 B		y = - $y = y = -$	-2x -	+1	A
	= -						C
400	g	\circ $f(x)$ فإن $g($	x) =	$=\frac{1}{x^2-1}$, $f(x)$	(x) = c	$\sqrt{x+1}$ إذا كان	-19
$\frac{1}{\sqrt{x}}$	D	$\frac{1}{x}$	C	\sqrt{x}	В	x	A
3				x -	$3 \leq$	5 حل المتراجحة	-19
$\left[-8,-2\right]$	D	[2,8]	C	[-2,8]	B	[-8,2]	A
			_	$-1 \le -5x + 4$	$4 \le 1$	4 حل المتراجحة	-20
[-2,1]	D	[-2,-1]	C	[1,2]	B	$\left[-1,2\right]$	A
+	يي	تساو $ x + x+1 $	1 +	x-2 إن قيمة	≥ 0 ف	$\leq x \leq 2$ إذا كان	-21
\bigcirc -1	D	3x + 3	C	x+3	B	-3x - 3	A
O.				تساوي	$\frac{4!-}{2!}$		-22
6	D	$\frac{1}{2}$	C	15	В	9	A
AC فإن $ an$	B =	$=\sqrt{2}$, $AB=\sqrt{2}$	$\sqrt{8}$	قائماً في A ، فيد $oldsymbol{1}$	مثلثاً		-23 يسا <i>وي</i>
$3\sqrt{2}$	D	$\frac{1}{2}$	C	2	В	4	A

	A(3,	2 ight) ويمر بالنقطة	\overrightarrow{u} (3	(,2) عاع توجیهه	لذي ش	معادلة المستقيم ا	-24
2x -	- 3 <i>y</i> :	=0 B		3x + 3	2y =	13	A
3x -	- 2 <i>y</i> :	=5 D		2x + 3	3y =	12	C
					فإن	a>3 إذا كان	-25
$a^2 > 9$	D	$a^2 \le a$	C	$a^2 < 9$	B	$\frac{1}{a} > \frac{1}{3}$	A
	J G	رواران	f	$(x) = \sqrt{x^2 + x^2}$	ابع 9	مجموعة قيم الت	-26
\mathbb{R}	D	$[3,+\infty[$	C	$[0,+\infty[$	B	$[9,+\infty[$	A
وحدها $q=$	$\sqrt{3}$ (ندسية التي أساسه	ية اله	الأولى من المتتاا	العشرة	مجموع الحدود	-27
						_	
3				ي	، يساو:	$u_0 = 1 - \sqrt{3}$	الأول
-59047	D	242	C	·	، يساو: B		الأول A
-59047	D	242	C	$-\frac{242}{1-\sqrt{3}}$			0
		242أساسها $r=3$ فإ		$-\frac{242}{1-\sqrt{3}}$	В	-242	A
	رن و ₉	أساسها $r=3$ فإ	, u ₀	$-\frac{242}{1-\sqrt{3}}$ $=4$ سابية فيها	В	-242	A
يساوي 4 + 3n	$u_{_9}$ ن D	أساسها $r=3$ فإ	C	$-\frac{242}{1-\sqrt{3}}$ $=4$ سابية فيها	B اللية ح B	-242 إذا كانت u_n متت 40	-28 A
يساوي 4 + 3n	$u_{_9}$ ن D	أساسها $r=3$ فإ $4 imes3^9$ $u_3=72$ فإن الأ $u_3=72$	$egin{array}{c} oldsymbol{u}_0 & oldsymbol{u}_0 & oldsymbol{C} & oldsymb$	$-\frac{242}{1-\sqrt{3}}$ $= 4$ $= 41$ $= 9$ ندسیة فیها 9	الية ح B الية هنا	-242 إذا كانت u_n متا 40 إذا كانت u_n متا 21	-28 -29 -29
یساوي $4+3n$ یساوي	رن و ساس الس	أساسها $r=3$ فإ $4 imes3^9$ $u_3=72$ فإن الأ $u_3=72$	$egin{array}{c} oldsymbol{u}_0 & oldsymbol{u}_0 & oldsymbol{C} & oldsymb$	$-\frac{242}{1-\sqrt{3}}$ $= 4$ $= 41$ $= 9$ درسیة فیها	الية ح B الية هنا	-242 إذا كانت u_n متا 40 إذا كانت u_n متا 21	-28 -29 -29
یساوي $4+3n$ یساوي	رن و ساس الس	أساسها $r=3$ فإ $4 imes3^9$ فإن الأ $u_3=72$ $=72$	$egin{array}{c} oldsymbol{u}_0 & oldsymbol{u}_0 & oldsymbol{C} & oldsymb$	$-\frac{242}{1-\sqrt{3}}$ $=4$ سابية فيها 41 $=9$ درسية فيها 9 $-8+16$	الية ح B الية هنا	-242 إذا كانت u_n متا 40 إذا كانت u_n متا 21	-28 -29 -29

نسحب کرتین معاً من صندوق یحوي 5 کرات بیضاء، و 3 کرات خضراء، وکرتین -31زرقاوين، فإن احتمال الحصول على كرتين من لونين مختلفين يساوي

$\frac{1}{4}$	D	$\frac{31}{45}$ 11	C_{-}	t=1e	В	$\frac{31}{90}$	A
4		45		3		90	

نسحب بطاقتين على التتالي دون إعادة من صندوق يحوي تسع بطاقات مرقمة -32 بالأرقام

1, 3, 3, 7, 8, 8, 9, 9, 9

فإن احتمال الحصول على بطاقتين مجموعهما عشرة ، يساوي

$\frac{5}{36}$	D	$\frac{3}{72}$	C	$\frac{2}{72}$	B	$\frac{5}{72}$	\overline{A}
		كيلها من الأرقام	کن تش	ثلاث منازل ويما	نة من	عدد الأعداد المكو	-33

3, 4, 6, 7, 8

120	D	10	C	60	B	125	A

عدد الأعداد المختلفة الأرقام المكونة من ثلاث منازل ويمكن تشكيلها من الأرقام -34

3, 4, 6, 7, 8

120 D 10 C 60 B 125 A

عدد الأعداد المختلفة الأرقام المكونة من خمس منازل مختلفة ويمكن تشكيلها من الأرقام

3, 4, 6, 7, 8

120	D	10	C	60	B	125	A
-----	---	----	---	----	---	-----	---

عدد الإمكانيات عند اختيار ثلاث أرقام معاً من هذه الأرقام الخمسة -36

3, 4, 6, 7, 8

120	D	10	C	60	B	125	A
194							

 $\left]0,+\infty
ight[$ أحد الثوابع متزايد تماماً على المجال -37

$f\left(x\right) = \frac{1}{x} + 2$	B	$f(x) = -2x^2$	A
$f(x) = x^2 + 3x + 1$	D	f(x) = 2 - x	C

 $\overline{88}$ نرمي ثلاث قطع نقدية معاً، احتمال الحصول على وجوه متماثلة في القطع الثلاثة يساوي

$\frac{1}{6}$ D	$\frac{1}{8}$	C $\frac{1}{4}$	В	$\frac{1}{2}$	A
-------------------	---------------	-------------------	---	---------------	---

ثانياً: حل المسائل الآتية:

المسألة الأولى:

$$Cig(3,3ig)$$
 ، $Big(2,0ig)$ ، $Aig(0,2ig)$ لتكن النقاط

$$\overrightarrow{BC}$$
 ، \overrightarrow{AC} ، \overrightarrow{AB} أوجد مركبات الأشعة -1

استنتج أن النقاط السابقة تشكل رؤوس مثلث. -2

المسألة الثانية: -3 من الأشعة السابقة واستنتج أن المثلث متساوي الساقين. -3

$$d: 2x+5y=7$$
 لتكن النقطة $A\left(3,-2
ight)$ ، والشعاع $u\left(2,5
ight)$

 $\stackrel{
ightarrow}{.}\stackrel{
ightarrow}{u}$ أن الذي يمر بالنقطة A وشعاع توجيهه الدي يمر أوجد معادلة المستقيم

عين ميل كل من المستقيمين ℓ و d ثم استنتج أنهما متعامدان. -2

المسألة الثالثة:

$$C$$
 خطه البياني $fig(xig)=x^3-5x$ ليكن التابع

f عين مجموعة تعريف التابع -1

x=3 أوجد f'ig(xig) ثم اكتب معادلة المماس للخط البياني C في نقطة فاصلتها -2 المسألة الرابعة:

$$g\left(x
ight)=rac{11x^{2}-9}{x^{2}+1}$$
 ، $f\left(x
ight)=x^{2}+1$ ليكن التابعان

 $\, . \, g \,$ عين مجموعة تعريف التابع $\, f \,$ و $\, -1 \,$

 $f.g\left(x
ight)$ عين مجموعة تعريف f.g ثم أوجد -2

f(x) = g(x) أوجد حلول المعادلة أ

المسألة الخامسة:

$$f(x) = x + \sin x$$
 ليكن التابعان

.
$$f\left(\frac{\pi}{2}\right)$$
 ، $f\left(2\pi\right)$ ، $f\left(\pi\right)$ عين -1

.
$$f'(x)$$
 عين -2

$$f(x) = x^2 + 7$$
 عين $f(x)$ نيد $f(x)$ عين $f(x)$ عين

$$f(x) = x^2 + 7x - 8$$
 ليكن التابعان

$$f'\left(x\right)$$
 . أوجد

$$f\left(x
ight)=0$$
 حل المعادلة -2

$$f(x) \leq 0$$
 حل المتراجحة -3

المسألة السابعة:

لیکن التابع $f\left(x
ight)$ ، عین قاعدہ $f\left(x
ight)$ بأبسط ما یمکن في کل من الحالات الآتية:

.
$$x\in \left[0,1
ight]$$
 إذا كان -1

.
$$x\in [1,+\infty[$$
 پذا کان -2

.
$$x\in\left]-\infty,0
ight]$$
 يذا كان -3

المسألة الثامنة:

$$f(x) = \frac{2x^2 + 1}{(x-1)^2}$$
 ليكن التابع

$$\lim_{x\to 1} f(x)$$
 ، $\lim_{x\to -\infty} f(x)$ ، $\lim_{x\to +\infty} f(x)$ ، $\lim_{x\to +\infty} f(x)$ أوجد

x=0 اكتب معادلة المماس للخط البياني في نقطة فاصلتها -2

المسألة التاسعة:

$$u_{_n}=8n+3$$
 لتكن المتتالية

أثبت أن $u_{\scriptscriptstyle n}$ حسابية وعين أساسها.

$$s = u_{_7} + u_{_8} + \ldots + u_{_{63}}$$
 احسب المجموع – 2

المسألة العاشرة:

$$u_{_{9}}=16$$
 , $u_{_{5}}=1$ نتكن $u_{_{n}}$ متتائية هندسية

احسب الأساس. -1

$$n$$
 بدلالة u_n احسب -2

$$s_{\scriptscriptstyle n} = u_{\scriptscriptstyle 0} + u_{\scriptscriptstyle 1} + \ldots + u_{\scriptscriptstyle n-1}$$
 احسب المجموع –3

المسألة الحادية عشر:

نسحب کرتین معاً من صندوق یحوي 8 کرات خضراء، و 3 کرات بیضاء

- احسب احتمال الحصول على كرتين من نفس اللون. -1
- استنتج احتمال الحصول على كرتين مختلفتين بالألوان. -2
- أعد السؤالين السابقين في حال كان السحب على التتالي مع الإعادة. -3

$$Pig(A\cap Big)=rac{1}{35}$$
 ، $Pig(Big)=rac{3}{5}$ ، $Pig(Aig)=rac{1}{7}$ المسألة الثانية عشر: إذا كان $Pig(A'\cap B'ig)$ ، $Pig(A'ig)=rac{3}{5}$ ، $Pig(Aig)=rac{1}{7}$ احسب $Pig(A\cup Big)$

إعداد المدرس: أحمد عرابي الأحمد

حن نموذج امتحان السبر الرياضيات الثالث الثانوي العلمي

أولاً: اختر الإجابة الصحيحة فيما يأتي:

على استقامة واحدة $C\left(-2,a
ight)$ ، $B\left(3,4
ight)$ ، $A\left(1,6
ight)$ على استقامة واحدة a . قيمة a . في:

a = -12	D $a=9$	C	a = 10	B a	$=\frac{3}{2}$	A
---------	---------	---	--------	-------	----------------	---

تمهید:

 $\overrightarrow{AB},\overrightarrow{AC}$ کل \overrightarrow{AC} کل $\overrightarrow{AB},\overrightarrow{AC}$ کل \overrightarrow{AB} کل \overrightarrow{AB} کل \overrightarrow{AB} کل \overrightarrow{AB} کل \overrightarrow{AB} کلو من الشعاعین کلوثر وفق العلاقة العلاقة

ثم نثبت الارتباط الخطي بين الشعاعين $\overline{AC}ig(x',y'ig)$ ، $\overline{AB}ig(x,yig)$ عن طريق العلاقة

$$\frac{x}{x'} = \frac{y}{y'}$$

الحل:

$$\overrightarrow{AB}(2,-2)$$

$$\overrightarrow{AC}(-5,a-4)$$

AB,AC على استقامة واحدة يجب أن يكون الشعاعان A,B,C على استقامة واحدة يجب مرتبطين خطياً أي أن

$$\frac{2}{-5} = \frac{-2}{a-4}$$

$$2(a-4) = 10$$

$$a-4 = 5$$

$$a = 9$$

C والخيار الصحيح هو

شعاع التوجيه للمستقيم $y=2x+3$ هو -2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
تمهید :
$\stackrel{ ightarrow}{u}(b,\!-\!a)$ هو $ax+by=c$ هو التوجيه للمستقيم
الحل:
المعادلة تكتب بالشكل $x+y=3$ وبالتالي شعاع التوجيه $uig(1,2ig)$ والخيار الصحيح هو
B
Big(-1,4ig) ، $Aig(2,2ig)$ حيث AB حيث القطعة المستقيمة -3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
تمهید:
$Iigg(rac{x_A+x_B}{2},rac{y_A+y_B}{2}igg)$ منتصف القطعة المستقيمة $ABigg]$ يعطى بالعلاقة
: ।
$I\left(\frac{-1+2}{2}, \frac{2+4}{2}\right) = I\left(\frac{1}{2}, 3\right)$
A والخيار الصحيح هو
$C\left(6,-3 ight)$ ، $B\left(3,5 ight)$ ، $A\left(0,1 ight)$ حيث ABC عيث -4
$G\left(1,2 ight) egin{array}{ c c c c c c c c c c c c c c c c c c c$
تمهید:
مركز ثقل المثلث ABC يعطى بالعلاقة
$Gigg(rac{x_{\scriptscriptstyle A}+x_{\scriptscriptstyle B}+x_{\scriptscriptstyle C}}{3},rac{y_{\scriptscriptstyle A}+y_{\scriptscriptstyle B}+y_{\scriptscriptstyle C}}{3}igg)$

$$G\left(\frac{0+3+6}{3}, \frac{1+5-3}{3}\right) = G\left(\frac{9}{3}, \frac{3}{3}\right) = G\left(3, 1\right)$$

B والخيار الصحيح هو

Aig(0,0ig) في النقطة $fig(xig)=x^2+3x$ ميل المماس للخط البياني للتابع -5

m=3 D m=-1 C m=5 B m=0 A

تمصد:

 $m=f'ig(x_Aig)$ هو x_A هاصلتها A هيل المماس للخط البياني للتابع f هي نقطة A فاصلتها المحل:

$$f'(x) = 2x + 3$$
$$m = f'(0) = 3$$

D والخيار الصحيح هو

 $\frac{3}{4}$ يطلق راميان على هدف ، احتمال أن يصيب الأول $\frac{5}{5}$ ، واحتمال أن يصيب الثاني -6 فإن احتمال أن يصيب الراميان معاً يساوي

0.6 D	0.9	C 0.0	9 B	0.45	A
-------	-----	-------	-----	------	---

تمهید:

احتمال وقوع حدثين معاً $P(A\cap B)=P(A) imes P(B)$ في حال كان الحدثان مستقلين(أي وقوع أحدهما لا يؤثر على وقوع الأخر).

الحل:

الاحتمال المطلوب يساوي

$$\frac{3}{5} \times \frac{3}{4} = \frac{9}{20} = \frac{45}{100} = 0.45$$

A والخيار الصحيح هو

$f(x) = \frac{x}{x^2 + 9}$ مجموعة تعريف التابع -7

 $\{0\}$ ${9}$ -3,3DCB \mathbb{R}

تمهید:

مجموعة تعريف التابع المسري باستثناء جذور المقام (القيم التي تعدم المقام). \mathbb{R} مجموعة تعريف التابع الكسري الصحيح(الذي بسطه ومقامه تابعان صحيحان) هي

جذور المقام هي حلول المعادلة

$$x^2 + 9 = 0$$

D وهذه المعادلة مستحيلة، ولذلك مجموعة التعريف هي $\mathbb R$ والخيار الصحيح هو

 $f(x) = \sqrt{1-x}$ مجموعة تعريف التابع -8

 $]1,+\infty$ $\infty, 1$ $-\infty,1$ $|1,+\infty|$ D

مجموعة تعريف التابع الجذري (الذي بداخله تابع صحيح) هو القيم التي تجعل ما داخل الجذر أكبر أو يساوي الصفر.

الحل:

التابع معرف عندما

$$1 - x \ge 0$$

$$1 \ge x$$

$$x \le 1$$

$$x \in \left] -\infty, 1\right]$$

bacall

B والخيار الصحيح هو

$$f\left(x
ight)=\sqrt{x^2+1}$$
 مشتق التابع -9

$f'(x) = \frac{x}{2\sqrt{x^2 + 1}}$	В	$f'(x) = \frac{x}{\sqrt{x^2 + 1}}$	A
$f'(x) = \frac{2x+1}{\sqrt{x^2+1}}$	D	$f'(x) = \frac{2x}{\sqrt{x^2 + 1}}$	C

تمهيد:

مشتق التابع الجذري يساوي مشتق ما داخل الجذر على ضعفي الجذر.

الحل:

$$f'(x) = \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}$$

A والخيار الصحيح هو

$$fig(xig) = x.ig(an x - xig)$$
 مشتق التابع -10

$f'(x) = \tan^2 x - x$	B	$f'(x) = (x+1)(\tan x - x)$	\overline{A}	
$f'(x) = \tan x - x$	D	$f'(x) = x \cdot \tan^2 x + \tan x - x$	C	

تمهيد

$$\left(\tan x\right)'=\tan^2x+1$$
 مشتق التابع

$$ig(uvig)'=u'v+uv'$$
 مشتق ضرب تابعین هو

الحل:

$$f'(x) = 1.(\tan x - x) + x.(\tan^2 x + 1 - 1)$$

= $\tan x - x + x.\tan^2 x$

C والخيار الصحيح هو

$\sinig(x+11\piig)$ قيمة المقدار -11

$-\cos x$	D	$-\sin x$	C	$\cos x$	B	$\sin x$	A

تمهید:

- يمكن حذف أو إضافة مضاعفات 2π من داخل النسبة المثلثية lack
- دساتير الإرجاع إلى الربع الأول: تعتمد دساتير الإرجاع على ثلاث أمور: أولاً: نحدد أين تقع الزاوية كما يلي:

$$2\pi+x$$
 ، $\dfrac{\pi}{2}-x$: في الربع الأول

$$\pi-x$$
 ، $\dfrac{\pi}{2}+x$: في الربع الثاني:

$$\frac{3\pi}{2}-x$$
 ، $\pi+x$ في الربع الثالث:

$$(-x$$
 في الربع الرابع: $x + x$ (وهي تماثل $x - x$) في الربع الرابع: $(-x)^2$

ثانياً: تحديد إشارة النسبة كما يلى:

- ١. في الربع الأول: كل النسب موجبة
- د. في الربع الثاني: الـ sin موجب لكن cos, tan سالبان
- قي الربع الثالث: الـ tan موجب لكن cos, sin سالبان
- البان \sin, \tan موجب لكن \sin, \tan سالبان عن الربع الرابع: الـ

ثالثاً: تحديد هل تنقلب النسبة أم تبقى على حالها:

- \cot إلى \cot وبالعكس، ومن \tan إلى \cot وبالعكس، ومن \tan إلى (١ وبالعكس.
 - وبالعكس. 2π ، π (٢) وبالعكس

الحل:

$$\sin(x+11\pi) = \sin(x+\pi) = -\sin x$$

C والخيار الصحيح هو

				$\sin\left(\frac{33}{3}\right)$	$\frac{3\pi}{2} - z$	xمة المقدار	—12 قي
				(/	
$-\cos x$	D	$-\sin x$	C	$\cos x$	B	$\sin x$	A
							الحل:
	_0	$\sin\left(\frac{33\pi}{2} - x\right)$,= si	$n\left(\frac{\pi}{2} - x\right) = 0$	$\cos x$	لصحيح هو	والخيار ا
	<i>.</i>						
				$\sin\left(\frac{1}{2}\right)$	$\frac{1\pi}{2}$ – π	$\left(\frac{x}{x} \right)$ مة المقدار	13 قي
$-\cos x$	D	$-\sin x$	C	$\cos x$	B	$\sin x$	A
3							الحل:
5	si	$ \ln\left(\frac{11\pi}{2} - x\right) = $	sin	$\left(\frac{3\pi}{2} - x\right) = -$	$-\cos x$		15
*					D	لصحيح هو	والخيار ا
				$\sin(8$	$8\pi + a$	بمة المقدار (14 قب
$-\cos x$	D	$-\sin x$	C	$\cos x$	В	$\sin x$	A
ė.		$\sin(8\pi)$	$\pi + i$	$x\big) = \sin x$			الحل:
8					A	لصحيح هو	والخيار ا
$\mathbb R$ هي	x^2 +	2x + m > 0	إجحة	بموعة حلول المتر	جعل مح	م m التي ت	—15 قي
$m \in \mathbb{R}$	D	$m \in]-\infty,1[$	C	$m \in \left]1, +\infty\right[$	B	m = 1	A

تمهید:

دراسة إشارة كثير الحدود من الدرجة الثانية
$$ax^2+bx+c$$
 حسب إشارة $\Delta=b^2-4ac$

عندما يكون $\Delta>0$ يكون جدول الإشارة كما يلي عندما يكون $\Delta>0$ عندما المختلفان)

x	$-\infty$	x_1	الماوال	x_2	$+\infty$
$ax^2 + bx + c$,0	و يوافق	يخالف	يوافق 0	
	a	إشارة	a إشارة	a شارة	إ

عندما يكون $\Delta=0$ يكون جدول الإشارة كما يلي (حيث x_1 هو الجذر المضاعف) $\Delta=0$

x	$-\infty$		x_{1}		$+\infty$
$ax^2 + bx + c$		يوافق	0	يوافق	
		a إشارة		إشارة a	

عندما يكون $\Delta < 0$ يكون جدول الإشارة كما يلي Δ

x	$-\infty$ $+\infty$
$ax^2 + bx + c$	يوافق
	إشارة a

الحل:

تكون مجموعة حلول المتراجحة هي \mathbb{R} عندما يكون $\Delta < 0$ لأن إشارة كثير الحدود عندها ستكون موافقة لإشارة أمثال x^2 الموجبة

$$\Delta = 4 - 4m$$

$$4 - 4m < 0$$

$$4 < 4m$$

$$4m > 4$$

$$m > 1$$

$$m \in]1, +\infty[$$

B والخيار الصحيح هو

قيمة m التي تجعل للمعادلة التالية حلاً وحيداً m=1 قيمة m قيمة -16

m=4 D m=0 C m=1 B m=2 A

تمهيد:

 $\Delta = b^2 - 4ac$ حسب إشارة $ax^2 + bx + c = 0$ حسب المادلة من الدرجة الثانية

عندما یکون $\Delta>0$ یکون للمعادلة جذران مختلفان هما

$$x_{_{2}}=\frac{-b-\sqrt{\Delta}}{2a}$$
 , $x_{_{1}}=\frac{-b+\sqrt{\Delta}}{2a}$

عندما يكون $\Delta=0$ يكون للمعادلة جذر مضاعف هو

$$x_1 = x_2 = \frac{-b}{2a}$$

عندما یکون $\Delta < 0$ تکون المعادلة مستحیلة(لا حلول لها)

الحل:

 $\Delta=0$ يكون للمعادلة حل وحيد عندما يكون

$$\Delta = m^{2} - 4(m-1)$$

$$\Delta = m^{2} - 4m + 4$$

$$\Delta = (m-2)^{2}$$

$$(m-2)^{2} = 0$$

$$m-2 = 0$$

$$m = 2$$

A والخيار الصحيح هو

 $\mathbb{R} \setminus ig\{0ig\}$ تابع متزاید علی -17

 $m = \sqrt{x}$ D $f(x) = x^2$ C $f(x) = \frac{1}{x}$ B $f(x) = -\frac{1}{x}$ A

تمهيد:

f'(x) دراسة إطراد التابع f حسب إشارة المشتق

- I عندما f عندما $x\in I$ عندما على التابع متزايد تماماً على ا
- I وإذا كان f'(x) < 0 عندما $f \in X$ فإن التابع ومتناقص تماماً على الحا

الحل:

$$\left(-\frac{1}{x}\right)' = \frac{1}{x^2} > 0 : x \in \mathbb{R} \setminus \left\{0\right\}$$

A والخيار الصحيح هو

 $y=-rac{1}{2}x+1$ مستقیم یعامد المستقیم مستقیم م

y = 2x + 1	B	y = -2x + 1	A
y = -x	D	y = x + 1	C

تمهید:

-1 شرط تعامد المستقيمين أن يكون جداء ميليهما يساوي

$$m_1 \times m_2 = -1$$

لحل:

$$2\left(-\frac{1}{2}\right) = -1$$

B والخيار الصحيح هو

$$g\circ f\left(x
ight)$$
 فإن $g\left(x
ight)=rac{1}{x^{2}-1}$ ، $f\left(x
ight)=\sqrt{x+1}$ إذا كان $g\left(x
ight)=19$

1	D	$\frac{1}{x}$	C	\sqrt{x}	В	x	A
$\mathbf{v}x$		J					

$$g \circ f(x) = g[f(x)] = g(\sqrt{x+1}) = \frac{1}{(\sqrt{x+1})^2 - 1} = \frac{1}{x+1-1} = \frac{1}{x}$$

C والخيار الصحيح هو

	x-3	≤ 5	المتراجحة	-19 حل
--	-----	----------	-----------	--------

 $\begin{bmatrix} -8,-2 \end{bmatrix}$ D $\begin{bmatrix} 2,8 \end{bmatrix}$ C $\begin{bmatrix} -2,8 \end{bmatrix}$ B $\begin{bmatrix} -8,2 \end{bmatrix}$ A

تمهيد:

 $\left| c-r,c+r
ight|$ هو المجال $\left| x-c
ight| \leq r$ حل المتراجحة

الحل:

حل المتراجحة هو المجال

$$[c-r, c+r] = [3-5, 3+5] = [-2, 8]$$

B والخيار الصحيح هو

$$-1 \le -5x + 4 \le 14$$
 حل المتراجحة -20

	C	[1,2]	B	[-1,2]	A
--	---	-------	---	--------	---

تمهید:

أولاً: خواص المتراجحات:

- يمكن إضافة أو طرح أي عدد من أطراف المتراجحة.
- عند الضرب أو القسمة على عدد موجب تبقى إشارات المتراجحة على حالها.
- عند الضرب أو القسمة على عدد سالب تنقلب إشارات المتراجحة من \geq إلى \leq وبالعكس، ومن > إلى < وبالعكس.

 $a \le x \le b$ هو المجال المتراجحة $a \le x \le b$ هي ثانياً : حل

4 نطرح من الأطراف

$$-5 \le -5x \le 10$$

$$\frac{-5}{-5} \ge x \ge \frac{10}{-5}$$

$$1 \ge x \ge -2$$

$$-2 \le x \le 1$$
 والخيار الصحيح هو D

يذا كان
$$x \leq 2 \leq x \leq 0$$
 فإن قيمة $\left|x + \left|x + 1\right| + \left|x - 2\right|$ تساوي -21

17.	D	2m+2	~	m + 2	D	2 2 4
-1	D	3 x + 3	\dot{C}	x + 3	В	-3x-3 A

$$|y| = \begin{cases} y : y \ge 0 \\ -y : y \le 0 \end{cases}$$

الحل:

4 نطرح من الأطراف

$$|x| + |x+1| + |x-2| = x + x + 1 - x + 2 = x + 3$$

B والخيار الصحيح هو

يمة المقدار $\dfrac{4!\!-3!}{2!}$ تساوي -22

	23		(4). Y	
6	D $\frac{1}{2}$ 11	C	15 B	9	A

تمهید:

$$n! = n(n-1)(n-2)... \times 2 \times 1$$

$$\frac{4!-3!}{2!} = \frac{24-6}{2} = \frac{18}{2} = 9$$

A والخيار الصحيح هو

 $A\,C$ اِذَا كَان $A\,B=\sqrt{2}$ ، $AB=\sqrt{8}$ ، فيه $A\,B$ ، فيه $A\,B$ مثلثاً قائماً في $A\,B$ مثلثاً قائماً في يساوي

$3\sqrt{2}$ D	$\frac{1}{2}$	C	2	B	4	A

الحل:

$$\tan B = \frac{AC}{AB}$$

$$\sqrt{2} = \frac{AC}{\sqrt{8}}$$

$$AC = \sqrt{8} \times \sqrt{2}$$

$$AC = \sqrt{16} = 4$$

A والخيار الصحيح هو

Aig(3,2ig) معادلة المستقيم الذي شعاع توجيهه uig(3,2ig) ويمر بالنقطة -24

	2x - 3y = 0	В	3x + 2y = 13	A	A
00	3x - 2y = 5	D	2x + 3y = 12	7 7	C

الحل:

$$(-b, a) = (3, 2)$$
$$a = 2, b = -3$$

معادلة المستقيم من الشكل

$$ax + by = c$$

$$2x - 3y = c$$

Aig(3,2ig) نعوض إحداثيات النقطة

$$2 \times 3 - 3 \times 2 = c$$
$$c = 6 - 6 = 0$$

معادلة المستقيم

$$2x - 3y = 0$$

B والخيار الصحيح هو

				فإن	a>3 إذا كان	-25
$a^2 > 9$ D	$a^2 \le a$	C	$a^2 < 9$	B	$\frac{1}{a} > \frac{1}{3}$	A

تمهيد:

بعض خواص المتراجحات:

- ا إذا كانت الأطراف موجبة يمكن تربيع الأطراف أو جذر الأطراف.
- إذا كانت الأطراف سالبة وربعنا الأطراف تنقلب إشارة المتراجحة.
- إذا كانت الأطراف موجبة وأخذنا مقلوب الأطراف تنقلب إشارة المتراجحة.
- إذا كانت الأطراف سالبة وأخذنا مقلوب الأطراف تنقلب إشارة المتراجحة.
 - كل عدد من المجال $\left[0,1
 ight]$ أكبر أو يساوي مربعه.
 - کل عدد من المجال $[1,+\infty[$ أصغر أو يساوي مربعه.

الحل:

$$a^2 > 9$$

D والخيار الصحيح هو

		f(x) =	$= \sqrt{x^2 + 9}$	التابع	مجموعة قيم	-26
\mathbb{R}	D $[3,+\infty[$	C 0	$,+\infty$	B	$[9,+\infty[$	A

$$x \in \mathbb{R}$$

$$x^{2} \ge 0$$

$$x^{2} + 9 \ge 9$$

$$\sqrt{x^{2} + 9} \ge 3$$

$$f(x) \ge 3$$

$$f(x) \in [3, +\infty[$$

C والخيار الصحيح هو

وحدها $q=\sqrt{3}$ مجموع الحدود العشرة الأولى من المتتالية الهندسية التي أساسها $q=\sqrt{3}$ وحدها الأول $u_0=1-\sqrt{3}$ ، يساوي

-59047	D	242	C		В	-242	A
)i				$1-\sqrt{3}$			

نمهید:

 $u_{\scriptscriptstyle 0}$ مجموع الحدود الأولى التي عددها n من المتتالية الهندسية التي أساسها

$$s_n = u_0 \frac{1 - q^n}{1 - q}$$

لحل:

$$\begin{split} s &= u_0 \frac{1 - q^{10}}{1 - q} = \left(1 - \sqrt{3}\right) \frac{1 - \left(\sqrt{3}\right)^{10}}{1 - \sqrt{3}} = \\ &= 1 - \left[\left(\sqrt{3}\right)^2\right]^5 = 1 - 3^5 = 1 - 243 = -242 \end{split}$$

A والخيار الصحيح هو

يساوي $u_{\scriptscriptstyle 0}$ يساوي r=3 إذا كانت $u_{\scriptscriptstyle n}$ متتائية حسابية فيها $u_{\scriptscriptstyle 0}=4$ أساسها و

г								
	4 + 3n	D	$4 imes3^{9}$	C	41	B	40	A

تمهید:

$$u_{\scriptscriptstyle m}=u_{\scriptscriptstyle p}+ig(m-pig)r$$
 كل متتالية حسابية تحقق العلاقة

الحل:

$$u_9 = u_0 + 9r = 4 + 9 \times 3 = 4 + 27 = 31$$

والخيار الصحيح هو B والخيار الصحيح هو والخيار الصحيح هو

يساوي يساوي $u_{_{3}}=72$ ، $u_{_{0}}=9$ إذا كانت $u_{_{n}}$ متتاثية هندسية فيها -29

2	D 8	C 9	B	21	A

تمهید:

 $u_{\scriptscriptstyle m}=u_{\scriptscriptstyle p} imes r^{\scriptscriptstyle m-p}$ كل متتالية هندسية تحقق العلاقة

الحل:

$$u_{\scriptscriptstyle 3} = u_{\scriptscriptstyle 0} \times r^{\scriptscriptstyle 3} \Rightarrow 72 = 9 \times r^{\scriptscriptstyle 3} \Rightarrow r^{\scriptscriptstyle 3} = 8 \Rightarrow r = 2$$

D والخيار الصحيح هو

$$1-2+4-8+16-...+1024$$
 قيمة المجموع -30

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{11275}{2}$	B 683 A
--	-------------------	---------

الحل:

هذا مجموع متتالية هندسية أساسها -2 وحد الأول 1 وعددها 11 لأن

$$1024 = 2^{10}$$

$$s = \frac{1 - \left(-2\right)^{11}}{1 - \left(-2\right)} = \frac{1 - \left(-2048\right)}{3} = \frac{1 + 2048}{3} = \frac{2049}{3} = 683$$

A والخيار الصحيح هو

نسحب كرتين معاً من صندوق يحوي 5 كرات بيضاء، و 6 كرات خضراء، وكرتين -31 زرقاوين، فإن احتمال الحصول على كرتين من لونين مختلفين يساوي

1	D	31	C	1	В	31	A
$\frac{\overline{4}}{4}$		$\overline{45}$		$\overline{3}$		$\overline{90}$	

الحل:

الكرتان المختلفتان بالألوان (إما بيضاء وخضراء، أو خضراء وزرقاء، أو بيضاء وزرقاء)

وبما أن السحب معاً نستخدم التوافيق (كلمة " أو " تقابل الجمع، وكلمة "و" تقابل الضرب)

$$P(A) = \frac{C(5,1)C(3,1) + C(5,1)C(2,1) + C(3,1)C(2,1)}{C(10,2)}$$
$$= \frac{5 \times 3 + 5 \times 2 + 3 \times 2}{\frac{10 \times 9}{2 \times 1}} = \frac{15 + 10 + 6}{45} = \frac{31}{45}$$

 $\frac{C}{c}$ والخيار الصحيح هو

نسحب بطاقتين على التتالي دون إعادة من صندوق يحوي تسع بطاقات مرقمة -32 بالأرقام

1, 3, 3, 7, 8, 8, 9, 9, 9

فإن احتمال الحصول على بطاقتين مجموعهما عشرة ، يساوي

14							
5	D	3	C	_2_	B	5	A
36		72		72		72	

الحل:

بما أن السحب على التتالي دون إعادة نستخدم التراتيب

البطاقتان اللتان مجموعهما عشرة إما ($\, 8\,$ و $\, 7\,$) أو ($\, 1\,$ و $\, 9\,$)

$$P(A) = \frac{P(3,1)P(1,1) + P(2,1)P(1,1)}{P(9,2)} = \frac{3+2}{9 \times 8} = \frac{5}{72}$$

A والخيار الصحيح هو

بما أنه لم يذكر شرط أن الأرقام مختلفة فإننا نستخدم الأس

 $5^3 = 125$

A والخيار الصحيح هو

عدد الأعداد المختلفة الأرقام المكونة من ثلاث منازل ويمكن تشكيلها من الأرقام -34

3, 4, 6, 7, 8

	120	D	10	C	60	B	125	A
--	-----	---	----	---	----	---	-----	---

الحل:

بما أنه ذكر شرط أن الأرقام مختلفة فإننا نستخدم التراتيب

$$P(5,3) = 5 \times 4 \times 3 = 60$$

B والخيار الصحيح هو

عدد الأعداد المختلفة الأرقام المكونة من خمس منازل مختلفة ويمكن تشكيلها من الأرقام

3, 4, 6, 7, 8

الحل:

بما أنه ذكر شرط أن الأرقام مختلفة وأخذنا الأرقام كلها فإننا نستخدم التباديل

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

D والخيار الصحيح هو

	الخمسة	ذه الأرقام ا	ام معاً من ه	بار ثلاث أرقا	، عند اختي	عدد الإمكانيات	-36
			3, 4, 6, 7	7,8			
120	D	10	C	60	В	125	A

الحل

بما أننا نأخذ الأرقام معاً دون ترتيب نستخدم التوافيق

$$C(5,3) = \frac{5 \times 4 \times 3}{3 \times 2 \times 1} = 10$$

C والخيار الصحيح هو

 $\left]0,+\infty\right[$ أحد التوابع متزايد تماماً على المجال -37

$f\left(x\right) = \frac{1}{x} + 2$	В	$f(x) = -2x^2$				
$f(x) = x^2 + 3x + 1$	D	f(x) = 2 - x	C			

الحل:

x > 0 بما أن

$$(-2x^{2})' = -6x < 0$$

$$(\frac{1}{x} + 2)' = -\frac{1}{x^{2}} < 0$$

$$(2 - x)' = -1 < 0$$

$$(x^{2} + 3x + 1)' = 2x + 3 > 0$$

D والخيار الصحيح هو

نرمي ثلاث قطع نقدية معاً، احتمال الحصول على وجوه متماثلة في القطع الثلاثة -38يساوي

1	D	1	C	1	B	1	A
6		8		4		2	

تكون الوجوه متماثلة إذا حصلنا على ثلاث كتابات أو ثلاثة شعارات

$$P(A) = \frac{2}{8} = \frac{1}{4}$$

C والخيار الصحيح هو

ثانياً: حل المسائل الآتية: حلى المسائل الآتية المسائل المسائ

المسألة الأولى:

$$C\left(3,3
ight)$$
 ، $B\left(2,0
ight)$ ، $A\left(0,2
ight)$ لتكن النقاط

.
$$\overrightarrow{BC}$$
 ، \overrightarrow{AC} ، \overrightarrow{AB} أوجد مركبات الأشعة -1

استنتج أن النقاط السابقة تشكل رؤوس مثلث. -2

الساقين. -3 احسب نظيم كل من الأشعة السابقة واستنتج أن المثلث متساوى الساقين.

الحل:

-1

$$\overrightarrow{AB}(2-0,0-2) = \overrightarrow{AB}(2,-2)$$

$$\overrightarrow{AC}(3-0,3-2) = \overrightarrow{AC}(3,1)$$

$$\overrightarrow{BC}(3-2,3-0) = \overrightarrow{BC}(1,3)$$

نلاحظ أن \overrightarrow{AC} ، \overrightarrow{AB} غير مرتبطين خطياً لأن $\frac{2}{1}$ وبالتالي النقاط تشكل -2 رؤوس مثلث

-3

$$AB = \left\| \overrightarrow{AB} \right\| = \sqrt{4+4} = \sqrt{8}$$

$$AC = \left\| \overrightarrow{AC} \right\| = \sqrt{9+1} = \sqrt{10}$$

$$BC = \left\| \overrightarrow{BC} \right\| = \sqrt{1+9} = \sqrt{10}$$

C وبما أن $A\,C=BC$ فإن المثلث متساوي الساقين رأسه

المسألة الثانية:

$$d: 2x+5y=7$$
 نتكن النقطة $A\left(3,-2
ight)$ ، والشعاع $u\left(2,5
ight)$

 $\stackrel{
ightarrow}{u}$. $\stackrel{
ightarrow}{u}$ وشعاع توجیهه ℓ الذي يمر بالنقطة A وشعاع توجیهه -1

عين ميل كل من المستقيمين ℓ و ℓ ثم استنتج أنهما متعامدان.

الحل:

$$a=5,b=-2$$
 بما أن شعاع التوجيه $\stackrel{
ightarrow}{(-b,a)}=\left(2,5
ight)$ فإن -1

المعادلة من الشكل x-2y=c وبما أن النقطة A تنتمي إلى المستقيم فإن

$$5 \times 3 - 2\left(-2\right) = c$$

$$15 + 4 = c$$

$$c = 19$$

والمعادلة على الشكل

$$\ell: 5x - 2y = 19$$

معادلة d تكتب على الشكل -2

$$5y = -2x + 7$$

$$y = -\frac{2}{5}x + \frac{7}{5}$$

$$m_{\scriptscriptstyle d}=-rac{2}{5}$$
 ومیله

معادلة ℓ تكتب على الشكل

$$5x - 2y = 19$$

 $2y = 5x - 19$
 $y = \frac{5}{2}x - \frac{19}{2}$

$$m_\ell = rac{5}{2}$$
 وميله

وجداء الميلين

$$m_d imes m_\ell = -rac{2}{5} imes rac{5}{2} = -1$$
ن.

وبالتالي المستقيمان متعامدان.

المسألة الثالثة:

$$C$$
 ليكن التابع $f\!\left(x
ight)\!=x^3-5x$ خطه البياني

f عين مجموعة تعريف التابع -1

$$x=3$$
 أوجد $f'ig(xig)$ ثم اكتب معادلة الماس للخط البياني أوجد $f'(x)$

الحل:

$${\mathbb R}$$
 بما أن f تابع صحيح فإن مجموعة تعريفه -1

-2

$$f'(x) = 3x^2 - 5$$

ميل المماس

$$m = f'(3) = 3 \times 9 - 5 = 27 - 5 = 22$$

 $f(3) = 27 - 5 \times 3 = 27 - 15 = 12$

معادلة المماس

$$y - 12 = 22(x - 3)$$

المسألة الرابعة:

$$g\left(x
ight)=rac{11x^{2}-9}{x^{2}+1}$$
 ، $f\left(x
ight)=x^{2}+1$ ليكن التابعان

 $\,\,.\,g$ عين مجموعة تعريف التابع $\,f\,$

$$f.g\left(x
ight)$$
 عين مجموعة تعريف $f.g$ ثم أوجد -2

$$f\left(x
ight)=g\left(x
ight)$$
 أوجد حلول المعادلة -3

لحل:

$$(x^2+1
eq 0$$
 کئن $D_g=\mathbb{R}$, $D_f=\mathbb{R}$ -1

$$D_{f,g} = D_f \cap D_g = \mathbb{R} \cap \mathbb{R} = \mathbb{R} -2$$

$$f.g(x) = (x^2 + 1) \times \frac{11x^2 - 9}{x^2 + 1} = 11x^2 - 9$$

-3

$$f(x) = g(x)$$

$$x^{2} + 1 = \frac{11x^{2} - 9}{x^{2} + 1}$$

$$(x^{2} + 1)(x^{2} + 1) = 11x^{2} - 9$$

$$x^{4} + 2x^{2} + 1 = 11x^{2} - 9$$

$$x^{4} - 9x^{2} + 10 = 0$$

$$(x^{2} - 1)(x^{2} - 9) = 0$$

$$(x - 1)(x + 1)(x - 3)(x + 3) = 0$$

وحلول المعادلة هي

$$x \in \{-1, 1, -3, 3\}$$

المسألة الخامسة:

$$f(x) = x + \sin x$$
 ليكن التابعان

.
$$f\left(\frac{\pi}{2}\right)$$
 ، $f\left(2\pi\right)$ ، $f\left(\pi\right)$ عين -1

.
$$f'(x)$$
 عين -2

$$.f\left(-x
ight)=-f\left(x
ight)$$
 . آثبت آن

الحل:

-1

$$f(\pi) = \pi + \sin \pi = \pi$$

$$f(2\pi) = 2\pi + \sin 2\pi = 2\pi$$

$$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} + \sin\frac{\pi}{2} = \frac{\pi}{2} + 1$$

_'

$$f'(x) = 1 + \cos x$$

٠ _

$$f(-x) = -x + \sin(-x) = -x - \sin x = -(x + \sin x) = -f(x)$$

المسألة السادسة:

$$f(x) = x^2 + 7x - 8$$
 ليكن التابعان

.
$$f'(x)$$
 أوجد -1

.
$$f(x) = 0$$
 حل المعادلة -2

$$f(x) \le 0$$
 عل المتراجعة -3

-1

$$f'(x) = 2x + 7$$

-2

$$f(x) = 0$$

$$x^{2} + 7x - 8 = 0$$

$$(x - 1)(x + 8) = 0$$

x = -8 إما x + 8 = 0

x=1 ومنه x-1=0

-3

$$f(x) \le 0$$

$$x^{2} + 7x - 8 \le 0$$

$$(x - 1)(x + 8) \le 0$$

 $x \in \left[-8,1
ight]$ وحل المتراجحة هو

المسألة السابعة:

ليكن التابع $\left|x\right|+\left|x-1\right|$ ، عين قاعدة $\left|x\right|+\left|x-1\right|$ بأبسط ما يمكن في كل من الحالات الآتية :

.
$$x\in \left[0,1\right]$$
 إذا كان -1

.
$$x\in [1,+\infty[$$
 پذا کان -2

.
$$x\in\left]-\infty,0\right]$$
 إذا كان -3

$$-1$$

$$f(x) = x - (x - 1) = 1$$

$$-2$$

$$f\left(x\right) = x + x - 1 = 2x - 1$$

$$-3$$

$$f(x) = -x - (x - 1) = -2x + 1$$

المسألة الثامنة:

$$f\!\left(x
ight) = rac{2x^2+1}{\left(x-1
ight)^2}$$
 ليكن التابع

$$\lim_{x \to 1} f(x)$$
 ، $\lim_{x \to -\infty} f(x)$ ، $\lim_{x \to +\infty} f(x)$ ، $\lim_{x \to +\infty} f(x)$ أوجد

x=0 اكتب معادلة الماس للخط البياني في نقطة فاصلتها -2

الحار

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x^2 + 1}{x^2 - 2x + 1} = 2$$

$$\lim_{x \to -\infty} f(x) = 2$$

$$\lim_{x \to 1} f(x) = +\infty$$

$$f(0) = \frac{1}{1} = 1$$

$$f'(x) = \frac{4x(x-1)^2 - 2(x-1)(2x^2 + 1)}{(x-1)^4}$$

$$= \frac{(x-1)[4x(x-1) - 2(2x^2 + 1)]}{(x-1)^4}$$

$$= \frac{4x^2 - 4x - 4x^2 - 2}{(x-1)^3} = \frac{-4x - 2}{(x-1)^3}$$

ميل المماس

$$m = f'(0) = \frac{-2}{-1} = 2$$

معادلة الماس

$$y-1=2x$$

المسألة التاسعة:

$$u_{\scriptscriptstyle n}=8n+3$$
 لتكن المتتالية

أثبت أن
$$u_n$$
 حسابية وعين أساسها.

$$s=u_{\scriptscriptstyle 7}+u_{\scriptscriptstyle 8}+\ldots+u_{\scriptscriptstyle 63}$$
 احسب المجموع – -2

الحل:

-1

$$u_{n+1} = 8(n+1) + 3 = 8n + 8 + 3 = 8n + 11$$

$$u_{n+1} - u_n = 8n + 11 - (8n+3) = 8$$

r=8 وبالتالي المتتالية حسابية أساسها

$$s = \frac{u_7 + u_{63}}{2} \times 57$$

$$u_{7} = 8 \times 7 + 3 = 56 + 3 = 59$$

$$u_{63} = 8 \times 63 + 3 = 504 + 3 = 507$$

$$s = \frac{59 + 507}{2} \times 57 = \frac{566}{2} \times 57 = 16131$$

المسألة العاشرة:

$$u_{\scriptscriptstyle 9}=16$$
 , $u_{\scriptscriptstyle 5}=1$ نتكن $u_{\scriptscriptstyle n}$ متتائية هندسية

احسب الأساس. -1

n بدلالة u_n بحلالة -2

$$s_{_{n}}=u_{_{0}}+u_{_{1}}+\ldots+u_{_{n-1}}$$
 احسب المجموع – 3

الحل:

$$-1$$

$$u_9 = u_5 \times q^{9-5}$$

 $16 = 1 \times q^4$
 $2^4 = q^4$
 $q = 2$

า

$$egin{aligned} u_n &= u_5 imes q^{n-5} \ u_n &= 1 imes 2^{n-5} \ u_n &= 2^{n-5} \end{aligned}$$

bacall

$$s_n = 2^{-5} \frac{1 - 2^n}{1 - 2} = 2^{-5} \frac{1 - 2^n}{-1} = 2^{-5} \left(2^n - 1\right)$$
$$= 2^{n-5} - \frac{1}{2^5} = 2^{n-5} - \frac{1}{32}$$

المسألة الحادية عشر:

نسحب کرتین معاً من صندوق یحوي 8 کرات خضراء، و 3 کرات بیضاء

احسب احتمال الحصول على كرتين من نفس اللون. -1

استنتج احتمال الحصول على كرتين مختلفتين بالألوان. -2

أعد السؤالين السابقين في حال كان السحب على التتالي مع الإعادة. -3

الحل:

-1

$$P(A) = \frac{\binom{8}{2} + \binom{3}{2}}{\binom{11}{2}} = \frac{\frac{8 \times 7}{2 \times 1} + 3}{\frac{11 \times 10}{2 \times 1}} = \frac{28 + 3}{55} = \frac{31}{55}$$

-2

$$P(A') = 1 - \frac{31}{55} = \frac{24}{55}$$

_ :

$$P(A) = \frac{8^2 + 3^2}{11^2} = \frac{64 + 9}{121} = \frac{73}{121}$$

$$P(A') = 1 - \frac{73}{121} = \frac{48}{121}$$

المسألة الثانية عشر:

$$Pig(A\cap Big)=rac{1}{35}$$
 , $Pig(Big)=rac{3}{5}$, $Pig(Aig)=rac{1}{7}$ إذا كان

$$Pig(A \cup Big)$$
 احسب -1

$$Pig(A'\cap B'ig)$$
 ، $Pig(A'ig)$ ، -2

الحل:

—]

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= \frac{1}{7} + \frac{3}{5} - \frac{1}{35} = \frac{5+7-1}{35} = \frac{11}{35}$$

-9

$$P(A') = 1 - \frac{1}{7} = \frac{6}{7}$$

$$P(A' \cap B') = P(A \cup B)' = 1 - P(A \cup B) = 1 - \frac{11}{35} = \frac{24}{35}$$

النهاية

أطيب الآمال بالتوفيق والنجاح الدائم

المدرس: أحمد عرابي الأحمد